kernel_samsung_a34x-permissive/sound/soc/codecs/aw882xx/aw_monitor.c

1231 lines
33 KiB
C
Raw Normal View History

/*
* awinic_monitor.c monitor_module
*
* Version: v0.1.17
*
* Copyright (c) 2019 AWINIC Technology CO., LTD
*
* Author: Nick Li <liweilei@awinic.com.cn>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/of.h>
#include <linux/version.h>
#include <linux/input.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/power_supply.h>
#include <linux/hrtimer.h>
#include "aw882xx.h"
#include "aw_dsp.h"
#include "aw_monitor.h"
#include "aw_log.h"
/*****************************************************
* device monitor
*****************************************************/
static int aw_get_hmute(struct aw_device *aw_dev)
{
unsigned int reg_val = 0;
int ret;
struct aw_mute_desc *desc = &aw_dev->mute_desc;
aw_dev_dbg(aw_dev->dev, "enter");
ret = aw_dev->ops.aw_i2c_read(aw_dev, desc->reg, &reg_val);
if (ret < 0)
return ret;
if (reg_val & (~desc->mask))
ret = 1;
else
ret = 0;
return ret;
}
static int aw_monitor_get_data_form_system(struct aw_device *aw_dev,
int *data, int data_type)
{
char name[] = "battery";
int ret;
union power_supply_propval prop = { 0 };
struct power_supply *psy = NULL;
psy = power_supply_get_by_name(name);
if (psy) {
ret = power_supply_get_property(psy, data_type, &prop);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "get data failed");
return -EINVAL;
}
*data = prop.intval;
aw_dev_dbg(aw_dev->dev, "data: %d", *data);
} else {
aw_dev_err(aw_dev->dev, "no struct power supply name : %s", name);
return -EINVAL;
}
return 0;
}
static int aw_monitor_get_voltage(struct aw_device *aw_dev, unsigned int *vol)
{
int ret = -1;
uint16_t local_vol = 0;
struct aw_voltage_desc *desc = &aw_dev->voltage_desc;
if (desc->reg == AW_REG_NONE) {
ret = aw_monitor_get_data_form_system(aw_dev, (int *)vol, POWER_SUPPLY_PROP_VOLTAGE_NOW);
if (ret) {
aw_dev_err(aw_dev->dev, "get voltage from system failed!");
return ret;
}
*vol = (*vol) / 1000;
} else {
ret = aw_dev->ops.aw_i2c_read(aw_dev, desc->reg, vol);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "read voltage failed!");
return ret;
}
local_vol = ((*vol) * desc->vbat_range) / desc->int_bit;
*vol = local_vol;
}
aw_dev_info(aw_dev->dev, "chip voltage is %d", *vol);
return 0;
}
static int aw_monitor_get_temperature(struct aw_device *aw_dev, int *temp)
{
int ret = -1;
unsigned int reg_val = 0;
uint16_t local_temp;
struct aw_temperature_desc *desc = &aw_dev->temp_desc;
if (desc->reg == AW_REG_NONE) {
ret = aw_monitor_get_data_form_system(aw_dev, temp, POWER_SUPPLY_PROP_TEMP);
if (ret) {
aw_dev_err(aw_dev->dev, "get temperature from system failed!");
return ret;
}
*temp = (*temp) / 10;
} else {
ret = aw_dev->ops.aw_i2c_read(aw_dev, desc->reg, &reg_val);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "get temperature failed!");
return ret;
}
aw_dev_info(aw_dev->dev, "reg val is 0x%04x", reg_val);
local_temp = reg_val;
if (local_temp & (~desc->sign_mask))
local_temp = local_temp | desc->neg_mask;
*temp = (int16_t)local_temp;
}
aw_dev_info(aw_dev->dev, "chip temperature = %d", *temp);
return 0;
}
static int aw_monitor_get_temp_and_vol(struct aw_device *aw_dev)
{
struct aw_monitor_desc *monitor = &aw_dev->monitor_desc;
unsigned int voltage = 0;
int current_temp = 0;
int ret = -1;
#ifdef AW_DEBUG
if (monitor->test_vol == 0) {
ret = aw_monitor_get_voltage(aw_dev, &voltage);
if (ret < 0)
return ret;
} else {
voltage = monitor->test_vol;
}
if (monitor->test_temp == 0) {
ret = aw_monitor_get_temperature(aw_dev, &current_temp);
if (ret)
return ret;
} else {
current_temp = monitor->test_temp;
}
#else
ret = aw_monitor_get_voltage(aw_dev, &voltage);
if (ret < 0)
return ret;
ret = aw_monitor_get_temperature(aw_dev, &current_temp);
if (ret < 0)
return ret;
#endif
monitor->vol_trace.sum_val += voltage;
monitor->temp_trace.sum_val += current_temp;
monitor->samp_count++;
return 0;
}
static int aw_monitor_first_get_data_form_table(struct aw_device *aw_dev,
struct aw_table_info table_info,
struct aw_monitor_trace *data_trace)
{
int i;
if (table_info.aw_table == NULL) {
aw_dev_err(aw_dev->dev, "table_info.aw_table is null");
return -EINVAL;
}
for (i = 0; i < table_info.table_num; i++) {
if (data_trace->sum_val >= table_info.aw_table[i].min_val) {
memcpy(&data_trace->aw_table, &table_info.aw_table[i],
sizeof(struct aw_table));
break;
}
}
return 0;
}
static int aw_monitor_trace_data_from_table(struct aw_device *aw_dev,
struct aw_table_info table_info,
struct aw_monitor_trace *data_trace)
{
int i;
if (table_info.aw_table == NULL) {
aw_dev_err(aw_dev->dev, "table_info.aw_table is null");
return -EINVAL;
}
for (i = 0; i < table_info.table_num; i++) {
if (data_trace->sum_val >= table_info.aw_table[i].min_val &&
data_trace->sum_val <= table_info.aw_table[i].max_val) {
memcpy(&data_trace->aw_table, &table_info.aw_table[i],
sizeof(struct aw_table));
break;
}
}
return 0;
}
static int aw_monitor_get_data_from_table(struct aw_device *aw_dev,
struct aw_table_info table_info,
struct aw_monitor_trace *data_trace,
uint32_t aplha)
{
struct aw_monitor_desc *monitor = &aw_dev->monitor_desc;
if (monitor->first_entry == AW_FIRST_ENTRY) {
return aw_monitor_first_get_data_form_table(aw_dev,
table_info, data_trace);
} else {
data_trace->sum_val = data_trace->sum_val / monitor->samp_count;
data_trace->sum_val = ((int32_t)aplha * data_trace->sum_val +
(1000 - (int32_t)aplha) * data_trace->pre_val) / 1000;
return aw_monitor_trace_data_from_table(aw_dev,
table_info, data_trace);
}
return 0;
}
static int aw_monitor_get_data(struct aw_device *aw_dev)
{
struct aw_monitor_desc *monitor = &aw_dev->monitor_desc;
struct aw_monitor_cfg *monitor_cfg = &monitor->monitor_cfg;
struct aw_monitor_trace *vol_trace = &monitor->vol_trace;
struct aw_monitor_trace *temp_trace = &monitor->temp_trace;
int ret;
if (monitor_cfg->vol_switch) {
ret = aw_monitor_get_data_from_table(aw_dev,
monitor_cfg->vol_info, vol_trace,
monitor_cfg->vol_aplha);
if (ret < 0)
return ret;
} else {
vol_trace->aw_table.ipeak = IPEAK_NONE;
vol_trace->aw_table.gain = GAIN_NONE;
vol_trace->aw_table.vmax = VMAX_NONE;
}
if (monitor_cfg->temp_switch) {
ret = aw_monitor_get_data_from_table(aw_dev,
monitor_cfg->temp_info, temp_trace,
monitor_cfg->temp_aplha);
if (ret < 0)
return ret;
} else {
temp_trace->aw_table.ipeak = IPEAK_NONE;
temp_trace->aw_table.gain = GAIN_NONE;
temp_trace->aw_table.vmax = VMAX_NONE;
}
aw_dev_dbg(aw_dev->dev, "filter_vol:%d, vol: ipeak = 0x%x, gain = 0x%x, vmax = 0x%x",
monitor->vol_trace.sum_val, vol_trace->aw_table.ipeak,
vol_trace->aw_table.gain, vol_trace->aw_table.vmax);
aw_dev_dbg(aw_dev->dev, "filter_temp:%d, temp: ipeak = 0x%x, gain = 0x%x, vmax = 0x%x",
monitor->temp_trace.sum_val, temp_trace->aw_table.ipeak,
temp_trace->aw_table.gain, temp_trace->aw_table.vmax);
return 0;
}
static void aw_monitor_get_cfg(struct aw_device *aw_dev,
struct aw_table *set_table)
{
struct aw_monitor_desc *monitor = &aw_dev->monitor_desc;
struct aw_table *temp_data = &monitor->temp_trace.aw_table;
struct aw_table *vol_data = &monitor->vol_trace.aw_table;
if (temp_data->ipeak == IPEAK_NONE && vol_data->ipeak == IPEAK_NONE) {
memcpy(set_table, temp_data, sizeof(struct aw_table));
} else if (temp_data->ipeak == IPEAK_NONE) {
memcpy(set_table, vol_data, sizeof(struct aw_table));
} else if (vol_data->ipeak == IPEAK_NONE) {
memcpy(set_table, temp_data, sizeof(struct aw_table));
} else {
if (monitor->monitor_cfg.logic_switch == AW_MON_LOGIC_OR) {
set_table->ipeak = (temp_data->ipeak < vol_data->ipeak ?
temp_data->ipeak : vol_data->ipeak);
set_table->gain = (temp_data->gain < vol_data->gain ?
vol_data->gain : temp_data->gain);
set_table->vmax = (temp_data->vmax < vol_data->vmax ?
vol_data->vmax : temp_data->vmax);
} else {
set_table->ipeak = (temp_data->ipeak < vol_data->ipeak ?
vol_data->ipeak : temp_data->ipeak);
set_table->gain = (temp_data->gain < vol_data->gain ?
temp_data->gain : vol_data->gain);
set_table->vmax = (temp_data->vmax < vol_data->vmax ?
temp_data->vmax : vol_data->vmax);
}
}
}
static void aw_monitor_set_ipeak(struct aw_device *aw_dev,
uint16_t ipeak)
{
struct aw_monitor_cfg *monitor_cfg = &aw_dev->monitor_desc.monitor_cfg;
unsigned int reg_val = 0;
unsigned int read_reg_val;
int ret;
struct aw_ipeak_desc *desc = &aw_dev->ipeak_desc;
if (ipeak == IPEAK_NONE || (!monitor_cfg->ipeak_switch))
return;
ret = aw_dev->ops.aw_i2c_read(aw_dev, desc->reg, &reg_val);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "read ipeak failed");
return;
}
read_reg_val = reg_val;
read_reg_val &= (~desc->mask);
if (read_reg_val == ipeak) {
aw_dev_dbg(aw_dev->dev, "ipeak = 0x%x, no change",
read_reg_val);
return;
}
reg_val &= desc->mask;
read_reg_val = ipeak;
reg_val |= read_reg_val;
ret = aw_dev->ops.aw_i2c_write(aw_dev, desc->reg, reg_val);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "write ipeak failed");
return;
}
aw_dev_info(aw_dev->dev, "set reg val = 0x%x, ipeak = 0x%x",
reg_val, ipeak);
}
static void aw_monitor_set_gain(struct aw_device *aw_dev, uint16_t gain)
{
struct aw_monitor_cfg *monitor_cfg = &aw_dev->monitor_desc.monitor_cfg;
unsigned int read_volume;
unsigned int set_volume;
int ret;
if (gain == GAIN_NONE || (!monitor_cfg->gain_switch))
return;
ret = aw_dev->ops.aw_get_volume(aw_dev, &read_volume);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "read volume failed");
return;
}
gain = aw_dev->ops.aw_reg_val_to_db(gain);
/*add offset*/
set_volume = gain + aw_dev->volume_desc.init_volume;
if (read_volume == set_volume) {
aw_dev_dbg(aw_dev->dev, "gain = 0x%x, no change", read_volume);
return;
}
ret = aw_dev->ops.aw_set_volume(aw_dev, set_volume);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "set gain failed");
return;
}
aw_dev_info(aw_dev->dev, "set reg val = 0x%x, gain = 0x%x",
set_volume, gain);
}
static void aw_monitor_set_vmax(struct aw_device *aw_dev,
uint32_t vmax)
{
struct aw_monitor_cfg *monitor_cfg = &aw_dev->monitor_desc.monitor_cfg;
int ret;
if (vmax == VMAX_NONE || (!monitor_cfg->vmax_switch))
return;
if ((vmax == aw_dev->monitor_desc.pre_vmax) &&
(aw_dev->monitor_desc.first_entry != AW_FIRST_ENTRY)) {
aw_dev_dbg(aw_dev->dev, "vmax = 0x%x, no change", vmax);
return;
}
ret = aw_dsp_write_vmax(aw_dev, (char *)&vmax, sizeof(uint32_t));
if (ret)
return;
aw_dev->monitor_desc.pre_vmax = vmax;
aw_dev_dbg(aw_dev->dev, "set vmax = 0x%x", vmax);
}
static int aw_monitor_work(struct aw_device *aw_dev)
{
struct aw_monitor_desc *monitor = &aw_dev->monitor_desc;
struct aw_monitor_cfg *monitor_cfg = &monitor->monitor_cfg;
struct aw_table set_table;
int ret = -1;
if (aw_cali_svc_get_cali_status()) {
aw_dev_info(aw_dev->dev, "done nothing during calibration");
return 0;
}
ret = aw_monitor_get_temp_and_vol(aw_dev);
if (ret < 0)
return ret;
if (monitor->samp_count < monitor_cfg->monitor_count &&
(monitor->first_entry == AW_NOT_FIRST_ENTRY))
return 0;
ret = aw_monitor_get_data(aw_dev);
if (ret < 0)
return ret;
aw_monitor_get_cfg(aw_dev, &set_table);
aw_dev_dbg(aw_dev->dev, "set_ipeak = 0x%x, set_gain = 0x%x, set_vmax = 0x%x",
set_table.ipeak, set_table.gain, set_table.vmax);
aw_monitor_set_ipeak(aw_dev, set_table.ipeak);
aw_monitor_set_gain(aw_dev, set_table.gain);
aw_monitor_set_vmax(aw_dev, set_table.vmax);
monitor->samp_count = 0;
monitor->temp_trace.pre_val = monitor->temp_trace.sum_val;
monitor->temp_trace.sum_val = 0;
monitor->vol_trace.pre_val = monitor->vol_trace.sum_val;
monitor->vol_trace.sum_val = 0;
if (monitor->first_entry == AW_FIRST_ENTRY)
monitor->first_entry = AW_NOT_FIRST_ENTRY;
return 0;
}
void aw_monitor_work_func(struct work_struct *work)
{
struct aw_device *aw_dev = container_of(work,
struct aw_device, monitor_desc.delay_work.work);
struct aw882xx *aw882xx = (struct aw882xx *)aw_dev->private_data;
struct aw_monitor_cfg *monitor_cfg = &aw_dev->monitor_desc.monitor_cfg;
struct aw_monitor_desc *monitor = &aw_dev->monitor_desc;
aw_dev_dbg(aw_dev->dev, "scene_mode %d, monitor_status:%d, monitor_switch:%d",
aw_dev->cur_prof, monitor_cfg->monitor_status, monitor_cfg->monitor_switch);
if ((aw_dev->prof_info.prof_desc[aw_dev->cur_prof].id != AW_PROFILE_RECEIVER) &&
(monitor_cfg->monitor_status == AW_MON_CFG_OK) &&
monitor_cfg->monitor_switch) {
if (!aw_get_hmute(aw_dev)) {
aw_monitor_work(aw_dev);
queue_delayed_work(aw882xx->work_queue,
&monitor->delay_work, msecs_to_jiffies(monitor_cfg->monitor_time));
}
}
}
void aw_check_bop_status(struct aw_device *aw_dev)
{
struct aw_bop_desc *bop_desc = &aw_dev->bop_desc;
unsigned int reg_val = 0;
aw_dev_dbg(aw_dev->dev, "enter");
if (aw_dev->bop_desc.reg == AW_REG_NONE)
return;
aw_dev->ops.aw_i2c_read(aw_dev, bop_desc->reg, &reg_val);
reg_val = (uint16_t)reg_val & (~bop_desc->mask);
if (reg_val == bop_desc->enable)
aw_dev->bop_en = AW_BOP_ENABLE;
else
aw_dev->bop_en = AW_BOP_DISABLE;
aw_dev_dbg(aw_dev->dev, "check done! bop status is %d", aw_dev->bop_en);
}
void aw_monitor_start(struct aw_monitor_desc *monitor_desc)
{
struct aw_device *aw_dev = container_of(monitor_desc,
struct aw_device, monitor_desc);
struct aw882xx *aw882xx = (struct aw882xx *)aw_dev->private_data;
aw_dev_info(aw_dev->dev, "enter");
monitor_desc->first_entry = AW_FIRST_ENTRY;
monitor_desc->samp_count = 0;
monitor_desc->vol_trace.sum_val = 0;
monitor_desc->temp_trace.sum_val = 0;
aw_check_bop_status(aw_dev);
if (aw_dev->bop_en == AW_BOP_ENABLE) {
aw_dev_info(aw_dev->dev, "bop status is enable, monitor can't start");
return;
}
queue_delayed_work(aw882xx->work_queue,
&monitor_desc->delay_work, 0);
}
int aw_monitor_stop(struct aw_monitor_desc *monitor_desc)
{
struct aw_device *aw_dev = container_of(monitor_desc,
struct aw_device, monitor_desc);
aw_dev_info(aw_dev->dev, "enter");
if (delayed_work_pending(&monitor_desc->delay_work))
cancel_delayed_work_sync(&monitor_desc->delay_work);
return 0;
}
/*****************************************************
* load monitor config
*****************************************************/
static int aw_monitor_param_check_sum(struct aw_device *aw_dev,
uint8_t *data, uint32_t data_len)
{
int i, check_sum = 0;
struct aw_monitor_hdr *monitor_hdr =
(struct aw_monitor_hdr *)data;
if (data_len < sizeof(struct aw_monitor_hdr)) {
aw_dev_err(aw_dev->dev, "data size smaller than hdr , please check monitor bin");
return -ENOMEM;
}
for (i = 4; i < data_len; i++)
check_sum += (uint8_t)data[i];
if (monitor_hdr->check_sum != check_sum) {
aw_dev_err(aw_dev->dev, "check_sum[%d] is not equal to actual check_sum[%d]",
monitor_hdr->check_sum, check_sum);
return -ENOMEM;
}
return 0;
}
static int aw_monitor_check_fw(struct aw_device *aw_dev,
uint8_t *data, uint32_t data_len)
{
struct aw_monitor_hdr *monitor_hdr =
(struct aw_monitor_hdr *)data;
int temp_size, vol_size;
if (data_len < sizeof(struct aw_monitor_hdr)) {
aw_dev_err(aw_dev->dev, "params size[%d] < struct aw_monitor_hdr size[%d]!",
data_len, (int)sizeof(struct aw_monitor_hdr));
return -ENOMEM;
}
if (monitor_hdr->temp_offset > data_len) {
aw_dev_err(aw_dev->dev, "temp_offset[%d] overflow file size[%d]!",
monitor_hdr->temp_offset, data_len);
return -ENOMEM;
}
if (monitor_hdr->vol_offset > data_len) {
aw_dev_err(aw_dev->dev, "vol_offset[%d] overflow file size[%d]!",
monitor_hdr->vol_offset, data_len);
return -ENOMEM;
}
temp_size = monitor_hdr->temp_num * monitor_hdr->single_temp_size;
if (temp_size > data_len) {
aw_dev_err(aw_dev->dev, "temp_size:[%d] overflow file size[%d]!",
temp_size, data_len);
return -ENOMEM;
}
vol_size = monitor_hdr->vol_num * monitor_hdr->single_vol_size;
if (vol_size > data_len) {
aw_dev_err(aw_dev->dev, "vol_size:[%d] overflow file size[%d]!",
vol_size, data_len);
return -ENOMEM;
}
return 0;
}
static int aw_monitor_check_fw_v_0_1_1(struct aw_device *aw_dev,
uint8_t *data, uint32_t data_len)
{
struct aw_monitor_hdr_v_0_1_1 *monitor_hdr =
(struct aw_monitor_hdr_v_0_1_1 *)data;
int temp_size, vol_size;
if (data_len < sizeof(struct aw_monitor_hdr_v_0_1_1)) {
aw_dev_err(aw_dev->dev, "params size[%d] < struct aw_monitor_hdr size[%d]!",
data_len, (int)sizeof(struct aw_monitor_hdr));
return -ENOMEM;
}
if (monitor_hdr->temp_offset > data_len) {
aw_dev_err(aw_dev->dev, "temp_offset[%d] overflow file size[%d]!",
monitor_hdr->temp_offset, data_len);
return -ENOMEM;
}
if (monitor_hdr->vol_offset > data_len) {
aw_dev_err(aw_dev->dev, "vol_offset[%d] overflow file size[%d]!",
monitor_hdr->vol_offset, data_len);
return -ENOMEM;
}
temp_size = monitor_hdr->temp_num * monitor_hdr->single_temp_size;
if (temp_size > data_len) {
aw_dev_err(aw_dev->dev, "temp_size:[%d] overflow file size[%d]!",
temp_size, data_len);
return -ENOMEM;
}
vol_size = monitor_hdr->vol_num * monitor_hdr->single_vol_size;
if (vol_size > data_len) {
aw_dev_err(aw_dev->dev, "vol_size:[%d] overflow file size[%d]!",
vol_size, data_len);
return -ENOMEM;
}
return 0;
}
static void aw_monitor_parse_hdr(struct aw_device *aw_dev, uint8_t *data)
{
struct aw_monitor_hdr *monitor_hdr =
(struct aw_monitor_hdr *)data;
struct aw_monitor_cfg *monitor_cfg = &aw_dev->monitor_desc.monitor_cfg;
monitor_cfg->monitor_switch = monitor_hdr->monitor_switch;
monitor_cfg->monitor_time = monitor_hdr->monitor_time;
monitor_cfg->monitor_count = monitor_hdr->monitor_count;
monitor_cfg->ipeak_switch = monitor_hdr->ipeak_switch;
monitor_cfg->gain_switch = monitor_hdr->gain_switch;
monitor_cfg->vmax_switch = monitor_hdr->vmax_switch;
monitor_cfg->temp_switch = monitor_hdr->temp_switch;
monitor_cfg->temp_aplha = monitor_hdr->temp_aplha;
monitor_cfg->vol_switch = monitor_hdr->vol_switch;
monitor_cfg->vol_aplha = monitor_hdr->vol_aplha;
aw_dev_info(aw_dev->dev, "chip name:%s",
monitor_hdr->chip_type);
aw_dev_info(aw_dev->dev, "ui ver:0x%x",
monitor_hdr->ui_ver);
aw_dev_info(aw_dev->dev, "monitor_switch:%d, monitor_time:%d (ms), monitor_count:%d",
monitor_cfg->monitor_switch, monitor_cfg->monitor_time,
monitor_cfg->monitor_count);
aw_dev_info(aw_dev->dev, "ipeak_switch:%d, gain_switch:%d, vmax_switch:%d",
monitor_cfg->ipeak_switch, monitor_cfg->gain_switch,
monitor_cfg->vmax_switch);
aw_dev_info(aw_dev->dev, "temp_switch:%d, temp_aplha:%d, vol_switch:%d, vol_aplha:%d",
monitor_cfg->temp_switch, monitor_cfg->temp_aplha,
monitor_cfg->vol_switch, monitor_cfg->vol_aplha);
}
static void aw_monitor_parse_hdr_v_0_1_1(struct aw_device *aw_dev, uint8_t *data)
{
struct aw_monitor_hdr_v_0_1_1 *monitor_hdr =
(struct aw_monitor_hdr_v_0_1_1 *)data;
struct aw_monitor_cfg *monitor_cfg = &aw_dev->monitor_desc.monitor_cfg;
monitor_cfg->monitor_switch = (monitor_hdr->enable_flag >> MONITOR_EN_BIT) & MONITOR_EN_MASK;
monitor_cfg->monitor_time = monitor_hdr->monitor_time;
monitor_cfg->monitor_count = monitor_hdr->monitor_count;
monitor_cfg->ipeak_switch = (monitor_hdr->enable_flag >> MONITOR_IPEAK_EN_BIT) & MONITOR_EN_MASK;
monitor_cfg->logic_switch = (monitor_hdr->enable_flag >> MONITOR_LOGIC_BIT) & MONITOR_EN_MASK;
monitor_cfg->gain_switch = (monitor_hdr->enable_flag >> MONITOR_GAIN_EN_BIT) & MONITOR_EN_MASK;
monitor_cfg->vmax_switch = (monitor_hdr->enable_flag >> MONITOR_VMAX_EN_BIT) & MONITOR_EN_MASK;
monitor_cfg->temp_switch = (monitor_hdr->enable_flag >> MONITOR_TEMP_EN_BIT) & MONITOR_EN_MASK;
monitor_cfg->temp_aplha = monitor_hdr->temp_aplha;
monitor_cfg->vol_switch = (monitor_hdr->enable_flag >> MONITOR_VOL_EN_BIT) & MONITOR_EN_MASK;
monitor_cfg->vol_aplha = monitor_hdr->vol_aplha;
aw_dev_info(aw_dev->dev, "chip name:%s",
monitor_hdr->chip_type);
aw_dev_info(aw_dev->dev, "ui ver:0x%x",
monitor_hdr->ui_ver);
aw_dev_info(aw_dev->dev, "monitor_switch:%d, monitor_time:%d (ms), monitor_count:%d",
monitor_cfg->monitor_switch, monitor_cfg->monitor_time,
monitor_cfg->monitor_count);
aw_dev_info(aw_dev->dev, "logic_switch:%d, ipeak_switch:%d, gain_switch:%d, vmax_switch:%d",
monitor_cfg->logic_switch, monitor_cfg->ipeak_switch,
monitor_cfg->gain_switch, monitor_cfg->vmax_switch);
aw_dev_info(aw_dev->dev, "temp_switch:%d, temp_aplha:%d, vol_switch:%d, vol_aplha:%d",
monitor_cfg->temp_switch, monitor_cfg->temp_aplha,
monitor_cfg->vol_switch, monitor_cfg->vol_aplha);
}
static void aw_monitor_write_data_to_table(struct aw_device *aw_dev,
struct aw_table_info *table_info, const char *offset_ptr)
{
int i;
for (i = 0; i < table_info->table_num * AW_TABLE_SIZE; i += AW_TABLE_SIZE) {
table_info->aw_table[i / AW_TABLE_SIZE].min_val =
AW_GET_16_DATA(offset_ptr[1 + i], offset_ptr[i]);
table_info->aw_table[i / AW_TABLE_SIZE].max_val =
AW_GET_16_DATA(offset_ptr[3 + i], offset_ptr[2 + i]);
table_info->aw_table[i / AW_TABLE_SIZE].ipeak =
AW_GET_16_DATA(offset_ptr[5 + i], offset_ptr[4 + i]);
table_info->aw_table[i / AW_TABLE_SIZE].gain =
AW_GET_16_DATA(offset_ptr[7 + i], offset_ptr[6 + i]);
table_info->aw_table[i / AW_TABLE_SIZE].vmax =
AW_GET_32_DATA(offset_ptr[11 + i], offset_ptr[10 + i],
offset_ptr[9 + i], offset_ptr[8 + i]);
}
for (i = 0; i < table_info->table_num; i++)
aw_dev_info(aw_dev->dev,
"min_val:%d, max_val:%d, ipeak:0x%x, gain:0x%x, vmax:0x%x",
table_info->aw_table[i].min_val,
table_info->aw_table[i].max_val,
table_info->aw_table[i].ipeak,
table_info->aw_table[i].gain,
table_info->aw_table[i].vmax);
}
static int aw_monitor_parse_temp_data(struct aw_device *aw_dev, uint8_t *data)
{
struct aw_monitor_hdr *monitor_hdr =
(struct aw_monitor_hdr *)data;
struct aw_table_info *temp_info =
&aw_dev->monitor_desc.monitor_cfg.temp_info;
aw_dev_info(aw_dev->dev, "===parse temp start ===");
if (temp_info->aw_table != NULL) {
devm_kfree(aw_dev->dev, temp_info->aw_table);
temp_info->aw_table = NULL;
}
temp_info->aw_table = devm_kzalloc(aw_dev->dev,
(monitor_hdr->temp_num * AW_TABLE_SIZE),
GFP_KERNEL);
if (temp_info->aw_table == NULL)
return -ENOMEM;
temp_info->table_num = monitor_hdr->temp_num;
aw_monitor_write_data_to_table(aw_dev, temp_info,
&data[monitor_hdr->temp_offset]);
aw_dev_info(aw_dev->dev, "===parse temp end ===");
return 0;
}
static int aw_monitor_parse_temp_data_v_0_1_1(struct aw_device *aw_dev, uint8_t *data)
{
struct aw_monitor_hdr_v_0_1_1 *monitor_hdr =
(struct aw_monitor_hdr_v_0_1_1 *)data;
struct aw_table_info *temp_info =
&aw_dev->monitor_desc.monitor_cfg.temp_info;
aw_dev_info(aw_dev->dev, "===parse temp start ===");
if (temp_info->aw_table != NULL) {
devm_kfree(aw_dev->dev, temp_info->aw_table);
temp_info->aw_table = NULL;
}
temp_info->aw_table = devm_kzalloc(aw_dev->dev,
(monitor_hdr->temp_num * AW_TABLE_SIZE),
GFP_KERNEL);
if (temp_info->aw_table == NULL)
return -ENOMEM;
temp_info->table_num = monitor_hdr->temp_num;
aw_monitor_write_data_to_table(aw_dev, temp_info,
&data[monitor_hdr->temp_offset]);
aw_dev_info(aw_dev->dev, "===parse temp end ===");
return 0;
}
static int aw_monitor_parse_vol_data(struct aw_device *aw_dev, uint8_t *data)
{
struct aw_monitor_hdr *monitor_hdr =
(struct aw_monitor_hdr *)data;
struct aw_table_info *vol_info =
&aw_dev->monitor_desc.monitor_cfg.vol_info;
aw_dev_info(aw_dev->dev, "===parse vol start ===");
if (vol_info->aw_table != NULL) {
devm_kfree(aw_dev->dev, vol_info->aw_table);
vol_info->aw_table = NULL;
}
vol_info->aw_table = devm_kzalloc(aw_dev->dev,
(monitor_hdr->vol_num * AW_TABLE_SIZE),
GFP_KERNEL);
if (vol_info->aw_table == NULL)
return -ENOMEM;
vol_info->table_num = monitor_hdr->vol_num;
aw_monitor_write_data_to_table(aw_dev, vol_info,
&data[monitor_hdr->vol_offset]);
aw_dev_info(aw_dev->dev, "===parse vol end ===");
return 0;
}
static int aw_monitor_parse_vol_data_v_0_1_1(struct aw_device *aw_dev, uint8_t *data)
{
struct aw_monitor_hdr_v_0_1_1 *monitor_hdr =
(struct aw_monitor_hdr_v_0_1_1 *)data;
struct aw_table_info *vol_info =
&aw_dev->monitor_desc.monitor_cfg.vol_info;
aw_dev_info(aw_dev->dev, "===parse vol start ===");
if (vol_info->aw_table != NULL) {
devm_kfree(aw_dev->dev, vol_info->aw_table);
vol_info->aw_table = NULL;
}
vol_info->aw_table = devm_kzalloc(aw_dev->dev,
(monitor_hdr->vol_num * AW_TABLE_SIZE),
GFP_KERNEL);
if (vol_info->aw_table == NULL)
return -ENOMEM;
vol_info->table_num = monitor_hdr->vol_num;
aw_monitor_write_data_to_table(aw_dev, vol_info,
&data[monitor_hdr->vol_offset]);
aw_dev_info(aw_dev->dev, "===parse vol end ===");
return 0;
}
static int aw_monitor_parse_data(struct aw_device *aw_dev,
uint8_t *data, uint32_t data_len)
{
int ret;
struct aw_monitor_cfg *monitor_cfg = &aw_dev->monitor_desc.monitor_cfg;
ret = aw_monitor_check_fw(aw_dev, data, data_len);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "check monitor failed");
return ret;
}
aw_monitor_parse_hdr(aw_dev, data);
ret = aw_monitor_parse_temp_data(aw_dev, data);
if (ret < 0)
return ret;
ret = aw_monitor_parse_vol_data(aw_dev, data);
if (ret < 0) {
if (monitor_cfg->temp_info.aw_table != NULL) {
devm_kfree(aw_dev->dev, monitor_cfg->temp_info.aw_table);
monitor_cfg->temp_info.aw_table = NULL;
monitor_cfg->temp_info.table_num = 0;
}
return ret;
}
monitor_cfg->monitor_status = AW_MON_CFG_OK;
return 0;
}
static int aw_monitor_parse_data_v_0_1_1(struct aw_device *aw_dev,
uint8_t *data, uint32_t data_len)
{
int ret;
struct aw_monitor_cfg *monitor_cfg = &aw_dev->monitor_desc.monitor_cfg;
ret = aw_monitor_check_fw_v_0_1_1(aw_dev, data, data_len);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "check monitor failed");
return ret;
}
aw_monitor_parse_hdr_v_0_1_1(aw_dev, data);
ret = aw_monitor_parse_temp_data_v_0_1_1(aw_dev, data);
if (ret < 0)
return ret;
ret = aw_monitor_parse_vol_data_v_0_1_1(aw_dev, data);
if (ret < 0) {
if (monitor_cfg->temp_info.aw_table != NULL) {
devm_kfree(aw_dev->dev, monitor_cfg->temp_info.aw_table);
monitor_cfg->temp_info.aw_table = NULL;
monitor_cfg->temp_info.table_num = 0;
}
return ret;
}
monitor_cfg->monitor_status = AW_MON_CFG_OK;
return 0;
}
int aw_monitor_parse_fw(struct aw_monitor_desc *monitor_desc,
uint8_t *data, uint32_t data_len)
{
struct aw_monitor_hdr *monitor_hdr = NULL;
struct aw_device *aw_dev = NULL;
int ret;
if (monitor_desc == NULL || data == NULL) {
pr_err("monitor_desc or data is NULL");
return -EINVAL;
}
monitor_hdr = (struct aw_monitor_hdr *)data;
aw_dev = container_of(monitor_desc,
struct aw_device, monitor_desc);
ret = aw_monitor_param_check_sum(aw_dev, data, data_len);
if (ret < 0)
return ret;
switch (monitor_hdr->monitor_ver) {
case AW_MONITOR_HDR_VER_0_1_0:
return aw_monitor_parse_data(aw_dev, data, data_len);
case AW_MONITOR_HDR_VER_0_1_1:
return aw_monitor_parse_data_v_0_1_1(aw_dev, data, data_len);
default:
aw_dev_err(aw_dev->dev, "cfg version:0x%x unsupported",
monitor_hdr->monitor_ver);
return -EINVAL;
}
}
static void aw_monitor_free_firmware(struct aw_device *aw_dev)
{
struct aw_monitor_cfg *monitor_cfg =
&aw_dev->monitor_desc.monitor_cfg;
monitor_cfg->monitor_status = AW_MON_CFG_ST;
if (monitor_cfg->temp_info.aw_table != NULL) {
devm_kfree(aw_dev->dev, monitor_cfg->temp_info.aw_table);
monitor_cfg->temp_info.aw_table = NULL;
}
if (monitor_cfg->vol_info.aw_table != NULL) {
devm_kfree(aw_dev->dev, monitor_cfg->vol_info.aw_table);
monitor_cfg->vol_info.aw_table = NULL;
}
memset(monitor_cfg, 0, sizeof(struct aw_monitor_cfg));
}
static int aw_monitor_real_time_update_monitor(struct aw_device *aw_dev)
{
const struct firmware *cont = NULL;
struct aw_container *aw_monitor_cnt = NULL;
int ret;
ret = request_firmware(&cont, aw_dev->monitor_name, aw_dev->dev);
if (ret < 0) {
aw_dev_err(aw_dev->dev, "failed to read %s", aw_dev->monitor_name);
release_firmware(cont);
return ret;
}
aw_monitor_cnt = devm_kzalloc(aw_dev->dev,
cont->size + sizeof(uint32_t), GFP_KERNEL);
if (aw_monitor_cnt == NULL) {
aw_dev_err(aw_dev->dev, "alloc failed!");
release_firmware(cont);
return ret;
}
aw_monitor_cnt->len = cont->size;
memcpy(aw_monitor_cnt->data, cont->data, cont->size);
release_firmware(cont);
ret = aw_monitor_parse_fw(&aw_dev->monitor_desc,
aw_monitor_cnt->data, aw_monitor_cnt->len);
if (ret < 0)
aw_dev_err(aw_dev->dev, "parse monitor firmware failed!");
devm_kfree(aw_dev->dev, aw_monitor_cnt);
aw_monitor_cnt = NULL;
return ret;
}
/*****************************************************
* monitor init
*****************************************************/
#ifdef AW_DEBUG
static ssize_t aw_vol_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct aw882xx *aw882xx = dev_get_drvdata(dev);
struct aw_device *aw_dev = aw882xx->aw_pa;
uint32_t vol = 0;
int ret = -1;
if (count == 0)
return 0;
ret = kstrtouint(buf, 0, &vol);
if (ret < 0)
return ret;
aw_dev_info(aw_dev->dev, "vol set =%d", vol);
aw_dev->monitor_desc.test_vol = vol;
return count;
}
static ssize_t aw_vol_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct aw882xx *aw882xx = dev_get_drvdata(dev);
struct aw_device *aw_dev = aw882xx->aw_pa;
ssize_t len = 0;
len += snprintf(buf+len, PAGE_SIZE-len,
"vol: %d\n",
aw_dev->monitor_desc.test_vol);
return len;
}
static ssize_t aw_temp_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct aw882xx *aw882xx = dev_get_drvdata(dev);
struct aw_device *aw_dev = aw882xx->aw_pa;
int32_t temp = 0;
int ret = -1;
if (count == 0)
return 0;
ret = kstrtoint(buf, 0, &temp);
if (ret < 0)
return ret;
aw_dev_info(aw_dev->dev, "temp set =%d", temp);
aw_dev->monitor_desc.test_temp = temp;
return count;
}
static ssize_t aw_temp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct aw882xx *aw882xx = dev_get_drvdata(dev);
struct aw_device *aw_dev = aw882xx->aw_pa;
ssize_t len = 0;
len += snprintf(buf+len, PAGE_SIZE-len,
"aw882xx temp: %d\n",
aw_dev->monitor_desc.test_temp);
return len;
}
static DEVICE_ATTR(vol, S_IWUSR | S_IRUGO,
aw_vol_show, aw_vol_store);
static DEVICE_ATTR(temp, S_IWUSR | S_IRUGO,
aw_temp_show, aw_temp_store);
#endif
static ssize_t aw_monitor_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct aw882xx *aw882xx = dev_get_drvdata(dev);
struct aw_device *aw_dev = aw882xx->aw_pa;
uint32_t enable = 0;
int ret = -1;
if (count == 0)
return 0;
ret = kstrtouint(buf, 0, &enable);
if (ret < 0)
return ret;
aw_dev_info(aw_dev->dev, "monitor enable set =%d", enable);
if (aw_dev->monitor_desc.monitor_cfg.monitor_switch == enable) {
return count;
} else {
aw_dev->monitor_desc.monitor_cfg.monitor_switch = enable;
if (enable)
aw_monitor_start(&aw_dev->monitor_desc);
}
return count;
}
static ssize_t aw_monitor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct aw882xx *aw882xx = dev_get_drvdata(dev);
struct aw_device *aw_dev = aw882xx->aw_pa;
ssize_t len = 0;
len += snprintf(buf+len, PAGE_SIZE-len,
"monitor enable: %d\n",
aw_dev->monitor_desc.monitor_cfg.monitor_switch);
return len;
}
static ssize_t aw_monitor_update_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct aw882xx *aw882xx = dev_get_drvdata(dev);
struct aw_device *aw_dev = aw882xx->aw_pa;
uint32_t update = 0;
int ret = -1;
if (count == 0)
return 0;
ret = kstrtouint(buf, 0, &update);
if (ret < 0)
return ret;
aw_dev_info(aw_dev->dev, "monitor update = %d", update);
if (update) {
aw_monitor_stop(&aw_dev->monitor_desc);
aw_monitor_free_firmware(aw_dev);
ret = aw_monitor_real_time_update_monitor(aw_dev);
if (ret < 0)
return ret;
aw_monitor_start(&aw_dev->monitor_desc);
}
return count;
}
static DEVICE_ATTR(monitor, S_IWUSR | S_IRUGO,
aw_monitor_show, aw_monitor_store);
static DEVICE_ATTR(monitor_update, S_IWUSR,
NULL, aw_monitor_update_store);
static struct attribute *aw_monitor_attr[] = {
&dev_attr_monitor.attr,
&dev_attr_monitor_update.attr,
#ifdef AW_DEBUG
&dev_attr_vol.attr,
&dev_attr_temp.attr,
#endif
NULL
};
static struct attribute_group aw_monitor_attr_group = {
.attrs = aw_monitor_attr,
};
void aw_monitor_init(struct aw_monitor_desc *monitor_desc)
{
int ret;
struct aw_device *aw_dev = container_of(monitor_desc,
struct aw_device, monitor_desc);
aw_dev_info(aw_dev->dev, "enter");
#ifdef AW_DEBUG
monitor_desc->test_vol = 0;
monitor_desc->test_temp = 0;
#endif
INIT_DELAYED_WORK(&monitor_desc->delay_work, aw_monitor_work_func);
ret = sysfs_create_group(&aw_dev->dev->kobj,
&aw_monitor_attr_group);
if (ret < 0)
aw_dev_err(aw_dev->dev, "error creating sysfs attr files");
}
void aw_monitor_deinit(struct aw_monitor_desc *monitor_desc)
{
struct aw_device *aw_dev =
container_of(monitor_desc, struct aw_device, monitor_desc);
aw_monitor_stop(monitor_desc);
sysfs_remove_group(&aw_dev->dev->kobj, &aw_monitor_attr_group);
}