1039 lines
26 KiB
C
1039 lines
26 KiB
C
|
/*
|
||
|
* af_can.c - Protocol family CAN core module
|
||
|
* (used by different CAN protocol modules)
|
||
|
*
|
||
|
* Copyright (c) 2002-2017 Volkswagen Group Electronic Research
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. Neither the name of Volkswagen nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* Alternatively, provided that this notice is retained in full, this
|
||
|
* software may be distributed under the terms of the GNU General
|
||
|
* Public License ("GPL") version 2, in which case the provisions of the
|
||
|
* GPL apply INSTEAD OF those given above.
|
||
|
*
|
||
|
* The provided data structures and external interfaces from this code
|
||
|
* are not restricted to be used by modules with a GPL compatible license.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
||
|
* DAMAGE.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/stddef.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kmod.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/rcupdate.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/net.h>
|
||
|
#include <linux/netdevice.h>
|
||
|
#include <linux/socket.h>
|
||
|
#include <linux/if_ether.h>
|
||
|
#include <linux/if_arp.h>
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <linux/can.h>
|
||
|
#include <linux/can/core.h>
|
||
|
#include <linux/can/skb.h>
|
||
|
#include <linux/ratelimit.h>
|
||
|
#include <net/net_namespace.h>
|
||
|
#include <net/sock.h>
|
||
|
|
||
|
#include "af_can.h"
|
||
|
|
||
|
MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
|
||
|
MODULE_LICENSE("Dual BSD/GPL");
|
||
|
MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
|
||
|
"Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
|
||
|
|
||
|
MODULE_ALIAS_NETPROTO(PF_CAN);
|
||
|
|
||
|
static int stats_timer __read_mostly = 1;
|
||
|
module_param(stats_timer, int, 0444);
|
||
|
MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
|
||
|
|
||
|
static struct kmem_cache *rcv_cache __read_mostly;
|
||
|
|
||
|
/* table of registered CAN protocols */
|
||
|
static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
|
||
|
static DEFINE_MUTEX(proto_tab_lock);
|
||
|
|
||
|
static atomic_t skbcounter = ATOMIC_INIT(0);
|
||
|
|
||
|
/*
|
||
|
* af_can socket functions
|
||
|
*/
|
||
|
|
||
|
int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
|
||
|
{
|
||
|
struct sock *sk = sock->sk;
|
||
|
|
||
|
switch (cmd) {
|
||
|
|
||
|
case SIOCGSTAMP:
|
||
|
return sock_get_timestamp(sk, (struct timeval __user *)arg);
|
||
|
|
||
|
default:
|
||
|
return -ENOIOCTLCMD;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(can_ioctl);
|
||
|
|
||
|
static void can_sock_destruct(struct sock *sk)
|
||
|
{
|
||
|
skb_queue_purge(&sk->sk_receive_queue);
|
||
|
skb_queue_purge(&sk->sk_error_queue);
|
||
|
}
|
||
|
|
||
|
static const struct can_proto *can_get_proto(int protocol)
|
||
|
{
|
||
|
const struct can_proto *cp;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
cp = rcu_dereference(proto_tab[protocol]);
|
||
|
if (cp && !try_module_get(cp->prot->owner))
|
||
|
cp = NULL;
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
return cp;
|
||
|
}
|
||
|
|
||
|
static inline void can_put_proto(const struct can_proto *cp)
|
||
|
{
|
||
|
module_put(cp->prot->owner);
|
||
|
}
|
||
|
|
||
|
static int can_create(struct net *net, struct socket *sock, int protocol,
|
||
|
int kern)
|
||
|
{
|
||
|
struct sock *sk;
|
||
|
const struct can_proto *cp;
|
||
|
int err = 0;
|
||
|
|
||
|
sock->state = SS_UNCONNECTED;
|
||
|
|
||
|
if (protocol < 0 || protocol >= CAN_NPROTO)
|
||
|
return -EINVAL;
|
||
|
|
||
|
cp = can_get_proto(protocol);
|
||
|
|
||
|
#ifdef CONFIG_MODULES
|
||
|
if (!cp) {
|
||
|
/* try to load protocol module if kernel is modular */
|
||
|
|
||
|
err = request_module("can-proto-%d", protocol);
|
||
|
|
||
|
/*
|
||
|
* In case of error we only print a message but don't
|
||
|
* return the error code immediately. Below we will
|
||
|
* return -EPROTONOSUPPORT
|
||
|
*/
|
||
|
if (err)
|
||
|
printk_ratelimited(KERN_ERR "can: request_module "
|
||
|
"(can-proto-%d) failed.\n", protocol);
|
||
|
|
||
|
cp = can_get_proto(protocol);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* check for available protocol and correct usage */
|
||
|
|
||
|
if (!cp)
|
||
|
return -EPROTONOSUPPORT;
|
||
|
|
||
|
if (cp->type != sock->type) {
|
||
|
err = -EPROTOTYPE;
|
||
|
goto errout;
|
||
|
}
|
||
|
|
||
|
sock->ops = cp->ops;
|
||
|
|
||
|
sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
|
||
|
if (!sk) {
|
||
|
err = -ENOMEM;
|
||
|
goto errout;
|
||
|
}
|
||
|
|
||
|
sock_init_data(sock, sk);
|
||
|
sk->sk_destruct = can_sock_destruct;
|
||
|
|
||
|
if (sk->sk_prot->init)
|
||
|
err = sk->sk_prot->init(sk);
|
||
|
|
||
|
if (err) {
|
||
|
/* release sk on errors */
|
||
|
sock_orphan(sk);
|
||
|
sock_put(sk);
|
||
|
}
|
||
|
|
||
|
errout:
|
||
|
can_put_proto(cp);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* af_can tx path
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* can_send - transmit a CAN frame (optional with local loopback)
|
||
|
* @skb: pointer to socket buffer with CAN frame in data section
|
||
|
* @loop: loopback for listeners on local CAN sockets (recommended default!)
|
||
|
*
|
||
|
* Due to the loopback this routine must not be called from hardirq context.
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success
|
||
|
* -ENETDOWN when the selected interface is down
|
||
|
* -ENOBUFS on full driver queue (see net_xmit_errno())
|
||
|
* -ENOMEM when local loopback failed at calling skb_clone()
|
||
|
* -EPERM when trying to send on a non-CAN interface
|
||
|
* -EMSGSIZE CAN frame size is bigger than CAN interface MTU
|
||
|
* -EINVAL when the skb->data does not contain a valid CAN frame
|
||
|
*/
|
||
|
int can_send(struct sk_buff *skb, int loop)
|
||
|
{
|
||
|
struct sk_buff *newskb = NULL;
|
||
|
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
|
||
|
struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
|
||
|
int err = -EINVAL;
|
||
|
|
||
|
if (skb->len == CAN_MTU) {
|
||
|
skb->protocol = htons(ETH_P_CAN);
|
||
|
if (unlikely(cfd->len > CAN_MAX_DLEN))
|
||
|
goto inval_skb;
|
||
|
} else if (skb->len == CANFD_MTU) {
|
||
|
skb->protocol = htons(ETH_P_CANFD);
|
||
|
if (unlikely(cfd->len > CANFD_MAX_DLEN))
|
||
|
goto inval_skb;
|
||
|
} else
|
||
|
goto inval_skb;
|
||
|
|
||
|
/*
|
||
|
* Make sure the CAN frame can pass the selected CAN netdevice.
|
||
|
* As structs can_frame and canfd_frame are similar, we can provide
|
||
|
* CAN FD frames to legacy CAN drivers as long as the length is <= 8
|
||
|
*/
|
||
|
if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
|
||
|
err = -EMSGSIZE;
|
||
|
goto inval_skb;
|
||
|
}
|
||
|
|
||
|
if (unlikely(skb->dev->type != ARPHRD_CAN)) {
|
||
|
err = -EPERM;
|
||
|
goto inval_skb;
|
||
|
}
|
||
|
|
||
|
if (unlikely(!(skb->dev->flags & IFF_UP))) {
|
||
|
err = -ENETDOWN;
|
||
|
goto inval_skb;
|
||
|
}
|
||
|
|
||
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||
|
|
||
|
skb_reset_mac_header(skb);
|
||
|
skb_reset_network_header(skb);
|
||
|
skb_reset_transport_header(skb);
|
||
|
|
||
|
if (loop) {
|
||
|
/* local loopback of sent CAN frames */
|
||
|
|
||
|
/* indication for the CAN driver: do loopback */
|
||
|
skb->pkt_type = PACKET_LOOPBACK;
|
||
|
|
||
|
/*
|
||
|
* The reference to the originating sock may be required
|
||
|
* by the receiving socket to check whether the frame is
|
||
|
* its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
|
||
|
* Therefore we have to ensure that skb->sk remains the
|
||
|
* reference to the originating sock by restoring skb->sk
|
||
|
* after each skb_clone() or skb_orphan() usage.
|
||
|
*/
|
||
|
|
||
|
if (!(skb->dev->flags & IFF_ECHO)) {
|
||
|
/*
|
||
|
* If the interface is not capable to do loopback
|
||
|
* itself, we do it here.
|
||
|
*/
|
||
|
newskb = skb_clone(skb, GFP_ATOMIC);
|
||
|
if (!newskb) {
|
||
|
kfree_skb(skb);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
can_skb_set_owner(newskb, skb->sk);
|
||
|
newskb->ip_summed = CHECKSUM_UNNECESSARY;
|
||
|
newskb->pkt_type = PACKET_BROADCAST;
|
||
|
}
|
||
|
} else {
|
||
|
/* indication for the CAN driver: no loopback required */
|
||
|
skb->pkt_type = PACKET_HOST;
|
||
|
}
|
||
|
|
||
|
/* send to netdevice */
|
||
|
err = dev_queue_xmit(skb);
|
||
|
if (err > 0)
|
||
|
err = net_xmit_errno(err);
|
||
|
|
||
|
if (err) {
|
||
|
kfree_skb(newskb);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
if (newskb)
|
||
|
netif_rx_ni(newskb);
|
||
|
|
||
|
/* update statistics */
|
||
|
can_stats->tx_frames++;
|
||
|
can_stats->tx_frames_delta++;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
inval_skb:
|
||
|
kfree_skb(skb);
|
||
|
return err;
|
||
|
}
|
||
|
EXPORT_SYMBOL(can_send);
|
||
|
|
||
|
/*
|
||
|
* af_can rx path
|
||
|
*/
|
||
|
|
||
|
static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net,
|
||
|
struct net_device *dev)
|
||
|
{
|
||
|
if (!dev)
|
||
|
return net->can.can_rx_alldev_list;
|
||
|
else
|
||
|
return (struct can_dev_rcv_lists *)dev->ml_priv;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* effhash - hash function for 29 bit CAN identifier reduction
|
||
|
* @can_id: 29 bit CAN identifier
|
||
|
*
|
||
|
* Description:
|
||
|
* To reduce the linear traversal in one linked list of _single_ EFF CAN
|
||
|
* frame subscriptions the 29 bit identifier is mapped to 10 bits.
|
||
|
* (see CAN_EFF_RCV_HASH_BITS definition)
|
||
|
*
|
||
|
* Return:
|
||
|
* Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
|
||
|
*/
|
||
|
static unsigned int effhash(canid_t can_id)
|
||
|
{
|
||
|
unsigned int hash;
|
||
|
|
||
|
hash = can_id;
|
||
|
hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
|
||
|
hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
|
||
|
|
||
|
return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* find_rcv_list - determine optimal filterlist inside device filter struct
|
||
|
* @can_id: pointer to CAN identifier of a given can_filter
|
||
|
* @mask: pointer to CAN mask of a given can_filter
|
||
|
* @d: pointer to the device filter struct
|
||
|
*
|
||
|
* Description:
|
||
|
* Returns the optimal filterlist to reduce the filter handling in the
|
||
|
* receive path. This function is called by service functions that need
|
||
|
* to register or unregister a can_filter in the filter lists.
|
||
|
*
|
||
|
* A filter matches in general, when
|
||
|
*
|
||
|
* <received_can_id> & mask == can_id & mask
|
||
|
*
|
||
|
* so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
|
||
|
* relevant bits for the filter.
|
||
|
*
|
||
|
* The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
|
||
|
* filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
|
||
|
* frames there is a special filterlist and a special rx path filter handling.
|
||
|
*
|
||
|
* Return:
|
||
|
* Pointer to optimal filterlist for the given can_id/mask pair.
|
||
|
* Constistency checked mask.
|
||
|
* Reduced can_id to have a preprocessed filter compare value.
|
||
|
*/
|
||
|
static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
|
||
|
struct can_dev_rcv_lists *d)
|
||
|
{
|
||
|
canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
|
||
|
|
||
|
/* filter for error message frames in extra filterlist */
|
||
|
if (*mask & CAN_ERR_FLAG) {
|
||
|
/* clear CAN_ERR_FLAG in filter entry */
|
||
|
*mask &= CAN_ERR_MASK;
|
||
|
return &d->rx[RX_ERR];
|
||
|
}
|
||
|
|
||
|
/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
|
||
|
|
||
|
#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
|
||
|
|
||
|
/* ensure valid values in can_mask for 'SFF only' frame filtering */
|
||
|
if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
|
||
|
*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
|
||
|
|
||
|
/* reduce condition testing at receive time */
|
||
|
*can_id &= *mask;
|
||
|
|
||
|
/* inverse can_id/can_mask filter */
|
||
|
if (inv)
|
||
|
return &d->rx[RX_INV];
|
||
|
|
||
|
/* mask == 0 => no condition testing at receive time */
|
||
|
if (!(*mask))
|
||
|
return &d->rx[RX_ALL];
|
||
|
|
||
|
/* extra filterlists for the subscription of a single non-RTR can_id */
|
||
|
if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
|
||
|
!(*can_id & CAN_RTR_FLAG)) {
|
||
|
|
||
|
if (*can_id & CAN_EFF_FLAG) {
|
||
|
if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
|
||
|
return &d->rx_eff[effhash(*can_id)];
|
||
|
} else {
|
||
|
if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
|
||
|
return &d->rx_sff[*can_id];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* default: filter via can_id/can_mask */
|
||
|
return &d->rx[RX_FIL];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* can_rx_register - subscribe CAN frames from a specific interface
|
||
|
* @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
|
||
|
* @can_id: CAN identifier (see description)
|
||
|
* @mask: CAN mask (see description)
|
||
|
* @func: callback function on filter match
|
||
|
* @data: returned parameter for callback function
|
||
|
* @ident: string for calling module identification
|
||
|
* @sk: socket pointer (might be NULL)
|
||
|
*
|
||
|
* Description:
|
||
|
* Invokes the callback function with the received sk_buff and the given
|
||
|
* parameter 'data' on a matching receive filter. A filter matches, when
|
||
|
*
|
||
|
* <received_can_id> & mask == can_id & mask
|
||
|
*
|
||
|
* The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
|
||
|
* filter for error message frames (CAN_ERR_FLAG bit set in mask).
|
||
|
*
|
||
|
* The provided pointer to the sk_buff is guaranteed to be valid as long as
|
||
|
* the callback function is running. The callback function must *not* free
|
||
|
* the given sk_buff while processing it's task. When the given sk_buff is
|
||
|
* needed after the end of the callback function it must be cloned inside
|
||
|
* the callback function with skb_clone().
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success
|
||
|
* -ENOMEM on missing cache mem to create subscription entry
|
||
|
* -ENODEV unknown device
|
||
|
*/
|
||
|
int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
|
||
|
canid_t mask, void (*func)(struct sk_buff *, void *),
|
||
|
void *data, char *ident, struct sock *sk)
|
||
|
{
|
||
|
struct receiver *r;
|
||
|
struct hlist_head *rl;
|
||
|
struct can_dev_rcv_lists *d;
|
||
|
struct s_pstats *can_pstats = net->can.can_pstats;
|
||
|
int err = 0;
|
||
|
|
||
|
/* insert new receiver (dev,canid,mask) -> (func,data) */
|
||
|
|
||
|
if (dev && dev->type != ARPHRD_CAN)
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (dev && !net_eq(net, dev_net(dev)))
|
||
|
return -ENODEV;
|
||
|
|
||
|
r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
|
||
|
if (!r)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
spin_lock(&net->can.can_rcvlists_lock);
|
||
|
|
||
|
d = find_dev_rcv_lists(net, dev);
|
||
|
if (d) {
|
||
|
rl = find_rcv_list(&can_id, &mask, d);
|
||
|
|
||
|
r->can_id = can_id;
|
||
|
r->mask = mask;
|
||
|
r->matches = 0;
|
||
|
r->func = func;
|
||
|
r->data = data;
|
||
|
r->ident = ident;
|
||
|
r->sk = sk;
|
||
|
|
||
|
hlist_add_head_rcu(&r->list, rl);
|
||
|
d->entries++;
|
||
|
|
||
|
can_pstats->rcv_entries++;
|
||
|
if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
|
||
|
can_pstats->rcv_entries_max = can_pstats->rcv_entries;
|
||
|
} else {
|
||
|
kmem_cache_free(rcv_cache, r);
|
||
|
err = -ENODEV;
|
||
|
}
|
||
|
|
||
|
spin_unlock(&net->can.can_rcvlists_lock);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
EXPORT_SYMBOL(can_rx_register);
|
||
|
|
||
|
/*
|
||
|
* can_rx_delete_receiver - rcu callback for single receiver entry removal
|
||
|
*/
|
||
|
static void can_rx_delete_receiver(struct rcu_head *rp)
|
||
|
{
|
||
|
struct receiver *r = container_of(rp, struct receiver, rcu);
|
||
|
struct sock *sk = r->sk;
|
||
|
|
||
|
kmem_cache_free(rcv_cache, r);
|
||
|
if (sk)
|
||
|
sock_put(sk);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* can_rx_unregister - unsubscribe CAN frames from a specific interface
|
||
|
* @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
|
||
|
* @can_id: CAN identifier
|
||
|
* @mask: CAN mask
|
||
|
* @func: callback function on filter match
|
||
|
* @data: returned parameter for callback function
|
||
|
*
|
||
|
* Description:
|
||
|
* Removes subscription entry depending on given (subscription) values.
|
||
|
*/
|
||
|
void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
|
||
|
canid_t mask, void (*func)(struct sk_buff *, void *),
|
||
|
void *data)
|
||
|
{
|
||
|
struct receiver *r = NULL;
|
||
|
struct hlist_head *rl;
|
||
|
struct s_pstats *can_pstats = net->can.can_pstats;
|
||
|
struct can_dev_rcv_lists *d;
|
||
|
|
||
|
if (dev && dev->type != ARPHRD_CAN)
|
||
|
return;
|
||
|
|
||
|
if (dev && !net_eq(net, dev_net(dev)))
|
||
|
return;
|
||
|
|
||
|
spin_lock(&net->can.can_rcvlists_lock);
|
||
|
|
||
|
d = find_dev_rcv_lists(net, dev);
|
||
|
if (!d) {
|
||
|
pr_err("BUG: receive list not found for "
|
||
|
"dev %s, id %03X, mask %03X\n",
|
||
|
DNAME(dev), can_id, mask);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
rl = find_rcv_list(&can_id, &mask, d);
|
||
|
|
||
|
/*
|
||
|
* Search the receiver list for the item to delete. This should
|
||
|
* exist, since no receiver may be unregistered that hasn't
|
||
|
* been registered before.
|
||
|
*/
|
||
|
|
||
|
hlist_for_each_entry_rcu(r, rl, list) {
|
||
|
if (r->can_id == can_id && r->mask == mask &&
|
||
|
r->func == func && r->data == data)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check for bugs in CAN protocol implementations using af_can.c:
|
||
|
* 'r' will be NULL if no matching list item was found for removal.
|
||
|
*/
|
||
|
|
||
|
if (!r) {
|
||
|
WARN(1, "BUG: receive list entry not found for dev %s, "
|
||
|
"id %03X, mask %03X\n", DNAME(dev), can_id, mask);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
hlist_del_rcu(&r->list);
|
||
|
d->entries--;
|
||
|
|
||
|
if (can_pstats->rcv_entries > 0)
|
||
|
can_pstats->rcv_entries--;
|
||
|
|
||
|
/* remove device structure requested by NETDEV_UNREGISTER */
|
||
|
if (d->remove_on_zero_entries && !d->entries) {
|
||
|
kfree(d);
|
||
|
dev->ml_priv = NULL;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
spin_unlock(&net->can.can_rcvlists_lock);
|
||
|
|
||
|
/* schedule the receiver item for deletion */
|
||
|
if (r) {
|
||
|
if (r->sk)
|
||
|
sock_hold(r->sk);
|
||
|
call_rcu(&r->rcu, can_rx_delete_receiver);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(can_rx_unregister);
|
||
|
|
||
|
static inline void deliver(struct sk_buff *skb, struct receiver *r)
|
||
|
{
|
||
|
r->func(skb, r->data);
|
||
|
r->matches++;
|
||
|
}
|
||
|
|
||
|
static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb)
|
||
|
{
|
||
|
struct receiver *r;
|
||
|
int matches = 0;
|
||
|
struct can_frame *cf = (struct can_frame *)skb->data;
|
||
|
canid_t can_id = cf->can_id;
|
||
|
|
||
|
if (d->entries == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (can_id & CAN_ERR_FLAG) {
|
||
|
/* check for error message frame entries only */
|
||
|
hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
|
||
|
if (can_id & r->mask) {
|
||
|
deliver(skb, r);
|
||
|
matches++;
|
||
|
}
|
||
|
}
|
||
|
return matches;
|
||
|
}
|
||
|
|
||
|
/* check for unfiltered entries */
|
||
|
hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
|
||
|
deliver(skb, r);
|
||
|
matches++;
|
||
|
}
|
||
|
|
||
|
/* check for can_id/mask entries */
|
||
|
hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
|
||
|
if ((can_id & r->mask) == r->can_id) {
|
||
|
deliver(skb, r);
|
||
|
matches++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* check for inverted can_id/mask entries */
|
||
|
hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
|
||
|
if ((can_id & r->mask) != r->can_id) {
|
||
|
deliver(skb, r);
|
||
|
matches++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* check filterlists for single non-RTR can_ids */
|
||
|
if (can_id & CAN_RTR_FLAG)
|
||
|
return matches;
|
||
|
|
||
|
if (can_id & CAN_EFF_FLAG) {
|
||
|
hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
|
||
|
if (r->can_id == can_id) {
|
||
|
deliver(skb, r);
|
||
|
matches++;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
can_id &= CAN_SFF_MASK;
|
||
|
hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
|
||
|
deliver(skb, r);
|
||
|
matches++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return matches;
|
||
|
}
|
||
|
|
||
|
static void can_receive(struct sk_buff *skb, struct net_device *dev)
|
||
|
{
|
||
|
struct can_dev_rcv_lists *d;
|
||
|
struct net *net = dev_net(dev);
|
||
|
struct s_stats *can_stats = net->can.can_stats;
|
||
|
int matches;
|
||
|
|
||
|
/* update statistics */
|
||
|
can_stats->rx_frames++;
|
||
|
can_stats->rx_frames_delta++;
|
||
|
|
||
|
/* create non-zero unique skb identifier together with *skb */
|
||
|
while (!(can_skb_prv(skb)->skbcnt))
|
||
|
can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
/* deliver the packet to sockets listening on all devices */
|
||
|
matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
|
||
|
|
||
|
/* find receive list for this device */
|
||
|
d = find_dev_rcv_lists(net, dev);
|
||
|
if (d)
|
||
|
matches += can_rcv_filter(d, skb);
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/* consume the skbuff allocated by the netdevice driver */
|
||
|
consume_skb(skb);
|
||
|
|
||
|
if (matches > 0) {
|
||
|
can_stats->matches++;
|
||
|
can_stats->matches_delta++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int can_rcv(struct sk_buff *skb, struct net_device *dev,
|
||
|
struct packet_type *pt, struct net_device *orig_dev)
|
||
|
{
|
||
|
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
|
||
|
|
||
|
if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU)) {
|
||
|
pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
|
||
|
dev->type, skb->len);
|
||
|
goto free_skb;
|
||
|
}
|
||
|
|
||
|
/* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */
|
||
|
if (unlikely(cfd->len > CAN_MAX_DLEN)) {
|
||
|
pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d, datalen %d\n",
|
||
|
dev->type, skb->len, cfd->len);
|
||
|
goto free_skb;
|
||
|
}
|
||
|
|
||
|
can_receive(skb, dev);
|
||
|
return NET_RX_SUCCESS;
|
||
|
|
||
|
free_skb:
|
||
|
kfree_skb(skb);
|
||
|
return NET_RX_DROP;
|
||
|
}
|
||
|
|
||
|
static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
|
||
|
struct packet_type *pt, struct net_device *orig_dev)
|
||
|
{
|
||
|
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
|
||
|
|
||
|
if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU)) {
|
||
|
pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
|
||
|
dev->type, skb->len);
|
||
|
goto free_skb;
|
||
|
}
|
||
|
|
||
|
/* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */
|
||
|
if (unlikely(cfd->len > CANFD_MAX_DLEN)) {
|
||
|
pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d, datalen %d\n",
|
||
|
dev->type, skb->len, cfd->len);
|
||
|
goto free_skb;
|
||
|
}
|
||
|
|
||
|
can_receive(skb, dev);
|
||
|
return NET_RX_SUCCESS;
|
||
|
|
||
|
free_skb:
|
||
|
kfree_skb(skb);
|
||
|
return NET_RX_DROP;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* af_can protocol functions
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* can_proto_register - register CAN transport protocol
|
||
|
* @cp: pointer to CAN protocol structure
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success
|
||
|
* -EINVAL invalid (out of range) protocol number
|
||
|
* -EBUSY protocol already in use
|
||
|
* -ENOBUF if proto_register() fails
|
||
|
*/
|
||
|
int can_proto_register(const struct can_proto *cp)
|
||
|
{
|
||
|
int proto = cp->protocol;
|
||
|
int err = 0;
|
||
|
|
||
|
if (proto < 0 || proto >= CAN_NPROTO) {
|
||
|
pr_err("can: protocol number %d out of range\n", proto);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
err = proto_register(cp->prot, 0);
|
||
|
if (err < 0)
|
||
|
return err;
|
||
|
|
||
|
mutex_lock(&proto_tab_lock);
|
||
|
|
||
|
if (rcu_access_pointer(proto_tab[proto])) {
|
||
|
pr_err("can: protocol %d already registered\n", proto);
|
||
|
err = -EBUSY;
|
||
|
} else
|
||
|
RCU_INIT_POINTER(proto_tab[proto], cp);
|
||
|
|
||
|
mutex_unlock(&proto_tab_lock);
|
||
|
|
||
|
if (err < 0)
|
||
|
proto_unregister(cp->prot);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
EXPORT_SYMBOL(can_proto_register);
|
||
|
|
||
|
/**
|
||
|
* can_proto_unregister - unregister CAN transport protocol
|
||
|
* @cp: pointer to CAN protocol structure
|
||
|
*/
|
||
|
void can_proto_unregister(const struct can_proto *cp)
|
||
|
{
|
||
|
int proto = cp->protocol;
|
||
|
|
||
|
mutex_lock(&proto_tab_lock);
|
||
|
BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
|
||
|
RCU_INIT_POINTER(proto_tab[proto], NULL);
|
||
|
mutex_unlock(&proto_tab_lock);
|
||
|
|
||
|
synchronize_rcu();
|
||
|
|
||
|
proto_unregister(cp->prot);
|
||
|
}
|
||
|
EXPORT_SYMBOL(can_proto_unregister);
|
||
|
|
||
|
/*
|
||
|
* af_can notifier to create/remove CAN netdevice specific structs
|
||
|
*/
|
||
|
static int can_notifier(struct notifier_block *nb, unsigned long msg,
|
||
|
void *ptr)
|
||
|
{
|
||
|
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
|
||
|
struct can_dev_rcv_lists *d;
|
||
|
|
||
|
if (dev->type != ARPHRD_CAN)
|
||
|
return NOTIFY_DONE;
|
||
|
|
||
|
switch (msg) {
|
||
|
|
||
|
case NETDEV_REGISTER:
|
||
|
|
||
|
/* create new dev_rcv_lists for this device */
|
||
|
d = kzalloc(sizeof(*d), GFP_KERNEL);
|
||
|
if (!d)
|
||
|
return NOTIFY_DONE;
|
||
|
BUG_ON(dev->ml_priv);
|
||
|
dev->ml_priv = d;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case NETDEV_UNREGISTER:
|
||
|
spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
|
||
|
|
||
|
d = dev->ml_priv;
|
||
|
if (d) {
|
||
|
if (d->entries)
|
||
|
d->remove_on_zero_entries = 1;
|
||
|
else {
|
||
|
kfree(d);
|
||
|
dev->ml_priv = NULL;
|
||
|
}
|
||
|
} else
|
||
|
pr_err("can: notifier: receive list not found for dev "
|
||
|
"%s\n", dev->name);
|
||
|
|
||
|
spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
|
||
|
static int can_pernet_init(struct net *net)
|
||
|
{
|
||
|
spin_lock_init(&net->can.can_rcvlists_lock);
|
||
|
net->can.can_rx_alldev_list =
|
||
|
kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL);
|
||
|
if (!net->can.can_rx_alldev_list)
|
||
|
goto out;
|
||
|
net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
|
||
|
if (!net->can.can_stats)
|
||
|
goto out_free_alldev_list;
|
||
|
net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
|
||
|
if (!net->can.can_pstats)
|
||
|
goto out_free_can_stats;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_PROC_FS)) {
|
||
|
/* the statistics are updated every second (timer triggered) */
|
||
|
if (stats_timer) {
|
||
|
timer_setup(&net->can.can_stattimer, can_stat_update,
|
||
|
0);
|
||
|
mod_timer(&net->can.can_stattimer,
|
||
|
round_jiffies(jiffies + HZ));
|
||
|
}
|
||
|
net->can.can_stats->jiffies_init = jiffies;
|
||
|
can_init_proc(net);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_free_can_stats:
|
||
|
kfree(net->can.can_stats);
|
||
|
out_free_alldev_list:
|
||
|
kfree(net->can.can_rx_alldev_list);
|
||
|
out:
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static void can_pernet_exit(struct net *net)
|
||
|
{
|
||
|
struct net_device *dev;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_PROC_FS)) {
|
||
|
can_remove_proc(net);
|
||
|
if (stats_timer)
|
||
|
del_timer_sync(&net->can.can_stattimer);
|
||
|
}
|
||
|
|
||
|
/* remove created dev_rcv_lists from still registered CAN devices */
|
||
|
rcu_read_lock();
|
||
|
for_each_netdev_rcu(net, dev) {
|
||
|
if (dev->type == ARPHRD_CAN && dev->ml_priv) {
|
||
|
struct can_dev_rcv_lists *d = dev->ml_priv;
|
||
|
|
||
|
BUG_ON(d->entries);
|
||
|
kfree(d);
|
||
|
dev->ml_priv = NULL;
|
||
|
}
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
kfree(net->can.can_rx_alldev_list);
|
||
|
kfree(net->can.can_stats);
|
||
|
kfree(net->can.can_pstats);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* af_can module init/exit functions
|
||
|
*/
|
||
|
|
||
|
static struct packet_type can_packet __read_mostly = {
|
||
|
.type = cpu_to_be16(ETH_P_CAN),
|
||
|
.func = can_rcv,
|
||
|
};
|
||
|
|
||
|
static struct packet_type canfd_packet __read_mostly = {
|
||
|
.type = cpu_to_be16(ETH_P_CANFD),
|
||
|
.func = canfd_rcv,
|
||
|
};
|
||
|
|
||
|
static const struct net_proto_family can_family_ops = {
|
||
|
.family = PF_CAN,
|
||
|
.create = can_create,
|
||
|
.owner = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
/* notifier block for netdevice event */
|
||
|
static struct notifier_block can_netdev_notifier __read_mostly = {
|
||
|
.notifier_call = can_notifier,
|
||
|
};
|
||
|
|
||
|
static struct pernet_operations can_pernet_ops __read_mostly = {
|
||
|
.init = can_pernet_init,
|
||
|
.exit = can_pernet_exit,
|
||
|
};
|
||
|
|
||
|
static __init int can_init(void)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
/* check for correct padding to be able to use the structs similarly */
|
||
|
BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
|
||
|
offsetof(struct canfd_frame, len) ||
|
||
|
offsetof(struct can_frame, data) !=
|
||
|
offsetof(struct canfd_frame, data));
|
||
|
|
||
|
pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
|
||
|
|
||
|
rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
|
||
|
0, 0, NULL);
|
||
|
if (!rcv_cache)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
err = register_pernet_subsys(&can_pernet_ops);
|
||
|
if (err)
|
||
|
goto out_pernet;
|
||
|
|
||
|
/* protocol register */
|
||
|
err = sock_register(&can_family_ops);
|
||
|
if (err)
|
||
|
goto out_sock;
|
||
|
err = register_netdevice_notifier(&can_netdev_notifier);
|
||
|
if (err)
|
||
|
goto out_notifier;
|
||
|
|
||
|
dev_add_pack(&can_packet);
|
||
|
dev_add_pack(&canfd_packet);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_notifier:
|
||
|
sock_unregister(PF_CAN);
|
||
|
out_sock:
|
||
|
unregister_pernet_subsys(&can_pernet_ops);
|
||
|
out_pernet:
|
||
|
kmem_cache_destroy(rcv_cache);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static __exit void can_exit(void)
|
||
|
{
|
||
|
/* protocol unregister */
|
||
|
dev_remove_pack(&canfd_packet);
|
||
|
dev_remove_pack(&can_packet);
|
||
|
unregister_netdevice_notifier(&can_netdev_notifier);
|
||
|
sock_unregister(PF_CAN);
|
||
|
|
||
|
unregister_pernet_subsys(&can_pernet_ops);
|
||
|
|
||
|
rcu_barrier(); /* Wait for completion of call_rcu()'s */
|
||
|
|
||
|
kmem_cache_destroy(rcv_cache);
|
||
|
}
|
||
|
|
||
|
module_init(can_init);
|
||
|
module_exit(can_exit);
|