kernel_samsung_a34x-permissive/sound/soc/codecs/cirrus-pwr.c

713 lines
18 KiB
C
Raw Normal View History

/*
* Power-management support for Cirrus Logic Smart Amplifiers
*
* Copyright 2018 Cirrus Logic
*
* Author: David Rhodes <david.rhodes@cirrus.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/device.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/fs.h>
#include <linux/ktime.h>
#include <sound/cirrus/core.h>
#include <sound/cirrus/power.h>
#define CIRRUS_PWR_VERSION "5.01.18"
#define CIRRUS_PWR_DIR_NAME "cirrus_pwr"
#define CIRRUS_PWR_WORKQ_NAME "cirrus_pwr_wq"
#define CIRRUS_PWR_STATUS_DISABLED 0
#define CIRRUS_PWR_STATUS_ENABLED 1
#define CIRRUS_PWR_STATUS_ERROR 3
#define CIRRUS_PWR_AMB_TEMP_OFFSET 500
#define CIRRUS_PWR_SCALING_Q15 846397
static unsigned int sqrt_q24(unsigned long x)
{
u32 root, remHi, remLo, testDiv, count;
root = 0;
remHi = 0;
remLo = x;
count = 24;
do {
remHi = (remHi << 2) | (remLo >> 30);
remLo <<= 2;
root <<= 1;
testDiv = (root << 1) + 1;
if (remHi >= testDiv) {
remHi -= testDiv;
root++;
}
} while (count-- != 0);
return root; /* Q21 result */
}
static unsigned int convert_power(unsigned int power_squared)
{
unsigned long long power;
power = sqrt_q24(power_squared*2);
power *= CIRRUS_PWR_SCALING_Q15;
dev_dbg(amp_group->pwr_dev,
"converted power (%d W^2): %llu.%04llu W\n",
power_squared,
power >> 36,
(power & (((1ull << 36) - 1ull))) *
10000 / (1ull << 36));
power *= 1000;
power >>= 28;
dev_dbg(amp_group->pwr_dev,
"converted power q8 mW: %d mW = 0x%x\n",
(unsigned int)(power / 256), (unsigned int)(power));
return (unsigned int)power;
}
static void cirrus_pwr_passport_enable(struct regmap *regmap_enable,
bool enable)
{
if (regmap_enable)
regmap_write(regmap_enable,
CIRRUS_PWR_CSPL_PASSPORT_ENABLE,
(uint)enable);
}
void cirrus_pwr_start(const char *mfd_suffix)
{
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(mfd_suffix);
if (!amp)
return;
amp->pwr.amp_active = 1;
if (!amp_group->pwr_enable)
return;
mutex_lock(&amp_group->pwr_lock);
if (amp_group->status == CIRRUS_PWR_STATUS_ENABLED) {
/* State machine already active on one amp */
dev_dbg(amp_group->pwr_dev,
"%s(), additional amp activated", __func__);
} else {
/* Init state machine */
dev_dbg(amp_group->pwr_dev,
"%s() Entering wait period.\n", __func__);
amp_group->status = CIRRUS_PWR_STATUS_ENABLED;
/* Queue state machine operation */
queue_delayed_work(amp_group->pwr_workqueue,
&amp_group->pwr_work,
msecs_to_jiffies(amp_group->interval));
}
mutex_unlock(&amp_group->pwr_lock);
}
EXPORT_SYMBOL_GPL(cirrus_pwr_start);
void cirrus_pwr_stop(const char *mfd_suffix)
{
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(mfd_suffix);
int i;
bool amps_active = 0;
if (!amp)
return;
amp->pwr.amp_active = 0;
if (!amp_group->pwr_enable)
return;
mutex_lock(&amp_group->pwr_lock);
for (i = 0; i < amp_group->num_amps; i++)
amps_active |= amp->pwr.amp_active;
if (amps_active) {
/* One amp still active */
dev_dbg(amp_group->pwr_dev, "Amp %s%s deactivated\n",
amp->dsp_part_name, amp->mfd_suffix);
} else {
/* Exit state machine */
dev_dbg(amp_group->pwr_dev,
"%s(). Disabling PASSPORT\n", __func__);
for (i = 0; i < amp_group->num_amps; i++) {
cirrus_pwr_passport_enable(
amp_group->amps[i].regmap, false);
amp_group->amps[i].pwr.passport_enable = 0;
}
/* Reset state machine variables */
amp_group->uptime_ms = 0;
amp_group->status = CIRRUS_PWR_STATUS_DISABLED;
/* cancel workqueue */
if (delayed_work_pending(&amp_group->pwr_work))
cancel_delayed_work(&amp_group->pwr_work);
}
mutex_unlock(&amp_group->pwr_lock);
}
EXPORT_SYMBOL_GPL(cirrus_pwr_stop);
static void cirrus_pwr_work(struct work_struct *work)
{
int i;
struct cirrus_amp *amp;
mutex_lock(&amp_group->pwr_lock);
/* Run state machine and enable/disable Passport accordingly */
if (amp_group->status != CIRRUS_PWR_STATUS_ENABLED)
goto exit;
amp_group->uptime_ms += amp_group->interval;
if (amp_group->uptime_ms <= amp_group->target_min_time_ms) {
dev_dbg(amp_group->pwr_dev,
"Waiting for min time... (%d / %d ms)\n",
amp_group->uptime_ms,
amp_group->target_min_time_ms);
goto exit;
}
/* Enabled and > min time */
/* Evaluate temp for each amp and enable/disable Passport */
for (i = 0; i < amp_group->num_amps; i++) {
amp = &amp_group->amps[i];
dev_dbg(amp_group->pwr_dev, "Amp %s%s\n",
amp->dsp_part_name, amp->mfd_suffix);
dev_dbg(amp_group->pwr_dev,
"Spk Temp:\t%d.%d C\t(Target: %d.%d C)\n",
amp->pwr.spk_temp / 100,
amp->pwr.spk_temp % 100,
amp->pwr.target_temp / 100,
amp->pwr.target_temp % 100);
dev_dbg(amp_group->pwr_dev, "Amb Temp:\t%d.%d\n",
amp->pwr.amb_temp / 100,
amp->pwr.amb_temp % 100);
if (!amp->pwr.amp_active)
continue;
if (amp->pwr.passport_enable) {
/* Evaluate exit criteria */
if (amp->pwr.spk_temp < amp->pwr.exit_temp) {
cirrus_pwr_passport_enable(
amp->regmap,
false);
dev_info(amp_group->pwr_dev,
"Amp %s%s below exit temp. Disabling PASSPORT\n",
amp->dsp_part_name, amp->mfd_suffix);
amp->pwr.passport_enable = 0;
}
} else {
/* Evaluate entry criteria */
if ((amp->pwr.amb_temp + CIRRUS_PWR_AMB_TEMP_OFFSET <
amp->pwr.spk_temp) && (amp->pwr.spk_temp >
amp->pwr.target_temp)) {
cirrus_pwr_passport_enable(amp->regmap, true);
dev_info(amp_group->pwr_dev,
"Amp %s%s above target temp and ambient + 5.\n",
amp->dsp_part_name, amp->mfd_suffix);
dev_info(amp_group->pwr_dev,
"Enabling PASSPORT\n");
amp->pwr.passport_enable = 1;
}
}
dev_dbg(amp_group->pwr_dev, "Amp %s%s: Passport %s\n",
amp->dsp_part_name, amp->mfd_suffix, amp->pwr.passport_enable ?
"Enabled" : "Disabled");
}
exit:
mutex_unlock(&amp_group->pwr_lock);
/* Queue next operation */
if (amp_group->pwr_enable)
queue_delayed_work(amp_group->pwr_workqueue,
&amp_group->pwr_work,
msecs_to_jiffies(amp_group->interval));
}
/***** SYSFS Interfaces *****/
static ssize_t cirrus_pwr_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, CIRRUS_PWR_VERSION "\n");
}
static ssize_t cirrus_pwr_version_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
return size;
}
static ssize_t cirrus_pwr_uptime_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", amp_group->uptime_ms);
}
static ssize_t cirrus_pwr_uptime_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
return size;
}
static ssize_t cirrus_pwr_power_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("value")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
unsigned int power_squared;
unsigned int power = 0;
if (!amp)
return 0;
if (amp->pwr.amp_active) {
regmap_read(amp->regmap,
CIRRUS_PWR_CSPL_OUTPUT_POWER_SQ,
&power_squared);
power = convert_power(power_squared);
}
return sprintf(buf, "%x\n", power);
}
static ssize_t cirrus_pwr_power_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
return size;
}
static ssize_t cirrus_pwr_interval_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", amp_group->interval);
}
static ssize_t cirrus_pwr_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
if (kstrtou32(buf, 0, &amp_group->interval))
dev_err(amp_group->pwr_dev,
"%s: Failed to convert from str to u32.\n",
__func__);
return size;
}
static ssize_t cirrus_pwr_status_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
switch (amp_group->status) {
case CIRRUS_PWR_STATUS_DISABLED:
return sprintf(buf, "Disabled\n");
case CIRRUS_PWR_STATUS_ENABLED:
return sprintf(buf, "Enabled\n");
case CIRRUS_PWR_STATUS_ERROR:
return sprintf(buf, "Error\n");
default:
return sprintf(buf, "\n");
}
}
static ssize_t cirrus_pwr_status_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
return size;
}
static ssize_t cirrus_pwr_target_min_time_ms_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", amp_group->target_min_time_ms);
}
static ssize_t cirrus_pwr_target_min_time_ms_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
if (kstrtou32(buf, 0, &amp_group->target_min_time_ms))
dev_err(amp_group->pwr_dev,
"%s: Failed to convert from str to u32.\n", __func__);
return size;
}
static ssize_t cirrus_pwr_target_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("target_temp")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
if (!amp)
return 0;
return sprintf(buf, "%d\n", amp->pwr.target_temp);
}
static ssize_t cirrus_pwr_target_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
const char *suffix = &(attr->attr.name[strlen("target_temp")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
if (!amp)
return 0;
if (kstrtou32(buf, 0, &amp->pwr.target_temp))
dev_err(amp_group->pwr_dev,
"%s: Failed to convert from str to u32.\n", __func__);
return size;
}
static ssize_t cirrus_pwr_exit_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("exit_temp")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
if (!amp)
return 0;
return sprintf(buf, "%d\n", amp->pwr.exit_temp);
}
static ssize_t cirrus_pwr_exit_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
const char *suffix = &(attr->attr.name[strlen("exit_temp")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
if (!amp)
return 0;
if (kstrtou32(buf, 0, &amp->pwr.exit_temp))
dev_err(amp_group->pwr_dev,
"%s: Failed to convert from str to u32.\n", __func__);
return size;
}
static ssize_t cirrus_pwr_amb_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("amb_temp")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
if (!amp)
return 0;
return sprintf(buf, "%d\n", amp->pwr.amb_temp);
}
static ssize_t cirrus_pwr_amb_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
const char *suffix = &(attr->attr.name[strlen("amb_temp")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
if (!amp)
return 0;
if (kstrtou32(buf, 0, &amp->pwr.amb_temp))
dev_err(amp_group->pwr_dev,
"%s: Failed to convert from str to u32.\n", __func__);
return size;
}
static ssize_t cirrus_pwr_spk_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("spk_t")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
if (!amp)
return 0;
return sprintf(buf, "%d\n", amp->pwr.spk_temp);
}
static ssize_t cirrus_pwr_spk_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
const char *suffix = &(attr->attr.name[strlen("spk_t")]);
struct cirrus_amp *amp = cirrus_get_amp_from_suffix(suffix);
if (!amp)
return 0;
if (kstrtou32(buf, 0, &amp->pwr.spk_temp))
dev_err(amp_group->pwr_dev,
"%s: Failed to convert from str to u32.\n", __func__);
return size;
}
static ssize_t cirrus_pwr_global_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", amp_group->pwr_enable);
}
static ssize_t cirrus_pwr_global_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned int enable;
int i;
if (kstrtou32(buf, 0, &enable)) {
dev_err(amp_group->pwr_dev,
"%s: Failed to convert from str to u32.\n", __func__);
return size;
}
amp_group->pwr_enable = enable;
if (enable == 0 &&
amp_group->status == CIRRUS_PWR_STATUS_ENABLED) {
/* Stop all amps */
for (i = 0; i < amp_group->num_amps; i++)
cirrus_pwr_stop(amp_group->amps[i].mfd_suffix);
}
return size;
}
static DEVICE_ATTR(version, 0444, cirrus_pwr_version_show,
cirrus_pwr_version_store);
static DEVICE_ATTR(uptime, 0444, cirrus_pwr_uptime_show,
cirrus_pwr_uptime_store);
static DEVICE_ATTR(global_enable, 0664, cirrus_pwr_global_enable_show,
cirrus_pwr_global_enable_store);
static DEVICE_ATTR(interval, 0664, cirrus_pwr_interval_show,
cirrus_pwr_interval_store);
static DEVICE_ATTR(status, 0664, cirrus_pwr_status_show,
cirrus_pwr_status_store);
static DEVICE_ATTR(target_min_time_ms, 0664, cirrus_pwr_target_min_time_ms_show,
cirrus_pwr_target_min_time_ms_store);
static struct attribute *cirrus_pwr_attr_base[] = {
&dev_attr_version.attr,
&dev_attr_uptime.attr,
&dev_attr_interval.attr,
&dev_attr_status.attr,
&dev_attr_target_min_time_ms.attr,
&dev_attr_global_enable.attr,
NULL,
};
static struct device_attribute generic_amp_attrs[CIRRUS_PWR_NUM_ATTRS_AMP] = {
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0444)},
.show = cirrus_pwr_power_show,
.store = cirrus_pwr_power_store,
},
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0664)},
.show = cirrus_pwr_target_temp_show,
.store = cirrus_pwr_target_temp_store,
},
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0664)},
.show = cirrus_pwr_exit_temp_show,
.store = cirrus_pwr_exit_temp_store,
},
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0664)},
.show = cirrus_pwr_amb_temp_show,
.store = cirrus_pwr_amb_temp_store,
},
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0664)},
.show = cirrus_pwr_spk_temp_show,
.store = cirrus_pwr_spk_temp_store,
},
};
static const char *generic_amp_attr_names[CIRRUS_PWR_NUM_ATTRS_AMP] = {
"value",
"target_temp",
"exit_temp",
"env_temp",
"spk_t",
};
static struct attribute_group cirrus_pwr_attr_grp;
static struct device_attribute
amp_attrs_prealloc[CIRRUS_MAX_AMPS][CIRRUS_PWR_NUM_ATTRS_AMP];
static char attr_names_prealloc[CIRRUS_MAX_AMPS][CIRRUS_PWR_NUM_ATTRS_AMP][20];
struct device_attribute *cirrus_pwr_create_amp_attrs(const char *mfd_suffix,
int index)
{
struct device_attribute *amp_attrs_new;
int i, suffix_len = strlen(mfd_suffix);
if (index >= CIRRUS_MAX_AMPS)
return NULL;
amp_attrs_new = &(amp_attrs_prealloc[index][0]);
memcpy(amp_attrs_new, &generic_amp_attrs,
sizeof(struct device_attribute) *
CIRRUS_PWR_NUM_ATTRS_AMP);
for (i = 0; i < CIRRUS_PWR_NUM_ATTRS_AMP; i++) {
amp_attrs_new[i].attr.name = attr_names_prealloc[index][i];
snprintf((char *)amp_attrs_new[i].attr.name,
strlen(generic_amp_attr_names[i]) + suffix_len + 1,
"%s%s", generic_amp_attr_names[i], mfd_suffix);
}
return amp_attrs_new;
}
int cirrus_pwr_init(void)
{
struct device_attribute *new_attrs;
struct cirrus_amp *amp;
int ret = 0, i, j, num_amps;
if (!amp_group) {
pr_err("%s: Empty amp group\n", __func__);
return -ENODATA;
}
amp_group->pwr_dev = device_create(cirrus_amp_class, NULL, 1, NULL,
CIRRUS_PWR_DIR_NAME);
if (IS_ERR(amp_group->pwr_dev)) {
ret = PTR_ERR(amp_group->pwr_dev);
pr_err("%s: Failed to create PWR device (%d)\n", __func__, ret);
return ret;
}
dev_set_drvdata(amp_group->pwr_dev, amp_group);
num_amps = amp_group->num_amps;
for (i = 0; i < num_amps; i++) {
amp_group->amps[i].pwr.amb_temp = 2500;
amp_group->amps[i].pwr.spk_temp = 2500;
amp_group->amps[i].pwr.target_temp = 3400;
amp_group->amps[i].pwr.exit_temp = 3250;
amp_group->amps[i].pwr.passport_enable = 0;
}
cirrus_pwr_attr_grp.attrs = kzalloc(sizeof(struct attribute *) *
(CIRRUS_PWR_NUM_ATTRS_AMP * num_amps +
CIRRUS_PWR_NUM_ATTRS_BASE + 1),
GFP_KERNEL);
for (i = 0; i < num_amps; i++) {
amp = &amp_group->amps[i];
new_attrs = cirrus_pwr_create_amp_attrs(amp->mfd_suffix, i);
for (j = 0; j < CIRRUS_PWR_NUM_ATTRS_AMP; j++) {
dev_dbg(amp_group->pwr_dev, "New attribute: %s\n",
new_attrs[j].attr.name);
cirrus_pwr_attr_grp.attrs[i * CIRRUS_PWR_NUM_ATTRS_AMP
+ j] = &new_attrs[j].attr;
}
}
memcpy(&cirrus_pwr_attr_grp.attrs[num_amps * CIRRUS_PWR_NUM_ATTRS_AMP],
cirrus_pwr_attr_base, sizeof(struct attribute *) *
CIRRUS_PWR_NUM_ATTRS_BASE);
cirrus_pwr_attr_grp.attrs[num_amps * CIRRUS_PWR_NUM_ATTRS_AMP +
CIRRUS_PWR_NUM_ATTRS_BASE] = NULL;
amp_group->pwr_workqueue = create_singlethread_workqueue(
CIRRUS_PWR_WORKQ_NAME);
if (amp_group->pwr_workqueue == NULL) {
dev_err(amp_group->pwr_dev, "Failed to create workqueue\n");
ret = -ENOENT;
goto err;
}
amp_group->interval = 10000;
amp_group->uptime_ms = 0;
amp_group->target_min_time_ms = 300000;
amp_group->pwr_enable = 0;
ret = sysfs_create_group(&amp_group->pwr_dev->kobj,
&cirrus_pwr_attr_grp);
if (ret) {
dev_err(amp_group->pwr_dev, "Failed to create sysfs group\n");
goto err;
}
mutex_init(&amp_group->pwr_lock);
INIT_DELAYED_WORK(&amp_group->pwr_work, cirrus_pwr_work);
return 0;
err:
return ret;
}
void cirrus_pwr_exit(void)
{
kfree(cirrus_pwr_attr_grp.attrs);
device_del(amp_group->pwr_dev);
}