550 lines
13 KiB
C
550 lines
13 KiB
C
|
/*
|
||
|
* Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
|
||
|
*
|
||
|
* Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
*
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/dvb/frontend.h>
|
||
|
#include <linux/i2c.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <media/dvb_frontend.h>
|
||
|
|
||
|
#include "mt2060.h"
|
||
|
#include "mt2060_priv.h"
|
||
|
|
||
|
static int debug;
|
||
|
module_param(debug, int, 0644);
|
||
|
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
|
||
|
|
||
|
#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
|
||
|
|
||
|
// Reads a single register
|
||
|
static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
|
||
|
{
|
||
|
struct i2c_msg msg[2] = {
|
||
|
{ .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 },
|
||
|
{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 },
|
||
|
};
|
||
|
int rc = 0;
|
||
|
u8 *b;
|
||
|
|
||
|
b = kmalloc(2, GFP_KERNEL);
|
||
|
if (!b)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
b[0] = reg;
|
||
|
b[1] = 0;
|
||
|
|
||
|
msg[0].buf = b;
|
||
|
msg[1].buf = b + 1;
|
||
|
|
||
|
if (i2c_transfer(priv->i2c, msg, 2) != 2) {
|
||
|
printk(KERN_WARNING "mt2060 I2C read failed\n");
|
||
|
rc = -EREMOTEIO;
|
||
|
}
|
||
|
*val = b[1];
|
||
|
kfree(b);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
// Writes a single register
|
||
|
static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
|
||
|
{
|
||
|
struct i2c_msg msg = {
|
||
|
.addr = priv->cfg->i2c_address, .flags = 0, .len = 2
|
||
|
};
|
||
|
u8 *buf;
|
||
|
int rc = 0;
|
||
|
|
||
|
buf = kmalloc(2, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
buf[0] = reg;
|
||
|
buf[1] = val;
|
||
|
|
||
|
msg.buf = buf;
|
||
|
|
||
|
if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
|
||
|
printk(KERN_WARNING "mt2060 I2C write failed\n");
|
||
|
rc = -EREMOTEIO;
|
||
|
}
|
||
|
kfree(buf);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
// Writes a set of consecutive registers
|
||
|
static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
|
||
|
{
|
||
|
int rem, val_len;
|
||
|
u8 *xfer_buf;
|
||
|
int rc = 0;
|
||
|
struct i2c_msg msg = {
|
||
|
.addr = priv->cfg->i2c_address, .flags = 0
|
||
|
};
|
||
|
|
||
|
xfer_buf = kmalloc(16, GFP_KERNEL);
|
||
|
if (!xfer_buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
msg.buf = xfer_buf;
|
||
|
|
||
|
for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) {
|
||
|
val_len = min_t(int, rem, priv->i2c_max_regs);
|
||
|
msg.len = 1 + val_len;
|
||
|
xfer_buf[0] = buf[0] + len - 1 - rem;
|
||
|
memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len);
|
||
|
|
||
|
if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
|
||
|
printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len);
|
||
|
rc = -EREMOTEIO;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
kfree(xfer_buf);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
// Initialisation sequences
|
||
|
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
|
||
|
static u8 mt2060_config1[] = {
|
||
|
REG_LO1C1,
|
||
|
0x3F, 0x74, 0x00, 0x08, 0x93
|
||
|
};
|
||
|
|
||
|
// FMCG=2, GP2=0, GP1=0
|
||
|
static u8 mt2060_config2[] = {
|
||
|
REG_MISC_CTRL,
|
||
|
0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
|
||
|
};
|
||
|
|
||
|
// VGAG=3, V1CSE=1
|
||
|
|
||
|
#ifdef MT2060_SPURCHECK
|
||
|
/* The function below calculates the frequency offset between the output frequency if2
|
||
|
and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
|
||
|
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
|
||
|
{
|
||
|
int I,J;
|
||
|
int dia,diamin,diff;
|
||
|
diamin=1000000;
|
||
|
for (I = 1; I < 10; I++) {
|
||
|
J = ((2*I*lo1)/lo2+1)/2;
|
||
|
diff = I*(int)lo1-J*(int)lo2;
|
||
|
if (diff < 0) diff=-diff;
|
||
|
dia = (diff-(int)if2);
|
||
|
if (dia < 0) dia=-dia;
|
||
|
if (diamin > dia) diamin=dia;
|
||
|
}
|
||
|
return diamin;
|
||
|
}
|
||
|
|
||
|
#define BANDWIDTH 4000 // kHz
|
||
|
|
||
|
/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
|
||
|
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
|
||
|
{
|
||
|
u32 Spur,Sp1,Sp2;
|
||
|
int I,J;
|
||
|
I=0;
|
||
|
J=1000;
|
||
|
|
||
|
Spur=mt2060_spurcalc(lo1,lo2,if2);
|
||
|
if (Spur < BANDWIDTH) {
|
||
|
/* Potential spurs detected */
|
||
|
dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
|
||
|
(int)lo1,(int)lo2);
|
||
|
I=1000;
|
||
|
Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
|
||
|
Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
|
||
|
|
||
|
if (Sp1 < Sp2) {
|
||
|
J=-J; I=-I; Spur=Sp2;
|
||
|
} else
|
||
|
Spur=Sp1;
|
||
|
|
||
|
while (Spur < BANDWIDTH) {
|
||
|
I += J;
|
||
|
Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
|
||
|
}
|
||
|
dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
|
||
|
(int)(lo1+I),(int)(lo2+I));
|
||
|
}
|
||
|
return I;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define IF2 36150 // IF2 frequency = 36.150 MHz
|
||
|
#define FREF 16000 // Quartz oscillator 16 MHz
|
||
|
|
||
|
static int mt2060_set_params(struct dvb_frontend *fe)
|
||
|
{
|
||
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
||
|
struct mt2060_priv *priv;
|
||
|
int i=0;
|
||
|
u32 freq;
|
||
|
u8 lnaband;
|
||
|
u32 f_lo1,f_lo2;
|
||
|
u32 div1,num1,div2,num2;
|
||
|
u8 b[8];
|
||
|
u32 if1;
|
||
|
|
||
|
priv = fe->tuner_priv;
|
||
|
|
||
|
if1 = priv->if1_freq;
|
||
|
b[0] = REG_LO1B1;
|
||
|
b[1] = 0xFF;
|
||
|
|
||
|
if (fe->ops.i2c_gate_ctrl)
|
||
|
fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
|
||
|
|
||
|
mt2060_writeregs(priv,b,2);
|
||
|
|
||
|
freq = c->frequency / 1000; /* Hz -> kHz */
|
||
|
|
||
|
f_lo1 = freq + if1 * 1000;
|
||
|
f_lo1 = (f_lo1 / 250) * 250;
|
||
|
f_lo2 = f_lo1 - freq - IF2;
|
||
|
// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
|
||
|
f_lo2 = ((f_lo2 + 25) / 50) * 50;
|
||
|
priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
|
||
|
|
||
|
#ifdef MT2060_SPURCHECK
|
||
|
// LO-related spurs detection and correction
|
||
|
num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
|
||
|
f_lo1 += num1;
|
||
|
f_lo2 += num1;
|
||
|
#endif
|
||
|
//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
|
||
|
num1 = f_lo1 / (FREF / 64);
|
||
|
div1 = num1 / 64;
|
||
|
num1 &= 0x3f;
|
||
|
|
||
|
// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
|
||
|
num2 = f_lo2 * 64 / (FREF / 128);
|
||
|
div2 = num2 / 8192;
|
||
|
num2 &= 0x1fff;
|
||
|
|
||
|
if (freq <= 95000) lnaband = 0xB0; else
|
||
|
if (freq <= 180000) lnaband = 0xA0; else
|
||
|
if (freq <= 260000) lnaband = 0x90; else
|
||
|
if (freq <= 335000) lnaband = 0x80; else
|
||
|
if (freq <= 425000) lnaband = 0x70; else
|
||
|
if (freq <= 480000) lnaband = 0x60; else
|
||
|
if (freq <= 570000) lnaband = 0x50; else
|
||
|
if (freq <= 645000) lnaband = 0x40; else
|
||
|
if (freq <= 730000) lnaband = 0x30; else
|
||
|
if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
|
||
|
|
||
|
b[0] = REG_LO1C1;
|
||
|
b[1] = lnaband | ((num1 >>2) & 0x0F);
|
||
|
b[2] = div1;
|
||
|
b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
|
||
|
b[4] = num2 >> 4;
|
||
|
b[5] = ((num2 >>12) & 1) | (div2 << 1);
|
||
|
|
||
|
dprintk("IF1: %dMHz",(int)if1);
|
||
|
dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
|
||
|
dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
|
||
|
dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
|
||
|
|
||
|
mt2060_writeregs(priv,b,6);
|
||
|
|
||
|
//Waits for pll lock or timeout
|
||
|
i = 0;
|
||
|
do {
|
||
|
mt2060_readreg(priv,REG_LO_STATUS,b);
|
||
|
if ((b[0] & 0x88)==0x88)
|
||
|
break;
|
||
|
msleep(4);
|
||
|
i++;
|
||
|
} while (i<10);
|
||
|
|
||
|
if (fe->ops.i2c_gate_ctrl)
|
||
|
fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void mt2060_calibrate(struct mt2060_priv *priv)
|
||
|
{
|
||
|
u8 b = 0;
|
||
|
int i = 0;
|
||
|
|
||
|
if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
|
||
|
return;
|
||
|
if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
|
||
|
return;
|
||
|
|
||
|
/* initialize the clock output */
|
||
|
mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
|
||
|
|
||
|
do {
|
||
|
b |= (1 << 6); // FM1SS;
|
||
|
mt2060_writereg(priv, REG_LO2C1,b);
|
||
|
msleep(20);
|
||
|
|
||
|
if (i == 0) {
|
||
|
b |= (1 << 7); // FM1CA;
|
||
|
mt2060_writereg(priv, REG_LO2C1,b);
|
||
|
b &= ~(1 << 7); // FM1CA;
|
||
|
msleep(20);
|
||
|
}
|
||
|
|
||
|
b &= ~(1 << 6); // FM1SS
|
||
|
mt2060_writereg(priv, REG_LO2C1,b);
|
||
|
|
||
|
msleep(20);
|
||
|
i++;
|
||
|
} while (i < 9);
|
||
|
|
||
|
i = 0;
|
||
|
while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
|
||
|
msleep(20);
|
||
|
|
||
|
if (i <= 10) {
|
||
|
mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
|
||
|
dprintk("calibration was successful: %d", (int)priv->fmfreq);
|
||
|
} else
|
||
|
dprintk("FMCAL timed out");
|
||
|
}
|
||
|
|
||
|
static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
|
||
|
{
|
||
|
struct mt2060_priv *priv = fe->tuner_priv;
|
||
|
*frequency = priv->frequency;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
|
||
|
{
|
||
|
*frequency = IF2 * 1000;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int mt2060_init(struct dvb_frontend *fe)
|
||
|
{
|
||
|
struct mt2060_priv *priv = fe->tuner_priv;
|
||
|
int ret;
|
||
|
|
||
|
if (fe->ops.i2c_gate_ctrl)
|
||
|
fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
|
||
|
|
||
|
if (priv->sleep) {
|
||
|
ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20);
|
||
|
if (ret)
|
||
|
goto err_i2c_gate_ctrl;
|
||
|
}
|
||
|
|
||
|
ret = mt2060_writereg(priv, REG_VGAG,
|
||
|
(priv->cfg->clock_out << 6) | 0x33);
|
||
|
|
||
|
err_i2c_gate_ctrl:
|
||
|
if (fe->ops.i2c_gate_ctrl)
|
||
|
fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int mt2060_sleep(struct dvb_frontend *fe)
|
||
|
{
|
||
|
struct mt2060_priv *priv = fe->tuner_priv;
|
||
|
int ret;
|
||
|
|
||
|
if (fe->ops.i2c_gate_ctrl)
|
||
|
fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
|
||
|
|
||
|
ret = mt2060_writereg(priv, REG_VGAG,
|
||
|
(priv->cfg->clock_out << 6) | 0x30);
|
||
|
if (ret)
|
||
|
goto err_i2c_gate_ctrl;
|
||
|
|
||
|
if (priv->sleep)
|
||
|
ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8);
|
||
|
|
||
|
err_i2c_gate_ctrl:
|
||
|
if (fe->ops.i2c_gate_ctrl)
|
||
|
fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void mt2060_release(struct dvb_frontend *fe)
|
||
|
{
|
||
|
kfree(fe->tuner_priv);
|
||
|
fe->tuner_priv = NULL;
|
||
|
}
|
||
|
|
||
|
static const struct dvb_tuner_ops mt2060_tuner_ops = {
|
||
|
.info = {
|
||
|
.name = "Microtune MT2060",
|
||
|
.frequency_min_hz = 48 * MHz,
|
||
|
.frequency_max_hz = 860 * MHz,
|
||
|
.frequency_step_hz = 50 * kHz,
|
||
|
},
|
||
|
|
||
|
.release = mt2060_release,
|
||
|
|
||
|
.init = mt2060_init,
|
||
|
.sleep = mt2060_sleep,
|
||
|
|
||
|
.set_params = mt2060_set_params,
|
||
|
.get_frequency = mt2060_get_frequency,
|
||
|
.get_if_frequency = mt2060_get_if_frequency,
|
||
|
};
|
||
|
|
||
|
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
|
||
|
struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
|
||
|
{
|
||
|
struct mt2060_priv *priv = NULL;
|
||
|
u8 id = 0;
|
||
|
|
||
|
priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
|
||
|
if (priv == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
priv->cfg = cfg;
|
||
|
priv->i2c = i2c;
|
||
|
priv->if1_freq = if1;
|
||
|
priv->i2c_max_regs = ~0;
|
||
|
|
||
|
if (fe->ops.i2c_gate_ctrl)
|
||
|
fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
|
||
|
|
||
|
if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
|
||
|
kfree(priv);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (id != PART_REV) {
|
||
|
kfree(priv);
|
||
|
return NULL;
|
||
|
}
|
||
|
printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
|
||
|
memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
|
||
|
|
||
|
fe->tuner_priv = priv;
|
||
|
|
||
|
mt2060_calibrate(priv);
|
||
|
|
||
|
if (fe->ops.i2c_gate_ctrl)
|
||
|
fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
|
||
|
|
||
|
return fe;
|
||
|
}
|
||
|
EXPORT_SYMBOL(mt2060_attach);
|
||
|
|
||
|
static int mt2060_probe(struct i2c_client *client,
|
||
|
const struct i2c_device_id *id)
|
||
|
{
|
||
|
struct mt2060_platform_data *pdata = client->dev.platform_data;
|
||
|
struct dvb_frontend *fe;
|
||
|
struct mt2060_priv *dev;
|
||
|
int ret;
|
||
|
u8 chip_id;
|
||
|
|
||
|
dev_dbg(&client->dev, "\n");
|
||
|
|
||
|
if (!pdata) {
|
||
|
dev_err(&client->dev, "Cannot proceed without platform data\n");
|
||
|
ret = -EINVAL;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL);
|
||
|
if (!dev) {
|
||
|
ret = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
fe = pdata->dvb_frontend;
|
||
|
dev->config.i2c_address = client->addr;
|
||
|
dev->config.clock_out = pdata->clock_out;
|
||
|
dev->cfg = &dev->config;
|
||
|
dev->i2c = client->adapter;
|
||
|
dev->if1_freq = pdata->if1 ? pdata->if1 : 1220;
|
||
|
dev->client = client;
|
||
|
dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0;
|
||
|
dev->sleep = true;
|
||
|
|
||
|
ret = mt2060_readreg(dev, REG_PART_REV, &chip_id);
|
||
|
if (ret) {
|
||
|
ret = -ENODEV;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
dev_dbg(&client->dev, "chip id=%02x\n", chip_id);
|
||
|
|
||
|
if (chip_id != PART_REV) {
|
||
|
ret = -ENODEV;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* Power on, calibrate, sleep */
|
||
|
ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20);
|
||
|
if (ret)
|
||
|
goto err;
|
||
|
mt2060_calibrate(dev);
|
||
|
ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8);
|
||
|
if (ret)
|
||
|
goto err;
|
||
|
|
||
|
dev_info(&client->dev, "Microtune MT2060 successfully identified\n");
|
||
|
memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops));
|
||
|
fe->ops.tuner_ops.release = NULL;
|
||
|
fe->tuner_priv = dev;
|
||
|
i2c_set_clientdata(client, dev);
|
||
|
|
||
|
return 0;
|
||
|
err:
|
||
|
dev_dbg(&client->dev, "failed=%d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int mt2060_remove(struct i2c_client *client)
|
||
|
{
|
||
|
dev_dbg(&client->dev, "\n");
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct i2c_device_id mt2060_id_table[] = {
|
||
|
{"mt2060", 0},
|
||
|
{}
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(i2c, mt2060_id_table);
|
||
|
|
||
|
static struct i2c_driver mt2060_driver = {
|
||
|
.driver = {
|
||
|
.name = "mt2060",
|
||
|
.suppress_bind_attrs = true,
|
||
|
},
|
||
|
.probe = mt2060_probe,
|
||
|
.remove = mt2060_remove,
|
||
|
.id_table = mt2060_id_table,
|
||
|
};
|
||
|
|
||
|
module_i2c_driver(mt2060_driver);
|
||
|
|
||
|
MODULE_AUTHOR("Olivier DANET");
|
||
|
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
|
||
|
MODULE_LICENSE("GPL");
|