kernel_samsung_a34x-permissive/sound/soc/mediatek/common_int/mtk-soc-afe-control.c

5114 lines
138 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 MediaTek Inc.
* Author: Michael Hsiao <michael.hsiao@mediatek.com>
*/
/*******************************************************************************
*
* Filename:
* ---------
* mt_sco_afe_control.c
*
* Project:
* --------
* MT6797 Audio Driver Kernel Function
*
* Description:
* ------------
* Audio register
*
* Author:
* -------
* Chipeng Chang
*
*------------------------------------------------------------------------------
*
******************************************************************************
*/
/*****************************************************************************
* C O M P I L E R F L A G S
*****************************************************************************/
/*****************************************************************************
* E X T E R N A L R E F E R E N C E S
*****************************************************************************/
#include "mtk-soc-afe-control.h"
#include "mtk-auddrv-afe.h"
#include "mtk-auddrv-ana.h"
#include "mtk-auddrv-clk.h"
#include "mtk-auddrv-common.h"
#include "mtk-auddrv-def.h"
#include "mtk-auddrv-gpio.h"
#include "mtk-auddrv-kernel.h"
#include "mtk-soc-afe-connection.h"
#include "mtk-soc-analog-type.h"
#include "mtk-soc-digital-type.h"
#include "mtk-soc-pcm-common.h"
#include "mtk-soc-pcm-platform.h"
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#if defined(CONFIG_MTK_AUDIO_SCP_SPKPROTECT_SUPPORT)
#include "mtk-auddrv-scp-spkprotect-common.h"
#endif
/*
* #include <mt-plat/mt_boot.h>
* #include <mt-plat/mt_boot_common.h>
* #include <mt-plat/mt_lpae.h>
*/
#ifdef CONFIG_MTK_AUXADC_INTF
#include <mach/mtk_pmic.h>
#include <mt-plat/mtk_auxadc_intf.h>
#endif
#include <linux/ftrace.h>
#ifdef AUDIO_VCOREFS_SUPPORT
#include <mtk_vcorefs_manager.h>
#endif
static DEFINE_SPINLOCK(afe_control_lock);
static DEFINE_SPINLOCK(afe_sram_control_lock);
static DEFINE_SPINLOCK(afe_mem_blk_dl1_lock);
static DEFINE_SPINLOCK(afe_mem_blk_dl1_2_lock);
static DEFINE_SPINLOCK(afe_mem_blk_dl2_lock);
static DEFINE_SPINLOCK(afe_mem_blk_dl3_lock);
static DEFINE_SPINLOCK(afe_dl_abnormal_context_lock);
static DEFINE_SPINLOCK(afe_mem_blk_ul1_lock);
static DEFINE_SPINLOCK(afe_mem_blk_ul2_lock);
static DEFINE_SPINLOCK(afe_mem_blk_ul3_lock);
static DEFINE_SPINLOCK(afe_mem_blk_dai_lock);
static DEFINE_SPINLOCK(afe_mem_blk_moddai_lock);
static DEFINE_SPINLOCK(afe_mem_blk_awb_lock);
static DEFINE_SPINLOCK(auddrv_dl2_lock);
static DEFINE_SPINLOCK(auddrv_dl3_lock);
static unsigned long spinlock_flags[Soc_Aud_Digital_Block_MEM_HDMI + 1];
static DEFINE_MUTEX(afe_control_mutex);
/* static variable */
static bool AudioDaiBtStatus;
static bool AudioAdcI2SStatus;
static bool Audio2ndAdcI2SStatus;
static bool AudioMrgStatus;
static bool mAudioInit;
static bool mVOWStatus;
static struct audio_digital_i2s *m2ndI2S; /* input */
static struct audio_digital_i2s *m2ndI2Sout; /* output */
static bool mFMEnable;
static bool mOffloadEnable;
static struct audio_hdmi *mHDMIOutput;
static struct audio_mrg_if *mAudioMrg;
static struct audio_digital_dai_bt *AudioDaiBt;
static struct afe_mem_control_t
*AFE_Mem_Control_context[Soc_Aud_Digital_Block_NUM_OF_MEM_INTERFACE] = {
NULL};
static struct snd_dma_buffer
*Audio_dma_buf[Soc_Aud_Digital_Block_NUM_OF_MEM_INTERFACE] = {NULL};
static struct audio_memif_attribute
*mAudioMEMIF[Soc_Aud_Digital_Block_NUM_OF_DIGITAL_BLOCK] = {NULL};
struct afe_dl_abnormal_control_t AFE_dL_Abnormal_context;
/* static struct audio_afe_reg_cache mAudioRegCache; */
static struct audio_ul_dl_sram_manager mAudioSramManager;
const size_t AudioInterruptLimiter = 100;
static int irqcount;
static unsigned int irq_mcu_mask;
static int APLL1TunerCounter;
static int APLL2TunerCounter;
static unsigned int sram_mode_size[2] = {
AFE_INTERNAL_SRAM_NORMAL_SIZE, AFE_INTERNAL_SRAM_COMPACT_SIZE,
};
static struct audio_sram_manager mAud_Sram_Manager;
static bool mExternalModemStatus;
static struct mtk_dai mtk_dais[Soc_Aud_Digital_Block_NUM_OF_DIGITAL_BLOCK];
static struct irq_manager irq_managers[Soc_Aud_IRQ_MCU_MODE_NUM];
static struct mtk_mem_blk_ops *s_mem_blk_ops;
static struct mtk_afe_platform_ops *s_afe_platform_ops;
#define IrqShortCounter 512
#define SramBlockSize (4096)
static bool ScreenState;
static unsigned int LowLatencyDebug;
/*
* Function Forward Declaration
*/
static irqreturn_t AudDrv_IRQ_handler(int irq, void *dev_id);
static void Clear_Mem_CopySize(enum soc_aud_digital_block MemBlock);
static kal_uint32 Get_Mem_MaxCopySize(enum soc_aud_digital_block MemBlock);
static unsigned int GeneralSampleRateTransform(unsigned int sampleRate);
static unsigned int DAIMEMIFSampleRateTransform(unsigned int sampleRate);
static unsigned int ADDADLSampleRateTransform(unsigned int sampleRate);
static unsigned int ADDAULSampleRateTransform(unsigned int sampleRate);
static unsigned int MDSampleRateTransform(unsigned int sampleRate);
/*
* function implementation
*/
static bool CheckSize(unsigned int size)
{
if (size == 0) {
pr_debug("%s(), size = 0\n", __func__);
return true;
}
return false;
}
static void AfeGlobalVarInit(void)
{
AudioDaiBtStatus = false;
AudioAdcI2SStatus = false;
Audio2ndAdcI2SStatus = false;
AudioMrgStatus = false;
mAudioInit = false;
mVOWStatus = false;
m2ndI2S = NULL; /* input */
m2ndI2Sout = NULL; /* output */
mFMEnable = false;
mOffloadEnable = false;
mHDMIOutput = NULL;
mAudioMrg = NULL;
AudioDaiBt = NULL;
mExternalModemStatus = false;
irqcount = 0;
}
void AfeControlMutexLock(void)
{
mutex_lock(&afe_control_mutex);
}
void AfeControlMutexUnLock(void)
{
mutex_unlock(&afe_control_mutex);
}
void AfeControlSramLock(void)
{
spin_lock(&afe_sram_control_lock);
}
void AfeControlSramUnLock(void)
{
spin_unlock(&afe_sram_control_lock);
}
unsigned int GetSramState(void)
{
return mAudioSramManager.mMemoryState;
}
void SetSramState(unsigned int State)
{
pr_debug("%s state= %d\n", __func__, State);
mAudioSramManager.mMemoryState |= State;
}
void ClearSramState(unsigned int State)
{
pr_debug("%s state= %d\n", __func__, State);
mAudioSramManager.mMemoryState &= (~State);
}
unsigned int GetPLaybackSramFullSize(void)
{
unsigned int Sramsize = AUDIO_SRAM_PLAYBACK_FULL_SIZE;
if (AUDIO_SRAM_PLAYBACK_FULL_SIZE > AFE_INTERNAL_SRAM_SIZE)
Sramsize = AFE_INTERNAL_SRAM_SIZE;
return Sramsize;
}
unsigned int GetPLaybackSramPartial(void)
{
unsigned int Sramsize = AUDIO_SRAM_PLAYBACK_PARTIAL_SIZE;
return Sramsize;
}
unsigned int GetPLaybackDramSize(void)
{
return AUDIO_DRAM_PLAYBACK_SIZE;
}
size_t GetCaptureSramSize(void)
{
unsigned int Sramsize = AUDIO_SRAM_CAPTURE_SIZE;
return Sramsize;
}
size_t GetCaptureDramSize(void)
{
return AUDIO_DRAM_CAPTURE_SIZE;
}
void SetFMEnableFlag(bool bEnable)
{
mFMEnable = bEnable;
}
void SetOffloadEnableFlag(bool bEnable)
{
mOffloadEnable = bEnable;
}
bool GetOffloadEnableFlag(void)
{
return mOffloadEnable;
}
bool ConditionEnterSuspend(void)
{
if ((mFMEnable == true) || (mOffloadEnable == true) ||
(GetMemoryPathEnable(Soc_Aud_Digital_Block_ADDA_ANC) == true))
return false;
return true;
}
/* function get internal mode status. */
bool get_internalmd_status(void)
{
bool ret = (get_voice_bt_status() || get_voice_usb_status() ||
get_voice_status() || get_voice_md2_status() ||
get_voice_md2_bt_status());
#ifdef _NON_COMMON_FEATURE_READY
get_voice_ultra_status();
#endif
return (mExternalModemStatus == true) ? false : ret;
}
void SetExternalModemStatus(const bool bEnable)
{
pr_debug("%s(), mExternalModemStatus : %d => %d\n", __func__,
mExternalModemStatus, bEnable);
mExternalModemStatus = bEnable;
}
/*****************************************************************************
* FUNCTION
* InitAfeControl ,ResetAfeControl
*
* DESCRIPTION
* afe init function
*
*****************************************************************************
*/
int InitAfeControl(struct device *pDev)
{
int i = 0;
int ret = 0;
pr_debug("%s()\n", __func__);
/* first time to init , reg init. */
AfeGlobalVarInit();
Auddrv_Reg_map(pDev);
AudDrv_Clk_Global_Variable_Init();
AudDrv_Bus_Init();
Auddrv_Read_Efuse_HPOffset();
AfeControlMutexLock();
/* allocate memory for pointers */
if (mAudioInit == false) {
mAudioInit = true;
mAudioMrg = devm_kzalloc(pDev, sizeof(struct audio_mrg_if),
GFP_KERNEL);
if (!mAudioMrg) {
/* pr_debug("Failed to allocate private data\n"); */
ret = -ENOMEM;
} else {
mAudioMrg->Mrg_I2S_SampleRate =
SampleRateTransform(44100,
Soc_Aud_Digital_Block_MRG_I2S_OUT);
}
AudioDaiBt =
devm_kzalloc(pDev, sizeof(struct audio_digital_dai_bt),
GFP_KERNEL);
if (!AudioDaiBt) {
/* pr_debug("Failed to allocate private data\n"); */
ret = -ENOMEM;
}
m2ndI2S = devm_kzalloc(pDev,
sizeof(struct audio_digital_i2s),
GFP_KERNEL);
if (!m2ndI2S) {
/* pr_debug("Failed to allocate private data\n"); */
ret = -ENOMEM;
}
m2ndI2Sout =
devm_kzalloc(pDev, sizeof(struct audio_digital_i2s),
GFP_KERNEL);
if (!m2ndI2Sout) {
/* pr_debug("Failed to allocate private data\n"); */
ret = -ENOMEM;
}
mHDMIOutput = devm_kzalloc(pDev, sizeof(struct audio_hdmi),
GFP_KERNEL);
if (!mHDMIOutput) {
/* pr_debug("Failed to allocate private data\n"); */
ret = -ENOMEM;
}
for (i = 0; i < Soc_Aud_Digital_Block_NUM_OF_DIGITAL_BLOCK;
i++) {
mAudioMEMIF[i] =
devm_kzalloc(pDev,
sizeof(struct audio_memif_attribute),
GFP_KERNEL);
if (!mAudioMEMIF[i]) {
/* pr_debug("Failed to
* allocate private data\n");
*/
ret = -ENOMEM;
}
}
for (i = 0; i < Soc_Aud_Digital_Block_NUM_OF_MEM_INTERFACE;
i++) {
AFE_Mem_Control_context[i] = devm_kzalloc(pDev,
sizeof(struct afe_mem_control_t), GFP_KERNEL);
if (!AFE_Mem_Control_context[i]) {
/* pr_debug("Failed to
* allocate private data\n");
*/
ret = -ENOMEM;
}
AFE_Mem_Control_context[i]->substreamL = NULL;
spin_lock_init(
&AFE_Mem_Control_context[i]->substream_lock);
}
for (i = 0; i < Soc_Aud_Digital_Block_NUM_OF_MEM_INTERFACE;
i++) {
Audio_dma_buf[i] =
devm_kzalloc(pDev,
sizeof(Audio_dma_buf), GFP_KERNEL);
if (!Audio_dma_buf[i]) {
/* pr_debug("Failed to
* allocate private data\n");
*/
ret = -ENOMEM;
}
}
memset((void *)&AFE_dL_Abnormal_context, 0,
sizeof(struct afe_dl_abnormal_control_t));
memset((void *)&mtk_dais, 0, sizeof(mtk_dais));
}
AudioDaiBtStatus = false;
AudioAdcI2SStatus = false;
Audio2ndAdcI2SStatus = false;
AudioMrgStatus = false;
InitSramManager(pDev, SramBlockSize);
init_irq_manager();
PowerDownAllI2SDiv();
init_afe_ops();
if (s_afe_platform_ops->init_platform != NULL)
s_afe_platform_ops->init_platform();
/* set APLL clock setting */
AfeControlMutexUnLock();
return ret;
}
bool ResetAfeControl(void)
{
int i = 0;
AfeControlMutexLock();
mAudioInit = false;
memset((void *)(mAudioMrg), 0, sizeof(struct audio_mrg_if));
memset((void *)(AudioDaiBt), 0, sizeof(struct audio_digital_dai_bt));
for (i = 0; i < Soc_Aud_Digital_Block_NUM_OF_DIGITAL_BLOCK; i++)
memset((void *)(mAudioMEMIF[i]), 0,
sizeof(struct audio_memif_attribute));
for (i = 0; i < Soc_Aud_Digital_Block_NUM_OF_MEM_INTERFACE; i++)
memset((void *)(AFE_Mem_Control_context[i]), 0,
sizeof(struct afe_mem_control_t));
AfeControlMutexUnLock();
return true;
}
/*****************************************************************************
* FUNCTION
* Register_aud_irq
*
* DESCRIPTION
* IRQ handler
*
*****************************************************************************
*/
bool Register_Aud_Irq(void *dev, unsigned int afe_irq_number)
{
int ret;
#ifdef CONFIG_OF
ret = request_irq(afe_irq_number, AudDrv_IRQ_handler, IRQF_TRIGGER_LOW,
"Afe_ISR_Handle", dev);
#else
ret = request_irq(MT6735_AFE_MCU_IRQ_LINE, AudDrv_IRQ_handler,
IRQF_TRIGGER_LOW, "Afe_ISR_Handle", dev);
#endif
return ret;
}
static unsigned int get_mcu_irq_mask(void)
{
int index = 0;
const struct Aud_RegBitsInfo *irq_status;
enum Soc_Aud_IRQ_PURPOSE purpose;
if (irq_mcu_mask == 0) {
for (index = 0; index < Soc_Aud_IRQ_MCU_MODE_NUM; index++) {
irq_status = &GetIRQCtrlReg(index)->status;
purpose = GetIRQCtrlReg(index)->irqPurpose;
if (irq_status->reg == AFE_REG_UNDEFINED)
continue;
irq_mcu_mask |= (purpose == Soc_Aud_IRQ_MCU)
<< irq_status->sbit;
}
}
return irq_mcu_mask;
}
int AudDrv_DSP_IRQ_handler(void *PrivateData)
{
if (mAudioMEMIF[Soc_Aud_Digital_Block_MEM_DL1]->mState == true)
Auddrv_DSP_DL1_Interrupt_Handler(PrivateData);
return 0;
}
/*****************************************************************************
* FUNCTION
* AudDrv_IRQ_handler / AudDrv_magic_tasklet
*
* DESCRIPTION
* IRQ handler
*
*****************************************************************************
*/
irqreturn_t AudDrv_IRQ_handler(int irq, void *dev_id)
{
/* unsigned long flags; */
kal_uint32 u4RegValue;
kal_uint32 irq_mcu_en;
kal_uint32 irq_scp_en = 0;
kal_uint32 irq_temp_enable;
unsigned int irqIndex = 0;
unsigned int mcu_mask = get_mcu_irq_mask();
const struct Aud_RegBitsInfo *irqOnReg, *irqEnReg, *irqStatusReg,
*irqMcuEnReg, *irqScpEnReg;
u4RegValue = Afe_Get_Reg(AFE_IRQ_MCU_STATUS) & mcu_mask;
irqMcuEnReg = GetIRQPurposeReg(Soc_Aud_IRQ_MCU);
irq_mcu_en = Afe_Get_Reg(irqMcuEnReg->reg);
/* here is error handle , for interrupt is trigger but not status ,
* clear all interrupt with bit 6
*/
if (u4RegValue == 0) {
irqScpEnReg = GetIRQPurposeReg(Soc_Aud_IRQ_CM4);
if (irqScpEnReg->reg != AFE_REG_UNDEFINED) {
irq_scp_en = Afe_Get_Reg(irqScpEnReg->reg);
irq_scp_en &= irqScpEnReg->mask;
Afe_Set_Reg(AFE_IRQ_MCU_CLR, irq_scp_en, irq_scp_en);
}
/* only clear IRQ which is sent to MCU */
irq_mcu_en &= irqMcuEnReg->mask;
Afe_Set_Reg(AFE_IRQ_MCU_CLR, irq_mcu_en, irq_mcu_en);
irqcount++;
if (irqcount > AudioInterruptLimiter) {
for (irqIndex = 0; irqIndex < Soc_Aud_IRQ_MCU_MODE_NUM;
irqIndex++) {
if (GetIRQCtrlReg(irqIndex)->irqPurpose !=
Soc_Aud_IRQ_MCU)
continue;
irqEnReg = &GetIRQCtrlReg(irqIndex)->en;
if (irq_mcu_en & (1 << irqEnReg->sbit)) {
irqOnReg = &GetIRQCtrlReg(irqIndex)->on;
Afe_Set_Reg(irqOnReg->reg,
0 << irqOnReg->sbit,
irqOnReg->mask
<< irqOnReg->sbit);
}
}
irqcount = 0;
}
pr_debug("%s(), [AudioWarn] u4RegValue = 0x%x, irqcount = %d, irq_mcu_en = 0x%x irq_scp_en = 0x%x\n",
__func__,
u4RegValue, irqcount, irq_mcu_en, irq_scp_en);
goto AudDrv_IRQ_handler_exit;
}
/* clear irq */
/* IRQs need to be enabled before clear */
irq_temp_enable = u4RegValue & (~irq_mcu_en);
Afe_Set_Reg(irqMcuEnReg->reg, irq_temp_enable, irq_temp_enable);
Afe_Set_Reg(AFE_IRQ_MCU_CLR, u4RegValue, mcu_mask);
/* Disable the IRQs are temp enabled */
Afe_Set_Reg(irqMcuEnReg->reg, 0, irq_temp_enable);
/*call each IRQ handler function*/
for (irqIndex = 0; irqIndex < Soc_Aud_IRQ_MCU_MODE_NUM; irqIndex++) {
if (GetIRQCtrlReg(irqIndex)->irqPurpose != Soc_Aud_IRQ_MCU)
continue;
irqStatusReg = &GetIRQCtrlReg(irqIndex)->status;
if (u4RegValue & (0x1 << irqStatusReg->sbit))
RunIRQHandler(irqIndex);
}
AudDrv_IRQ_handler_exit:
return IRQ_HANDLED;
}
void EnableAPLLTunerbySampleRate(unsigned int SampleRate)
{
if (GetApllbySampleRate(SampleRate) == Soc_Aud_APLL1) {
APLL1TunerCounter++;
if (APLL1TunerCounter == 1) {
Afe_Set_Reg(AFE_APLL1_TUNER_CFG, 0x00000832,
0x0000FFF7);
Afe_Set_Reg(AFE_APLL1_TUNER_CFG, 0x1, 0x1);
}
} else if (GetApllbySampleRate(SampleRate) == Soc_Aud_APLL2) {
APLL2TunerCounter++;
if (APLL2TunerCounter == 1) {
Afe_Set_Reg(AFE_APLL2_TUNER_CFG, 0x00000634,
0x0000FFF7);
Afe_Set_Reg(AFE_APLL2_TUNER_CFG, 0x1, 0x1);
}
}
}
void DisableAPLLTunerbySampleRate(unsigned int SampleRate)
{
if (GetApllbySampleRate(SampleRate) == Soc_Aud_APLL1) {
APLL1TunerCounter--;
if (APLL1TunerCounter == 0) {
Afe_Set_Reg(AFE_APLL1_TUNER_CFG, 0x0, 0x1);
} else if (APLL1TunerCounter < 0) {
pr_debug("%s(), warning, APLL1TunerCounter<0",
__func__);
APLL1TunerCounter = 0;
}
} else if (GetApllbySampleRate(SampleRate) == Soc_Aud_APLL2) {
APLL2TunerCounter--;
if (APLL2TunerCounter == 0) {
Afe_Set_Reg(AFE_APLL2_TUNER_CFG, 0x0, 0x1);
} else if (APLL2TunerCounter < 0) {
pr_debug("%s(), warning, APLL2TunerCounter<0",
__func__);
APLL2TunerCounter = 0;
}
}
}
static bool CheckMemIfEnable(void)
{
int i = 0;
for (i = 0; i < Soc_Aud_Digital_Block_NUM_OF_DIGITAL_BLOCK; i++) {
if ((mAudioMEMIF[i]->mState) == true) {
/* pr_debug("CheckMemIfEnable == true\n"); */
return true;
}
}
/* pr_debug("CheckMemIfEnable == false\n"); */
return false;
}
/* record VOW status for AFE GPIO control */
void SetVOWStatus(bool bEnable)
{
unsigned long flags;
if (mVOWStatus != bEnable) {
spin_lock_irqsave(&afe_control_lock, flags);
mVOWStatus = bEnable;
pr_debug("%s(), mVOWStatus= %d\n", __func__, mVOWStatus);
spin_unlock_irqrestore(&afe_control_lock, flags);
}
}
/*****************************************************************************
* FUNCTION
* Auddrv_Reg_map
*
* DESCRIPTION
* Auddrv_Reg_map
*
*****************************************************************************
*/
static bool afe_on;
void EnableAfe(bool bEnable)
{
unsigned long flags;
bool MemEnable = false;
spin_lock_irqsave(&afe_control_lock, flags);
MemEnable = CheckMemIfEnable();
if (false == bEnable && false == MemEnable) {
if (afe_on && mtk_soc_always_hd) {
DisableAPLLTunerbySampleRate(44100);
DisableAPLLTunerbySampleRate(48000);
}
set_chip_afe_enable(false);
if (afe_on && mtk_soc_always_hd) {
DisableALLbySampleRate(44100);
DisableALLbySampleRate(48000);
}
afe_on = false;
} else if (true == bEnable && true == MemEnable) {
if (!afe_on && mtk_soc_always_hd) {
EnableALLbySampleRate(44100);
EnableALLbySampleRate(48000);
}
set_chip_afe_enable(true);
if (!afe_on && mtk_soc_always_hd) {
EnableAPLLTunerbySampleRate(44100);
EnableAPLLTunerbySampleRate(48000);
}
afe_on = true;
}
spin_unlock_irqrestore(&afe_control_lock, flags);
}
unsigned int SampleRateTransform(unsigned int sampleRate,
enum soc_aud_digital_block audBlock)
{
switch (audBlock) {
case Soc_Aud_Digital_Block_ADDA_DL:
return ADDADLSampleRateTransform(sampleRate);
case Soc_Aud_Digital_Block_ADDA_UL:
return ADDAULSampleRateTransform(sampleRate);
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
case Soc_Aud_Digital_Block_MEM_DAI:
return DAIMEMIFSampleRateTransform(sampleRate);
case Soc_Aud_Digital_Block_MODEM_PCM_1_O:
case Soc_Aud_Digital_Block_MODEM_PCM_2_O:
return MDSampleRateTransform(sampleRate);
default:
return GeneralSampleRateTransform(sampleRate);
}
}
unsigned int GeneralSampleRateTransform(unsigned int sampleRate)
{
switch (sampleRate) {
case 8000:
return Soc_Aud_I2S_SAMPLERATE_I2S_8K;
case 11025:
return Soc_Aud_I2S_SAMPLERATE_I2S_11K;
case 12000:
return Soc_Aud_I2S_SAMPLERATE_I2S_12K;
case 16000:
return Soc_Aud_I2S_SAMPLERATE_I2S_16K;
case 22050:
return Soc_Aud_I2S_SAMPLERATE_I2S_22K;
case 24000:
return Soc_Aud_I2S_SAMPLERATE_I2S_24K;
case 32000:
return Soc_Aud_I2S_SAMPLERATE_I2S_32K;
case 44100:
return Soc_Aud_I2S_SAMPLERATE_I2S_44K;
case 48000:
return Soc_Aud_I2S_SAMPLERATE_I2S_48K;
case 88200:
return Soc_Aud_I2S_SAMPLERATE_I2S_88K;
case 96000:
return Soc_Aud_I2S_SAMPLERATE_I2S_96K;
case 130000:
return Soc_Aud_I2S_SAMPLERATE_I2S_130K;
case 176400:
return Soc_Aud_I2S_SAMPLERATE_I2S_174K;
case 192000:
return Soc_Aud_I2S_SAMPLERATE_I2S_192K;
case 260000:
return Soc_Aud_I2S_SAMPLERATE_I2S_260K;
default:
pr_warn("[AudioWarn] %s() sampleRate(%d) is invalid, use 44.1kHz!!!\n",
__func__, sampleRate);
return Soc_Aud_I2S_SAMPLERATE_I2S_44K;
}
}
unsigned int DAIMEMIFSampleRateTransform(unsigned int sampleRate)
{
switch (sampleRate) {
case 8000:
return Soc_Aud_DAI_MEMIF_SAMPLERATE_8K;
case 16000:
return Soc_Aud_DAI_MEMIF_SAMPLERATE_16K;
case 32000:
return Soc_Aud_DAI_MEMIF_SAMPLERATE_32K;
default:
pr_warn("[AudioWarn] %s() sampleRate(%d) is invalid, use 16kHz!!!\n",
__func__, sampleRate);
return Soc_Aud_DAI_MEMIF_SAMPLERATE_16K;
}
}
unsigned int ADDADLSampleRateTransform(unsigned int sampleRate)
{
switch (sampleRate) {
case 8000:
return Soc_Aud_ADDA_DL_SAMPLERATE_8K;
case 11025:
return Soc_Aud_ADDA_DL_SAMPLERATE_11K;
case 12000:
return Soc_Aud_ADDA_DL_SAMPLERATE_12K;
case 16000:
return Soc_Aud_ADDA_DL_SAMPLERATE_16K;
case 22050:
return Soc_Aud_ADDA_DL_SAMPLERATE_22K;
case 24000:
return Soc_Aud_ADDA_DL_SAMPLERATE_24K;
case 32000:
return Soc_Aud_ADDA_DL_SAMPLERATE_32K;
case 44100:
return Soc_Aud_ADDA_DL_SAMPLERATE_44K;
case 48000:
return Soc_Aud_ADDA_DL_SAMPLERATE_48K;
case 96000:
return Soc_Aud_ADDA_DL_SAMPLERATE_96K;
case 192000:
return Soc_Aud_ADDA_DL_SAMPLERATE_192K;
default:
pr_warn("[AudioWarn] %s() sampleRate(%d) is invalid, use 44.1kHz!!!\n",
__func__, sampleRate);
return Soc_Aud_ADDA_DL_SAMPLERATE_44K;
}
}
unsigned int ADDAULSampleRateTransform(unsigned int sampleRate)
{
switch (sampleRate) {
case 8000:
return Soc_Aud_ADDA_UL_SAMPLERATE_8K;
case 16000:
return Soc_Aud_ADDA_UL_SAMPLERATE_16K;
case 32000:
return Soc_Aud_ADDA_UL_SAMPLERATE_32K;
case 48000:
return Soc_Aud_ADDA_UL_SAMPLERATE_48K;
case 96000:
return Soc_Aud_ADDA_UL_SAMPLERATE_96K;
case 192000:
return Soc_Aud_ADDA_UL_SAMPLERATE_192K;
default:
pr_warn("[AudioWarn] %s() sampleRate(%d) is invalid, use 48kHz(24bit)!!!\n",
__func__, sampleRate);
return Soc_Aud_ADDA_UL_SAMPLERATE_48K;
}
}
unsigned int MDSampleRateTransform(unsigned int sampleRate)
{
switch (sampleRate) {
case 8000:
return Soc_Aud_PCM_MODE_PCM_MODE_8K;
case 16000:
return Soc_Aud_PCM_MODE_PCM_MODE_16K;
case 32000:
return Soc_Aud_PCM_MODE_PCM_MODE_32K;
case 48000:
return Soc_Aud_PCM_MODE_PCM_MODE_48K;
default:
pr_warn("%s(), rate %u not support, use 16k\n", __func__,
sampleRate);
return Soc_Aud_PCM_MODE_PCM_MODE_16K;
}
}
bool Set2ndI2SOutAttribute(uint32_t sampleRate)
{
pr_debug("+%s(), sampleRate = %d\n", __func__, sampleRate);
m2ndI2Sout->mLR_SWAP = Soc_Aud_LR_SWAP_NO_SWAP;
m2ndI2Sout->mI2S_SLAVE = Soc_Aud_I2S_SRC_MASTER_MODE;
m2ndI2Sout->mINV_LRCK = Soc_Aud_INV_LRCK_NO_INVERSE;
m2ndI2Sout->mI2S_FMT = Soc_Aud_I2S_FORMAT_I2S;
m2ndI2Sout->mI2S_WLEN = Soc_Aud_I2S_WLEN_WLEN_16BITS;
m2ndI2Sout->mI2S_HDEN = Soc_Aud_NORMAL_CLOCK;
m2ndI2Sout->mI2S_SAMPLERATE = sampleRate;
Set2ndI2SOut(m2ndI2Sout);
return true;
}
bool Set2ndI2SOut(struct audio_digital_i2s *DigtalI2S)
{
unsigned int u32AudioI2S = 0;
memcpy((void *)m2ndI2Sout, (void *)DigtalI2S,
sizeof(struct audio_digital_i2s));
u32AudioI2S = SampleRateTransform(m2ndI2Sout->mI2S_SAMPLERATE,
Soc_Aud_Digital_Block_I2S_OUT_2)
<< 8;
u32AudioI2S |= m2ndI2Sout->mLR_SWAP << 31;
u32AudioI2S |= m2ndI2Sout->mI2S_HDEN << 12;
u32AudioI2S |= m2ndI2Sout->mINV_LRCK << 5;
u32AudioI2S |= m2ndI2Sout->mI2S_FMT << 3;
u32AudioI2S |= m2ndI2Sout->mI2S_WLEN << 1;
Afe_Set_Reg(AFE_I2S_CON3, u32AudioI2S, AFE_MASK_ALL);
return true;
}
bool Set2ndI2SOutEnable(bool benable)
{
if (benable)
Afe_Set_Reg(AFE_I2S_CON3, 0x1, 0x1);
else
Afe_Set_Reg(AFE_I2S_CON3, 0x0, 0x1);
return true;
}
bool SetDaiBt(struct audio_digital_dai_bt *mAudioDaiBt)
{
AudioDaiBt->mBT_LEN = mAudioDaiBt->mBT_LEN;
AudioDaiBt->mUSE_MRGIF_INPUT = mAudioDaiBt->mUSE_MRGIF_INPUT;
AudioDaiBt->mDAI_BT_MODE = mAudioDaiBt->mDAI_BT_MODE;
AudioDaiBt->mDAI_DEL = mAudioDaiBt->mDAI_DEL;
AudioDaiBt->mBT_LEN = mAudioDaiBt->mBT_LEN;
AudioDaiBt->mDATA_RDY = mAudioDaiBt->mDATA_RDY;
AudioDaiBt->mBT_SYNC = mAudioDaiBt->mBT_SYNC;
return true;
}
bool SetDaiBtEnable(bool bEanble)
{
pr_debug("%s bEanble = %d\n", __func__, bEanble);
return set_chip_dai_bt_enable(bEanble, AudioDaiBt, mAudioMrg);
}
bool GetMrgI2SEnable(void)
{
return mAudioMEMIF[Soc_Aud_Digital_Block_MRG_I2S_OUT]->mState;
}
bool SetMrgI2SEnable(bool bEnable, unsigned int sampleRate)
{
unsigned int sampleRateType;
sampleRateType = SampleRateTransform(sampleRate,
Soc_Aud_Digital_Block_MRG_I2S_OUT);
pr_debug("%s bEnable = %d\n", __func__, bEnable);
if (bEnable == true) {
/* To enable MrgI2S */
if (mAudioMrg->MrgIf_En == true) {
/* Merge Interface already turn on. */
/* if sample Rate change, then it need to restart with
* new setting; else do nothing.
*/
if (mAudioMrg->Mrg_I2S_SampleRate != sampleRateType) {
/* Turn off Merge Interface first to switch I2S
* sampling rate
*/
Afe_Set_Reg(AFE_MRGIF_CON, 0,
1 << 16); /* Turn off I2S */
if (AudioDaiBt->mDAIBT_ON == true)
Afe_Set_Reg(
AFE_DAIBT_CON0, 0,
0x1); /* Turn off DAIBT first */
udelay(100);
Afe_Set_Reg(AFE_MRGIF_CON, 0,
0x1); /* Turn off Merge Interface */
udelay(100);
Afe_Set_Reg(AFE_MRGIF_CON, 1,
0x1); /* Turn on Merge Interface */
if (AudioDaiBt->mDAIBT_ON == true) {
Afe_Set_Reg(AFE_DAIBT_CON0,
AudioDaiBt->mDAI_BT_MODE
<< 9,
0x1 << 9);
/* use merge */
Afe_Set_Reg(AFE_DAIBT_CON0, 0x1 << 12,
0x1 << 12); /* use merge */
Afe_Set_Reg(AFE_DAIBT_CON0, 0x1 << 3,
0x1 << 3); /* data ready */
Afe_Set_Reg(AFE_DAIBT_CON0, 0x3,
0x3); /* Turn on DAIBT */
}
mAudioMrg->Mrg_I2S_SampleRate = sampleRateType;
Afe_Set_Reg(AFE_MRGIF_CON,
mAudioMrg->Mrg_I2S_SampleRate << 20,
0xF00000);
/* set Mrg_I2S Samping Rate */
Afe_Set_Reg(AFE_MRGIF_CON, 1 << 16,
1 << 16); /* set Mrg_I2S enable */
}
} else {
/* turn on merge Interface from off state */
mAudioMrg->Mrg_I2S_SampleRate = sampleRateType;
Afe_Set_Reg(AFE_MRGIF_CON,
mAudioMrg->Mrg_I2S_SampleRate << 20,
0xF << 20);
/* set Mrg_I2S Samping rates */
Afe_Set_Reg(AFE_MRGIF_CON, 1 << 16,
1 << 16); /* set Mrg_I2S enable */
udelay(100);
Afe_Set_Reg(AFE_MRGIF_CON, 1,
0x1); /* Turn on Merge Interface */
udelay(100);
if (AudioDaiBt->mDAIBT_ON == true) {
Afe_Set_Reg(AFE_DAIBT_CON0,
AudioDaiBt->mDAI_BT_MODE << 9,
0x1 << 9);
/* use merge */
Afe_Set_Reg(AFE_DAIBT_CON0, 0x1 << 12,
0x1 << 12); /* use merge */
Afe_Set_Reg(AFE_DAIBT_CON0, 0x1 << 3,
0x1 << 3); /* data ready */
Afe_Set_Reg(AFE_DAIBT_CON0, 0x3,
0x3); /* Turn on DAIBT */
}
}
mAudioMrg->MrgIf_En = true;
mAudioMrg->Mergeif_I2S_Enable = true;
} else {
if (mAudioMrg->MrgIf_En == true) {
Afe_Set_Reg(AFE_MRGIF_CON, 0,
1 << 16); /* Turn off I2S */
if (AudioDaiBt->mDAIBT_ON == false) {
udelay(100);
/* DAIBT also not using, then it's OK to disable
* Merge Interface
*/
Afe_Set_Reg(AFE_MRGIF_CON, 0,
0x1); /* Turn off Merge Interface */
mAudioMrg->MrgIf_En = false;
}
}
mAudioMrg->Mergeif_I2S_Enable = false;
}
return true;
}
bool Set2ndI2SAdcIn(struct audio_digital_i2s *DigtalI2S)
{
/* 6752 todo? */
return true;
}
bool SetExtI2SAdcIn(struct audio_digital_i2s *DigtalI2S)
{
unsigned int Audio_I2S_Adc = 0;
unsigned int sampleRateType;
sampleRateType = SampleRateTransform(DigtalI2S->mI2S_SAMPLERATE,
Soc_Aud_Digital_Block_I2S_IN_ADC);
/* Set I2S_ADC_IN */
Audio_I2S_Adc |= (DigtalI2S->mLR_SWAP << 31);
Audio_I2S_Adc |= (DigtalI2S->mBuffer_Update_word << 24);
Audio_I2S_Adc |= (DigtalI2S->mINV_LRCK << 23);
Audio_I2S_Adc |= (DigtalI2S->mFpga_bit_test << 22);
Audio_I2S_Adc |= (DigtalI2S->mFpga_bit << 21);
Audio_I2S_Adc |= (DigtalI2S->mloopback << 20);
Audio_I2S_Adc |= (sampleRateType << 8);
Audio_I2S_Adc |= (DigtalI2S->mI2S_FMT << 3);
Audio_I2S_Adc |= (DigtalI2S->mI2S_WLEN << 1);
pr_debug("%s Audio_I2S_Adc = 0x%x", __func__, Audio_I2S_Adc);
Afe_Set_Reg(AFE_I2S_CON2, Audio_I2S_Adc, MASK_ALL);
return true;
}
bool SetExtI2SAdcInEnable(bool bEnable)
{
Afe_Set_Reg(AFE_I2S_CON2, bEnable, 0x1);
return true;
}
bool set_adc_in(unsigned int rate)
{
mtk_dais[Soc_Aud_Digital_Block_ADDA_UL].sample_rate = rate;
return set_chip_adc_in(rate);
}
bool set_adc2_in(unsigned int rate)
{
mtk_dais[Soc_Aud_Digital_Block_ADDA_UL2].sample_rate = rate;
return set_chip_adc2_in(rate);
}
int get_dai_rate(enum soc_aud_digital_block digitalBlock)
{
return mtk_dais[digitalBlock].sample_rate;
}
#ifdef AFE_CONNSYS_I2S_CON
int setConnsysI2SIn(struct audio_digital_i2s *mDigitalI2S)
{
unsigned int i2s_con = 0;
/* slave mode, rate is for asrc */
i2s_con |= (mDigitalI2S->mINV_LRCK << 7);
i2s_con |= (mDigitalI2S->mI2S_FMT << 3);
i2s_con |= (mDigitalI2S->mI2S_SLAVE << 2);
i2s_con |= (mDigitalI2S->mI2S_WLEN << 1);
i2s_con |= (mDigitalI2S->mI2S_IN_PAD_SEL << 28);
pr_debug("%s(), i2s_con= 0x%x", __func__, i2s_con);
Afe_Set_Reg(AFE_CONNSYS_I2S_CON, i2s_con, 0xfffffffe);
return 0;
}
int setConnsysI2SInEnable(bool enable)
{
pr_debug("%s(), enable = %d", __func__, enable);
Afe_Set_Reg(AFE_CONNSYS_I2S_CON, enable, 0x1);
return 0;
}
int setConnsysI2SAsrc(bool bIsUseASRC, unsigned int dToSampleRate)
{
unsigned int rate = SampleRateTransform(
dToSampleRate, Soc_Aud_Digital_Block_I2S_IN_CONNSYS);
pr_debug("+%s() bIsUseASRC [%d] dToSampleRate [%d]\n", __func__,
bIsUseASRC, dToSampleRate);
Afe_Set_Reg(AFE_CONNSYS_I2S_CON, (bIsUseASRC ? 0 : 1) << 6, 0x1 << 6);
if (bIsUseASRC) {
AUDIO_ASSERT(
!(dToSampleRate == 44100 || dToSampleRate == 48000));
/* slave mode, set i2s for asrc */
Afe_Set_Reg(AFE_CONNSYS_I2S_CON, rate << 8, 0xf << 8);
if (dToSampleRate == 44100)
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON14, 0x001B9000,
AFE_MASK_ALL);
else
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON14, 0x001E0000,
AFE_MASK_ALL);
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON15, 0x00140000, AFE_MASK_ALL);
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON16, 0x00FF5987, AFE_MASK_ALL);
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON17, 0x00007EF4, AFE_MASK_ALL);
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON16, 0x00FF5986, AFE_MASK_ALL);
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON16, 0x00FF5987, AFE_MASK_ALL);
/* 0:Stereo 1:Mono */
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON13, 0, 1 << 16);
/* Calibration setting */
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON20, 0x00036000, AFE_MASK_ALL);
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON21, 0x0002FC00, AFE_MASK_ALL);
}
return 0;
}
int setConnsysI2SEnable(bool enable)
{
if (enable) {
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON0,
((1 << 6) | (1 << 4) | (1 << 0)),
((1 << 6) | (1 << 4) | (1 << 0)));
} else {
unsigned int dNeedDisableASM =
(Afe_Get_Reg(AFE_ASRC_CONNSYS_CON0) & 0x0030) ? 1 : 0;
Afe_Set_Reg(AFE_ASRC_CONNSYS_CON0, 0,
((1 << 6) | (1 << 4) | dNeedDisableASM));
}
return 0;
}
#else
int setConnsysI2SIn(struct audio_digital_i2s *DigtalI2S)
{
return -EINVAL;
}
int setConnsysI2SInEnable(bool enable)
{
return -EINVAL;
}
int setConnsysI2SAsrc(bool bIsUseASRC, unsigned int dToSampleRate)
{
return -EINVAL;
}
int setConnsysI2SEnable(bool enable)
{
return -EINVAL;
}
#endif
bool setDmicPath(bool _enable)
{
unsigned int sample_rate =
mtk_dais[Soc_Aud_Digital_Block_ADDA_UL].sample_rate;
return setChipDmicPath(_enable, sample_rate);
}
bool EnableSineGen(unsigned int connection, bool direction, bool Enable)
{
bool ret = 0;
pr_debug("+%s(): connection = %d, direction = %d, Enable= %d\n",
__func__, connection, direction, Enable);
/* by platform to implement*/
if (s_afe_platform_ops != NULL) {
ret = s_afe_platform_ops->set_sinegen(connection, direction,
Enable);
} else {
pr_err("+%s(): No sine gen implementation, return false!\n",
__func__);
ret = false;
}
return ret;
}
bool SetSineGenSampleRate(unsigned int SampleRate)
{
return set_chip_sine_gen_sample_rate(SampleRate);
}
bool SetSineGenAmplitude(unsigned int ampDivide)
{
return set_chip_sine_gen_amplitude(ampDivide);
}
bool Set2ndI2SAdcEnable(bool bEnable)
{
/* 6752 todo? */
return true;
}
bool set_adc_enable(bool enable)
{
if (enable) {
/* Enable UL SRC order:
* UL clock (AUDIO_TOP_CON0) -> AFE (AFE_DAC_CON0) ->
* ADDA UL DL (AFE_ADDA_UL_DL_CON0) ->
* ADDA UL SRC (AFE_ADDA_UL_SRC_CON0)
*/
#ifdef CONFIG_FPGA_EARLY_PORTING
pr_debug("%s(), enable fpga clock divide by 4", __func__);
Afe_Set_Reg(FPGA_CFG0, 0x1 << 1, 0x1 << 1);
#endif
if (mtk_dais[Soc_Aud_Digital_Block_ADDA_UL].sample_rate > 48000)
AudDrv_ADC_Hires_Clk_On();
else
AudDrv_ADC_Clk_On();
SetADDAEnable(true);
set_ul_src_enable(true);
} else {
/* Disable UL SRC order: (reverse)
* ADDA UL SRC (AFE_ADDA_UL_SRC_CON0) ->
* ADDA UL DL (AFE_ADDA_UL_DL_CON0) ->
* AFE (AFE_DAC_CON0) -> UL clock (AUDIO_TOP_CON0)
*/
set_ul_src_enable(false);
SetADDAEnable(false);
#ifdef CONFIG_FPGA_EARLY_PORTING
pr_debug("%s(), disable fpga clock divide by 4", __func__);
Afe_Set_Reg(FPGA_CFG0, 0x0 << 1, 0x1 << 1);
#endif
/* should delayed 1/fs(smallest is 8k) = 125us before afe off */
usleep_range(125, 150);
if (mtk_dais[Soc_Aud_Digital_Block_ADDA_UL].sample_rate > 48000)
AudDrv_ADC_Hires_Clk_Off();
else
AudDrv_ADC_Clk_Off();
}
AudDrv_GPIO_Request(enable, Soc_Aud_Digital_Block_ADDA_UL);
return true;
}
bool set_adc2_enable(bool enable)
{
if (enable) {
/* Enable UL SRC order:
* UL clock (AUDIO_TOP_CON0) -> AFE (AFE_DAC_CON0) ->
* ADDA UL DL (AFE_ADDA_UL_DL_CON0) ->
* ADDA UL SRC (AFE_ADDA_UL_SRC_CON0)
*/
#ifdef CONFIG_FPGA_EARLY_PORTING
pr_debug("%s(), enable fpga clock divide by 4", __func__);
Afe_Set_Reg(FPGA_CFG0, 0x1 << 1, 0x1 << 1);
#endif
if (mtk_dais[Soc_Aud_Digital_Block_ADDA_UL2].sample_rate >
48000)
AudDrv_ADC2_Hires_Clk_On();
else
AudDrv_ADC2_Clk_On();
SetADDAEnable(true);
set_ul2_src_enable(true);
} else {
/* Disable UL SRC order: (reverse)
* ADDA UL SRC (AFE_ADDA_UL_SRC_CON0) ->
* ADDA UL DL (AFE_ADDA_UL_DL_CON0) ->
* AFE (AFE_DAC_CON0) -> UL clock (AUDIO_TOP_CON0)
*/
set_ul2_src_enable(false);
SetADDAEnable(false);
#ifdef CONFIG_FPGA_EARLY_PORTING
pr_debug("%s(), disable fpga clock divide by 4", __func__);
Afe_Set_Reg(FPGA_CFG0, 0x0 << 1, 0x1 << 1);
#endif
/* should delayed 1/fs(smallest is 8k) = 125us before afe off */
usleep_range(125, 150);
if (mtk_dais[Soc_Aud_Digital_Block_ADDA_UL2].sample_rate >
48000)
AudDrv_ADC2_Hires_Clk_Off();
else
AudDrv_ADC2_Clk_Off();
}
AudDrv_GPIO_Request(enable, Soc_Aud_Digital_Block_ADDA_UL2);
return true;
}
bool Set2ndI2SEnable(bool bEnable)
{
Afe_Set_Reg(AFE_I2S_CON, bEnable, 0x1);
return true;
}
bool SetI2SDacOut(unsigned int SampleRate, bool lowjitter, bool I2SWLen)
{
unsigned int Audio_I2S_Dac = 0;
/* force use 32bit for speaker codec */
I2SWLen = Soc_Aud_I2S_WLEN_WLEN_32BITS;
CleanPreDistortion();
SetDLSrc2(SampleRate);
Audio_I2S_Dac |= (Soc_Aud_LR_SWAP_NO_SWAP << 31);
Audio_I2S_Dac |= (0 << 16); /* select source from o28o29 */
Audio_I2S_Dac |= (lowjitter << 12); /* low gitter mode */
Audio_I2S_Dac |= (SampleRateTransform(SampleRate,
Soc_Aud_Digital_Block_I2S_OUT_DAC)
<< 8);
Audio_I2S_Dac |= (Soc_Aud_INV_LRCK_NO_INVERSE << 5);
Audio_I2S_Dac |= (Soc_Aud_I2S_FORMAT_I2S << 3);
Audio_I2S_Dac |= (I2SWLen << 1);
Afe_Set_Reg(AFE_I2S_CON1, Audio_I2S_Dac, MASK_ALL);
return true;
}
bool SetHwDigitalGainMode(enum soc_aud_digital_block AudBlock,
unsigned int SampleRate,
unsigned int SamplePerStep)
{
pr_debug("+%s(), AudBlock = %d, SampleRate = %d, SamplePerStep= %d\n",
__func__, AudBlock, SampleRate, SamplePerStep);
return set_chip_hw_digital_gain_mode(AudBlock, SampleRate,
SamplePerStep);
}
bool SetHwDigitalGainEnable(enum soc_aud_digital_block AudBlock, bool Enable)
{
pr_debug("+%s(), AudBlock = %d, Enable = %d\n",
__func__, AudBlock, Enable);
return set_chip_hw_digital_gain_enable(AudBlock, Enable);
}
bool SetHwDigitalGain(enum soc_aud_digital_block AudBlock, unsigned int Gain)
{
pr_debug("+%s(), AudBlock = %d, Gain = 0x%x\n",
__func__, AudBlock, Gain);
return set_chip_hw_digital_gain(AudBlock, Gain);
}
bool SetModemPcmConfig(int modem_index,
struct audio_digital_pcm p_modem_pcm_attribute)
{
SetChipModemPcmConfig(modem_index, p_modem_pcm_attribute);
return true;
}
bool SetModemPcmEnable(int modem_index, bool modem_pcm_on)
{
bool ret;
pr_debug("+%s(), modem_index = %d, modem_pcm_on = %d\n", __func__,
modem_index, modem_pcm_on);
ret = SetChipModemPcmEnable(modem_index, modem_pcm_on);
if (modem_index == MODEM_1)
mAudioMEMIF[Soc_Aud_Digital_Block_MODEM_PCM_1_O]->mState =
modem_pcm_on;
else if (modem_index == MODEM_2 || modem_index == MODEM_EXTERNAL)
mAudioMEMIF[Soc_Aud_Digital_Block_MODEM_PCM_2_O]->mState =
modem_pcm_on;
else
pr_info("%s(), no such modem_index: %d!!", __func__,
modem_index);
return ret;
}
bool SetMemoryPathEnableReg(unsigned int Aud_block, bool bEnable)
{
unsigned int offset = GetEnableAudioBlockRegOffset(Aud_block);
unsigned int reg = GetEnableAudioBlockRegAddr(Aud_block);
if (reg == 0) {
pr_err("%s(), no such memory path enable bit!!", __func__);
return false;
}
Afe_Set_Reg(reg, bEnable << offset, 1 << offset);
return true;
}
bool SetMemoryPathEnable(unsigned int Aud_block, bool bEnable)
{
/* pr_debug("%s Aud_block = %d bEnable = %d\n", __func__, Aud_block,
* bEnable);
*/
if (Aud_block >= Soc_Aud_Digital_Block_NUM_OF_DIGITAL_BLOCK)
return false;
/* set for counter */
if (bEnable == true) {
if (mAudioMEMIF[Aud_block]->mUserCount == 0)
mAudioMEMIF[Aud_block]->mState = true;
mAudioMEMIF[Aud_block]->mUserCount++;
} else {
mAudioMEMIF[Aud_block]->mUserCount--;
if (mAudioMEMIF[Aud_block]->mUserCount == 0)
mAudioMEMIF[Aud_block]->mState = false;
if (mAudioMEMIF[Aud_block]->mUserCount < 0) {
mAudioMEMIF[Aud_block]->mUserCount = 0;
pr_err("[AudioError] , user count < 0\n");
return false;
}
}
/* pr_debug("%s Aud_block = %d
* mAudioMEMIF[Aud_block]->mUserCount = %d\n",
* __func__, Aud_block, mAudioMEMIF[Aud_block]->mUserCount);
*/
if (Aud_block >= Soc_Aud_Digital_Block_NUM_OF_MEM_INTERFACE)
return true;
if ((bEnable == true) && (mAudioMEMIF[Aud_block]->mUserCount == 1))
SetMemoryPathEnableReg(Aud_block, bEnable);
else if ((bEnable == false) &&
(mAudioMEMIF[Aud_block]->mUserCount == 0))
SetMemoryPathEnableReg(Aud_block, bEnable);
return true;
}
bool GetMemoryPathEnable(unsigned int Aud_block)
{
if (Aud_block < Soc_Aud_Digital_Block_NUM_OF_DIGITAL_BLOCK)
return mAudioMEMIF[Aud_block]->mState;
return false;
}
void set_ul_src_enable(bool enable)
{
unsigned long flags;
/* pr_debug("%s enable = %d\n", __func__, enable); */
spin_lock_irqsave(&afe_control_lock, flags);
if (enable == true) {
set_chip_ul_src_enable(true);
} else {
if (mAudioMEMIF[Soc_Aud_Digital_Block_ADDA_UL]->mState ==
false &&
mAudioMEMIF[Soc_Aud_Digital_Block_ADDA_ANC]->mState ==
false) {
set_chip_ul_src_enable(false);
}
}
spin_unlock_irqrestore(&afe_control_lock, flags);
}
void set_ul2_src_enable(bool enable)
{
unsigned long flags;
/* pr_debug("%s enable = %d\n", __func__, enable); */
spin_lock_irqsave(&afe_control_lock, flags);
if (enable == true) {
set_chip_ul2_src_enable(true);
} else {
if (mAudioMEMIF[Soc_Aud_Digital_Block_ADDA_UL2]->mState ==
false &&
mAudioMEMIF[Soc_Aud_Digital_Block_ADDA_ANC]->mState ==
false) {
set_chip_ul2_src_enable(false);
}
}
spin_unlock_irqrestore(&afe_control_lock, flags);
}
void SetDLSrcEnable(bool bEnable)
{
unsigned long flags;
/* pr_debug("%s bEnable = %d\n", __func__, bEnable); */
spin_lock_irqsave(&afe_control_lock, flags);
if (bEnable == true) {
set_chip_dl_src_enable(true);
} else {
if (mAudioMEMIF[Soc_Aud_Digital_Block_I2S_OUT_DAC]->mState ==
false &&
mAudioMEMIF[Soc_Aud_Digital_Block_ADDA_ANC]->mState ==
false) {
set_chip_dl_src_enable(false);
}
}
spin_unlock_irqrestore(&afe_control_lock, flags);
}
void SetADDAEnable(bool bEnable)
{
unsigned long flags;
/* pr_debug("%s bEnable = %d\n", __func__, bEnable); */
spin_lock_irqsave(&afe_control_lock, flags);
if (bEnable == true) {
set_chip_adda_enable(true);
} else {
if (mAudioMEMIF[Soc_Aud_Digital_Block_I2S_OUT_DAC]->mState ==
false &&
mAudioMEMIF[Soc_Aud_Digital_Block_ADDA_UL]->mState ==
false &&
mAudioMEMIF[Soc_Aud_Digital_Block_ADDA_UL2]->mState ==
false &&
mAudioMEMIF[Soc_Aud_Digital_Block_ADDA_ANC]->mState ==
false) {
set_chip_adda_enable(false);
}
}
spin_unlock_irqrestore(&afe_control_lock, flags);
}
bool SetI2SDacEnable(bool bEnable)
{
/* pr_debug("%s bEnable = %d", __func__, bEnable);*/
if (bEnable) {
/* Enable DL SRC order:
* DL clock (AUDIO_TOP_CON0) -> AFE (AFE_DAC_CON0) ->
* ADDA UL DL (AFE_ADDA_UL_DL_CON0) ->
* ADDA DL SRC (AFE_ADDA_DL_SRC2_CON0)
*/
EnableAfe(true);
SetADDAEnable(true);
SetDLSrcEnable(true);
Afe_Set_Reg(AFE_I2S_CON1, bEnable, 0x1);
} else {
/* Disable DL SRC order: (reverse)
* ADDA DL SRC (AFE_ADDA_DL_SRC2_CON0) ->
* ADDA UL DL (AFE_ADDA_UL_DL_CON0) ->
* AFE (AFE_DAC_CON0) -> DL clock (AUDIO_TOP_CON0)
*/
SetDLSrcEnable(false);
Afe_Set_Reg(AFE_I2S_CON1, bEnable, 0x1);
SetADDAEnable(false);
/* should delayed 1/fs(smallest is 8k) = 125us before afe off */
usleep_range(125, 150);
#ifdef CONFIG_FPGA_EARLY_PORTING
pr_info("%s(), disable fpga clock divide by 4", __func__);
Afe_Set_Reg(FPGA_CFG0, 0x0 << 1, 0x1 << 1);
#endif
}
AudDrv_GPIO_Request(bEnable, Soc_Aud_Digital_Block_ADDA_DL);
return true;
}
bool GetI2SDacEnable(void)
{
return mAudioMEMIF[Soc_Aud_Digital_Block_I2S_OUT_DAC]->mState;
}
bool checkDllinkMEMIfStatus(void)
{
int i = 0;
for (i = Soc_Aud_Digital_Block_MEM_DL1;
i <= Soc_Aud_Digital_Block_MEM_DL2; i++) {
if (mAudioMEMIF[i]->mState == true)
return true;
}
return false;
}
bool checkUplinkMEMIfStatus(void)
{
return mAudioMEMIF[Soc_Aud_Digital_Block_MEM_VUL]->mState ||
mAudioMEMIF[Soc_Aud_Digital_Block_MEM_DAI]->mState ||
mAudioMEMIF[Soc_Aud_Digital_Block_MEM_AWB]->mState ||
mAudioMEMIF[Soc_Aud_Digital_Block_MEM_MOD_DAI]->mState ||
mAudioMEMIF[Soc_Aud_Digital_Block_MEM_VUL_DATA2]->mState;
}
bool SetConnection(unsigned int ConnectionState, unsigned int Input,
unsigned int Output)
{
return SetConnectionState(ConnectionState, Input, Output);
}
bool SetConnectionFormat(unsigned int ConnectionFormat, unsigned int Aud_block)
{
return SetIntfConnectionFormat(ConnectionFormat, Aud_block);
}
bool SetIntfConnection(unsigned int ConnectionState, unsigned int Aud_block_In,
unsigned int Aud_block_Out)
{
return SetIntfConnectionState(ConnectionState, Aud_block_In,
Aud_block_Out);
}
static bool SetIrqEnable(unsigned int irqmode, bool bEnable)
{
const struct Aud_RegBitsInfo *irqOnReg, *irqEnReg, *irqClrReg,
*irqMissClrReg;
const struct Aud_RegBitsInfo *irqPurposeEnReg;
unsigned int enShift, purposeIndex;
bool enSet;
pr_debug("%s(), Irqmode %d, bEnable %d\n", __func__, irqmode,
bEnable);
if (irqmode >= Soc_Aud_IRQ_MCU_MODE_NUM) {
pr_err("%s(), error, not supported IRQ %d", __func__, irqmode);
return false;
}
irqOnReg = &GetIRQCtrlReg(irqmode)->on;
Afe_Set_Reg(irqOnReg->reg, (bEnable << irqOnReg->sbit),
(irqOnReg->mask << irqOnReg->sbit));
/* clear irq status */
if (bEnable == false) {
irqClrReg = &GetIRQCtrlReg(irqmode)->clr;
Afe_Set_Reg(irqClrReg->reg, (1 << irqClrReg->sbit),
(irqClrReg->mask << irqClrReg->sbit));
Afe_Set_Reg(irqClrReg->reg, (1 << irqClrReg->sbit),
(irqClrReg->mask << irqClrReg->sbit));
irqMissClrReg = &GetIRQCtrlReg(irqmode)->missclr;
Afe_Set_Reg(irqMissClrReg->reg, (1 << irqMissClrReg->sbit),
(irqMissClrReg->mask << irqMissClrReg->sbit));
}
/* set irq signal target */
irqEnReg = &GetIRQCtrlReg(irqmode)->en;
for (purposeIndex = 0; purposeIndex < Soc_Aud_IRQ_PURPOSE_NUM;
purposeIndex++) {
irqPurposeEnReg = GetIRQPurposeReg(purposeIndex);
enSet = bEnable &&
(GetIRQCtrlReg(irqmode)->irqPurpose == purposeIndex);
enShift = irqPurposeEnReg->sbit + irqEnReg->sbit;
if (irqPurposeEnReg->reg != AFE_REG_UNDEFINED)
Afe_Set_Reg(irqPurposeEnReg->reg, (enSet << enShift),
(irqEnReg->mask << enShift));
}
return true;
}
static bool SetIrqMcuSampleRate(unsigned int irqmode, unsigned int SampleRate)
{
unsigned int SRIdx = SampleRateTransform(SampleRate, 0);
const struct Aud_RegBitsInfo *irqModeReg;
/* pr_debug("%s(), Irqmode %d, SampleRate %d\n", __func__, irqmode,
* SampleRate);
*/
if (irqmode >= Soc_Aud_IRQ_MCU_MODE_NUM)
return false;
irqModeReg = &GetIRQCtrlReg(irqmode)->mode;
Afe_Set_Reg(irqModeReg->reg, SRIdx << irqModeReg->sbit,
irqModeReg->mask << irqModeReg->sbit);
return true;
}
static bool SetIrqMcuCounter(unsigned int irqmode, unsigned int Counter)
{
const struct Aud_RegBitsInfo *irqCntReg;
/* pr_debug("%s(), Irqmode %d, Counter %d\n",
* __func__, irqmode, Counter);
*/
if (irqmode >= Soc_Aud_IRQ_MCU_MODE_NUM)
return false;
irqCntReg = &GetIRQCtrlReg(irqmode)->cnt;
Afe_Set_Reg(irqCntReg->reg, Counter, irqCntReg->mask);
return true;
}
bool Set2ndI2SInConfig(unsigned int sampleRate, bool bIsSlaveMode)
{
struct audio_digital_i2s I2S2ndIn_attribute;
memset((void *)&I2S2ndIn_attribute, 0, sizeof(I2S2ndIn_attribute));
I2S2ndIn_attribute.mLR_SWAP = Soc_Aud_LR_SWAP_NO_SWAP;
I2S2ndIn_attribute.mI2S_SLAVE = bIsSlaveMode;
I2S2ndIn_attribute.mI2S_SAMPLERATE = sampleRate;
I2S2ndIn_attribute.mINV_LRCK = Soc_Aud_INV_LRCK_NO_INVERSE;
I2S2ndIn_attribute.mI2S_FMT = Soc_Aud_I2S_FORMAT_I2S;
I2S2ndIn_attribute.mI2S_WLEN = Soc_Aud_I2S_WLEN_WLEN_16BITS;
Set2ndI2SIn(&I2S2ndIn_attribute);
return true;
}
bool Set2ndI2SIn(struct audio_digital_i2s *mDigitalI2S)
{
unsigned int Audio_I2S_Adc = 0;
memcpy((void *)m2ndI2S, (void *)mDigitalI2S,
sizeof(struct audio_digital_i2s));
if (!m2ndI2S->mI2S_SLAVE) { /* Master setting SampleRate only */
SetSampleRate(Soc_Aud_Digital_Block_MEM_I2S,
m2ndI2S->mI2S_SAMPLERATE);
}
Audio_I2S_Adc |= (m2ndI2S->mINV_LRCK << 5);
Audio_I2S_Adc |= (m2ndI2S->mI2S_FMT << 3);
Audio_I2S_Adc |= (m2ndI2S->mI2S_SLAVE << 2);
Audio_I2S_Adc |= (m2ndI2S->mI2S_WLEN << 1);
Audio_I2S_Adc |= (m2ndI2S->mI2S_IN_PAD_SEL << 28);
Afe_Set_Reg(AFE_I2S_CON, Audio_I2S_Adc, 0xfffffffe);
return true;
}
bool Set2ndI2SInEnable(bool bEnable)
{
m2ndI2S->mI2S_EN = bEnable;
Afe_Set_Reg(AFE_I2S_CON, bEnable, 0x1);
mAudioMEMIF[Soc_Aud_Digital_Block_I2S_IN_2]->mState = bEnable;
return true;
}
bool SetMemIfFetchFormatPerSample(unsigned int InterfaceType,
unsigned int eFetchFormat)
{
mAudioMEMIF[InterfaceType]->mFetchFormatPerSample = eFetchFormat;
return SetMemIfFormatReg(InterfaceType, eFetchFormat);
}
bool SetoutputConnectionFormat(unsigned int ConnectionFormat,
unsigned int Output)
{
if (Output >= Soc_Aud_InterConnectionOutput_O32) {
#ifdef AFE_CONN_24BIT_1
unsigned int shift = Output - Soc_Aud_InterConnectionOutput_O32;
Afe_Set_Reg(AFE_CONN_24BIT_1, ConnectionFormat << shift,
1 << shift);
#else
pr_err("%s(), not support Output %u\n", __func__, Output);
return false;
#endif
} else {
Afe_Set_Reg(AFE_CONN_24BIT, ConnectionFormat << Output,
1 << Output);
}
return true;
}
int set_memif_pbuf_size(int aud_blk, enum memif_pbuf_size pbuf_size)
{
if (pbuf_size < 0 || pbuf_size >= MEMIF_PBUF_SIZE_NUM) {
pr_err("%s(), invalid pbuf_size %d\n", __func__, pbuf_size);
return -EINVAL;
}
switch (aud_blk) {
case Soc_Aud_Digital_Block_MEM_DL1:
Afe_Set_Reg(AFE_MEMIF_PBUF_SIZE, pbuf_size << 0, 0x3 << 0);
Afe_Set_Reg(AFE_MEMIF_MINLEN, pbuf_size << 0, 0xf << 0);
break;
case Soc_Aud_Digital_Block_MEM_DL2:
Afe_Set_Reg(AFE_MEMIF_PBUF_SIZE, pbuf_size << 2, 0x3 << 2);
Afe_Set_Reg(AFE_MEMIF_MINLEN, pbuf_size << 8, 0xf << 8);
break;
default:
pr_err("%s(): invalid aud_blk %d\n", __func__, aud_blk);
return -EINVAL;
}
return 0;
}
bool set_general_asrc_enable(enum audio_general_asrc_id id, bool enable)
{
bool ret = false;
if (s_afe_platform_ops->set_general_asrc_enable != NULL)
ret = s_afe_platform_ops->set_general_asrc_enable(id, enable);
return ret;
}
bool set_general_asrc_parameter(enum audio_general_asrc_id id,
unsigned int sample_rate_in,
unsigned int sample_rate_out)
{
bool ret = false;
if (s_afe_platform_ops->set_general_asrc_parameter != NULL)
ret = s_afe_platform_ops->set_general_asrc_parameter(
id, sample_rate_in, sample_rate_out);
return ret;
}
/***************************************************************************
* FUNCTION
* AudDrv_Allocate_DL1_Buffer / AudDrv_Free_DL1_Buffer
*
* DESCRIPTION
* allocate DL1 Buffer
*
***************************************************************************
*/
int AudDrv_Allocate_DL1_Buffer(struct device *pDev, kal_uint32 Afe_Buf_Length,
dma_addr_t dma_addr, unsigned char *dma_area)
{
struct afe_block_t *pblock;
pblock = &(
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DL1]->rBlock);
pblock->u4BufferSize = Afe_Buf_Length;
if (Afe_Buf_Length > AFE_INTERNAL_SRAM_SIZE) {
pr_err("%s(), Afe_Buf_Length %d > %d\n", __func__,
Afe_Buf_Length, AFE_INTERNAL_SRAM_SIZE);
return -1;
}
pblock->pucPhysBufAddr = (kal_uint32)dma_addr;
pblock->pucVirtBufAddr = dma_area;
pr_debug(
"%s(), Afe_Buf_Length = %d, pucVirtBufAddr = %p, pblock->pucPhysBufAddr = 0x%x\n",
__func__, Afe_Buf_Length, pblock->pucVirtBufAddr,
pblock->pucPhysBufAddr);
/* check 32 bytes align */
if ((pblock->pucPhysBufAddr & 0x1f) != 0) {
pr_info("[Auddrv] buffer is not aligned (0x%x)\n",
pblock->pucPhysBufAddr);
}
pblock->u4SampleNumMask = 0x001f; /* 32 byte align */
pblock->u4WriteIdx = 0;
pblock->u4DMAReadIdx = 0;
pblock->u4DataRemained = 0;
pblock->u4fsyncflag = false;
pblock->uResetFlag = true;
/* set sram address top hardware */
set_memif_addr(Soc_Aud_Digital_Block_MEM_DL1, pblock->pucPhysBufAddr,
Afe_Buf_Length);
memset_io(pblock->pucVirtBufAddr, 0, pblock->u4BufferSize);
return 0;
}
int AudDrv_Allocate_mem_Buffer(struct device *pDev,
enum soc_aud_digital_block MemBlock,
unsigned int Buffer_length)
{
switch (MemBlock) {
case Soc_Aud_Digital_Block_MEM_DL1:
case Soc_Aud_Digital_Block_MEM_DL2:
case Soc_Aud_Digital_Block_MEM_DL3:
case Soc_Aud_Digital_Block_MEM_DAI:
case Soc_Aud_Digital_Block_MEM_AWB:
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
/*case Soc_Aud_Digital_Block_MEM_DL1_DATA2:*/
case Soc_Aud_Digital_Block_MEM_VUL_DATA2:
case Soc_Aud_Digital_Block_MEM_VUL:
case Soc_Aud_Digital_Block_MEM_VUL2:
case Soc_Aud_Digital_Block_MEM_HDMI:
pr_debug("%s MemBlock =%d Buffer_length = %d\n ", __func__,
MemBlock, Buffer_length);
if (Audio_dma_buf[MemBlock] != NULL) {
if (Audio_dma_buf[MemBlock]->area == NULL) {
pr_debug("dma_alloc_coherent\n");
Audio_dma_buf[MemBlock]->area =
dma_alloc_coherent(
pDev, Buffer_length,
&Audio_dma_buf[MemBlock]->addr,
GFP_KERNEL | GFP_DMA);
if (Audio_dma_buf[MemBlock]->area)
Audio_dma_buf[MemBlock]->bytes =
Buffer_length;
}
pr_debug("area = %p\n", Audio_dma_buf[MemBlock]->area);
}
break;
default:
pr_debug("%s not support\n", __func__);
}
return true;
}
struct afe_mem_control_t *Get_Mem_ControlT(enum soc_aud_digital_block MemBlock)
{
if (MemBlock >= 0 &&
MemBlock < Soc_Aud_Digital_Block_NUM_OF_MEM_INTERFACE)
return AFE_Mem_Control_context[MemBlock];
pr_debug("%s error\n", __func__);
return NULL;
}
bool SetMemifSubStream(enum soc_aud_digital_block MemBlock,
struct snd_pcm_substream *substream)
{
struct substream_list *head;
struct substream_list *temp = NULL;
unsigned long flags;
temp = kzalloc(sizeof(struct substream_list), GFP_ATOMIC);
if (temp == NULL)
return false;
/* pr_debug("%s MemBlock = %d substream = %p\n",
* __func__, MemBlock, substream);
*/
spin_lock_irqsave(&AFE_Mem_Control_context[MemBlock]->substream_lock,
flags);
head = AFE_Mem_Control_context[MemBlock]->substreamL;
if (head == NULL) { /* frst item is NULL */
/* pr_debug("%s head == NULL\n ", __func__); */
temp->substream = substream;
temp->next = NULL;
AFE_Mem_Control_context[MemBlock]->substreamL = temp;
} else { /* find out Null pointer */
while (head->next != NULL)
head = head->next;
/* head->next is NULL */
temp->substream = substream;
temp->next = NULL;
head->next = temp;
}
AFE_Mem_Control_context[MemBlock]->MemIfNum++;
spin_unlock_irqrestore(
&AFE_Mem_Control_context[MemBlock]->substream_lock, flags);
/* DumpMemifSubStream(); */
return true;
}
bool ClearMemBlock(enum soc_aud_digital_block MemBlock)
{
if (MemBlock >= 0 &&
MemBlock < Soc_Aud_Digital_Block_NUM_OF_MEM_INTERFACE) {
struct afe_block_t *pBlock =
&AFE_Mem_Control_context[MemBlock]->rBlock;
pBlock->u4WriteIdx = 0;
pBlock->u4DMAReadIdx = 0;
pBlock->u4DataRemained = 0;
pBlock->u4fsyncflag = false;
pBlock->uResetFlag = true;
} else {
pr_debug("%s error\n", __func__);
return NULL;
}
return true;
}
#define MEM_TIMEOUT_CNT 4
bool RemoveMemifSubStream(enum soc_aud_digital_block MemBlock,
struct snd_pcm_substream *substream)
{
struct substream_list *head;
struct substream_list *temp = NULL;
unsigned long flags;
int i;
spin_lock_irqsave(&AFE_Mem_Control_context[MemBlock]->substream_lock,
flags);
for (i = 0; i < MEM_TIMEOUT_CNT; i++) {
if (AFE_Mem_Control_context[MemBlock]->mWaitForIRQ == true) {
pr_debug("%s: enter udelay.\n", __func__);
mdelay(5);
} else {
break;
}
}
if (AFE_Mem_Control_context[MemBlock]->MemIfNum == 0)
pr_debug("%s AFE_Mem_Control_context[%d]->MemIfNum == 0\n ",
__func__, MemBlock);
else
AFE_Mem_Control_context[MemBlock]->MemIfNum--;
head = AFE_Mem_Control_context[MemBlock]->substreamL;
/* pr_debug("+ %s MemBlock = %d substream = %p\n ",
* __func__, MemBlock, substream);
*/
if (head == NULL) { /* no object */
/* do nothing */
} else {
/* condition for first item hit */
if (head->substream == substream) {
/* pr_debug("%s head->substream = %p\n ", __func__,
* head->substream);
*/
AFE_Mem_Control_context[MemBlock]->substreamL =
head->next;
head->substream = NULL;
kfree(head);
head = NULL;
/* DumpMemifSubStream(); */
} else {
temp = head;
head = head->next;
while (head) {
if (head->substream == substream) {
temp->next = head->next;
head->substream = NULL;
kfree(head);
head = NULL;
break;
}
temp = head;
head = head->next;
}
}
}
/* DumpMemifSubStream(); */
if (AFE_Mem_Control_context[MemBlock]->substreamL == NULL)
ClearMemBlock(MemBlock);
else
pr_debug("%s substreram is not NULL MemBlock = %d\n", __func__,
MemBlock);
spin_unlock_irqrestore(
&AFE_Mem_Control_context[MemBlock]->substream_lock, flags);
/* pr_debug("- %s MemBlock = %d\n ", __func__, MemBlock); */
return true;
}
static unsigned long dl2_flags;
void Auddrv_Dl2_Spinlock_lock(void)
{
spin_lock_irqsave(&auddrv_dl2_lock, dl2_flags);
}
void Auddrv_Dl2_Spinlock_unlock(void)
{
spin_unlock_irqrestore(&auddrv_dl2_lock, dl2_flags);
}
static unsigned long dl3_flags;
void Auddrv_Dl3_Spinlock_lock(void)
{
spin_lock_irqsave(&auddrv_dl3_lock, dl3_flags);
}
void Auddrv_Dl3_Spinlock_unlock(void)
{
spin_unlock_irqrestore(&auddrv_dl3_lock, dl3_flags);
}
void Auddrv_HDMI_Interrupt_Handler(void)
{
#ifdef CONFIG_MTK_HDMI_TDM
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_HDMI];
kal_int32 Afe_consumed_bytes = 0;
kal_int32 HW_memory_index = 0;
kal_int32 HW_Cur_ReadIdx = 0;
unsigned long flags;
struct afe_block_t *Afe_Block =
&(AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_HDMI]
->rBlock);
if (Mem_Block == NULL) {
pr_warn("-%s()Mem_Block == NULL\n", __func__);
return;
}
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_HDMI) == false) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
HW_Cur_ReadIdx = Afe_Get_Reg(AFE_HDMI_CUR);
if (HW_Cur_ReadIdx == 0) {
/* pr_debug("[Auddrv_HDMI_Interrupt] HW_Cur_ReadIdx ==0\n"); */
HW_Cur_ReadIdx = Afe_Block->pucPhysBufAddr;
}
HW_memory_index = (HW_Cur_ReadIdx - Afe_Block->pucPhysBufAddr);
/* get hw consume bytes */
if (HW_memory_index > Afe_Block->u4DMAReadIdx) {
Afe_consumed_bytes = HW_memory_index - Afe_Block->u4DMAReadIdx;
} else {
Afe_consumed_bytes = Afe_Block->u4BufferSize + HW_memory_index -
Afe_Block->u4DMAReadIdx;
}
if ((Afe_consumed_bytes & 0x1f) != 0)
pr_debug("[Auddrv_HDMI_Interrupt] DMA address is not aligned 32 bytes\n");
if (Afe_Block->u4DataRemained < Afe_consumed_bytes ||
Afe_Block->u4DataRemained <= 0 ||
Afe_Block->u4DataRemained > Afe_Block->u4BufferSize) {
/* buffer underflow --> clear whole buffer */
/* memset(Afe_Block->pucVirtBufAddr, 0,
* Afe_Block->u4BufferSize);
*/
Afe_Block->u4DMAReadIdx = HW_memory_index;
Afe_Block->u4WriteIdx = Afe_Block->u4DMAReadIdx;
Afe_Block->u4DataRemained = Afe_Block->u4BufferSize;
} else {
Afe_Block->u4DataRemained -= Afe_consumed_bytes;
Afe_Block->u4DMAReadIdx += Afe_consumed_bytes;
Afe_Block->u4DMAReadIdx %= Afe_Block->u4BufferSize;
}
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_HDMI]
->interruptTrigger = 1;
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
}
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
#endif
}
void Auddrv_AWB_Interrupt_Handler(void)
{
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_AWB];
kal_uint32 HW_Cur_ReadIdx = 0;
kal_uint32 MaxCopySize = 0;
kal_int32 Hw_Get_bytes = 0;
struct substream_list *temp = NULL;
struct afe_block_t *mBlock = NULL;
unsigned long flags;
kal_uint32 temp_cnt = 0;
if (Mem_Block == NULL) {
pr_err("-%s()Mem_Block == NULL\n ", __func__);
return;
}
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_AWB) == false) {
/* pr_debug("%s(),
* GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_AWB) == false,
* return\n ", __func__);
*/
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
pr_err("-%s(), GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_AWB) = %d\n ",
__func__,
GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_AWB));
return;
}
mBlock = &Mem_Block->rBlock;
HW_Cur_ReadIdx = word_size_align(Afe_Get_Reg(AFE_AWB_CUR));
/* pr_debug("+%s HW_Cur_ReadIdx = 0x%x\n ",
* __func__, HW_Cur_ReadIdx);
*/
if (CheckSize(HW_Cur_ReadIdx)) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
if (mBlock->pucVirtBufAddr == NULL) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
MaxCopySize = Get_Mem_MaxCopySize(Soc_Aud_Digital_Block_MEM_AWB);
/* pr_debug("1 mBlock = %p MaxCopySize = 0x%x u4BufferSize = 0x%x\n",
* mBlock, MaxCopySize, mBlock->u4BufferSize);
*/
if (MaxCopySize) {
if (MaxCopySize > mBlock->u4BufferSize)
MaxCopySize = mBlock->u4BufferSize;
mBlock->u4DataRemained -= MaxCopySize;
mBlock->u4DMAReadIdx += MaxCopySize;
mBlock->u4DMAReadIdx %= mBlock->u4BufferSize;
Clear_Mem_CopySize(Soc_Aud_Digital_Block_MEM_AWB);
/* pr_debug("%s read ReadIdx:0x%x, WriteIdx:0x%x,
* BufAddr:0x%x CopySize =0x%x\n", __func__,
* mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
* mBlock->pucPhysBufAddr, mBlock->u4MaxCopySize);
*/
}
/* HW already fill in */
Hw_Get_bytes =
(HW_Cur_ReadIdx - mBlock->pucPhysBufAddr) - mBlock->u4WriteIdx;
if (Hw_Get_bytes < 0)
Hw_Get_bytes += mBlock->u4BufferSize;
/* pr_debug("%s Get_bytes:0x%x,Cur_ReadIdx:0x%x,ReadIdx:0x%x,
* WriteIdx:0x%x,BufAddr:0x%x Remained = 0x%x\n",
* __func__, Hw_Get_bytes, HW_Cur_ReadIdx, mBlock->u4DMAReadIdx,
* mBlock->u4WriteIdx, mBlock->pucPhysBufAddr, mBlock->u4DataRemained);
*/
mBlock->u4WriteIdx += Hw_Get_bytes;
mBlock->u4WriteIdx %= mBlock->u4BufferSize;
mBlock->u4DataRemained += Hw_Get_bytes;
/* buffer overflow */
if (mBlock->u4DataRemained > mBlock->u4BufferSize) {
pr_debug("%s buffer overflow u4DMAReadIdx:%x, u4WriteIdx:%x, u4DataRemained:%x, u4BufferSize:%x\n",
__func__, mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
mBlock->u4DataRemained, mBlock->u4BufferSize);
mBlock->u4DataRemained %= mBlock->u4BufferSize;
}
Mem_Block->interruptTrigger = 1;
temp = Mem_Block->substreamL;
while (temp != NULL) {
if (temp->substream != NULL) {
temp_cnt = Mem_Block->MemIfNum;
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(temp->substream);
Mem_Block->mWaitForIRQ = false;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (temp_cnt != Mem_Block->MemIfNum) {
pr_debug(
"%s() temp_cnt = %u, Mem_Block->MemIfNum = %u\n",
__func__, temp_cnt,
Mem_Block->MemIfNum);
temp = Mem_Block->substreamL;
}
}
if (temp != NULL)
temp = temp->next;
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
/* pr_debug("-%s u4DMAReadIdx:0x%x, u4WriteIdx:0x%x
* mBlock->u4DataRemained = 0x%x\n", __func__,
* mBlock->u4DMAReadIdx, mBlock->u4WriteIdx, mBlock->u4DataRemained);
*/
}
void Auddrv_DAI_Interrupt_Handler(void)
{
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DAI];
kal_uint32 HW_Cur_ReadIdx = 0;
kal_int32 Hw_Get_bytes = 0;
struct afe_block_t *mBlock = NULL;
unsigned long flags;
if (Mem_Block == NULL)
return;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DAI) == false) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
mBlock = &Mem_Block->rBlock;
HW_Cur_ReadIdx = word_size_align(Afe_Get_Reg(AFE_DAI_CUR));
if (CheckSize(HW_Cur_ReadIdx)) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
if (mBlock->pucVirtBufAddr == NULL) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
/* HW already fill in */
Hw_Get_bytes =
(HW_Cur_ReadIdx - mBlock->pucPhysBufAddr) - mBlock->u4WriteIdx;
if (Hw_Get_bytes < 0)
Hw_Get_bytes += mBlock->u4BufferSize;
/* pr_debug("%s Hw_Get_bytes:0x%x, Cur_ReadIdx:0x%x,ReadIdx:0x%x,
* WriteIdx:0x%x, PhysAddr:0x%x Block->MemIfNum = %d\n",
* __func__, Hw_Get_bytes, HW_Cur_ReadIdx, mBlock->u4DMAReadIdx,
* mBlock->u4WriteIdx, mBlock->pucPhysBufAddr, Mem_Block->MemIfNum);
*/
mBlock->u4WriteIdx += Hw_Get_bytes;
mBlock->u4WriteIdx %= mBlock->u4BufferSize;
mBlock->u4DataRemained += Hw_Get_bytes;
/* buffer overflow */
if (mBlock->u4DataRemained > mBlock->u4BufferSize) {
pr_debug(
"%s buffer overflow u4DMAReadIdx:%x,WriteIdx:%x, Remained:%x, u4BufferSize:%x\n",
__func__, mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
mBlock->u4DataRemained, mBlock->u4BufferSize);
}
Mem_Block->interruptTrigger = 1;
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
Mem_Block->mWaitForIRQ = false;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
}
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
}
void Auddrv_VUL2_Interrupt_Handler(void)
{
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_VUL2];
kal_uint32 HW_Cur_ReadIdx = 0;
kal_uint32 MaxCopySize = 0;
kal_int32 Hw_Get_bytes = 0;
struct substream_list *temp = NULL;
struct afe_block_t *mBlock = NULL;
unsigned long flags;
kal_uint32 temp_cnt = 0;
if (Mem_Block == NULL) {
pr_err("-%s()Mem_Block == NULL\n ", __func__);
return;
}
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_VUL2) == false) {
/* pr_debug("%s(),
* GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_AWB) == false,
* return\n ", __func__);
*/
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
pr_err("-%s(), GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_AWB) = %d\n ",
__func__,
GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_VUL2));
return;
}
mBlock = &Mem_Block->rBlock;
HW_Cur_ReadIdx = word_size_align(Afe_Get_Reg(AFE_VUL2_CUR));
/* pr_debug("+%s HW_Cur_ReadIdx = 0x%x\n ",
* __func__, HW_Cur_ReadIdx);
*/
if (CheckSize(HW_Cur_ReadIdx)) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
if (mBlock->pucVirtBufAddr == NULL) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
MaxCopySize = Get_Mem_MaxCopySize(Soc_Aud_Digital_Block_MEM_VUL2);
/* pr_debug("1 mBlock = %p MaxCopySize = 0x%x u4BufferSize = 0x%x\n",
* mBlock, MaxCopySize, mBlock->u4BufferSize);
*/
if (MaxCopySize) {
if (MaxCopySize > mBlock->u4BufferSize)
MaxCopySize = mBlock->u4BufferSize;
mBlock->u4DataRemained -= MaxCopySize;
mBlock->u4DMAReadIdx += MaxCopySize;
mBlock->u4DMAReadIdx %= mBlock->u4BufferSize;
Clear_Mem_CopySize(Soc_Aud_Digital_Block_MEM_VUL2);
/* pr_debug(
* "%s read ReadIdx:0x%x, WriteIdx:0x%x,BufAddr:0x%x
* CopySize =0x%x\n",
* __func__, mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
* mBlock->pucPhysBufAddr, mBlock->u4MaxCopySize);
*/
}
/* HW already fill in */
Hw_Get_bytes =
(HW_Cur_ReadIdx - mBlock->pucPhysBufAddr) - mBlock->u4WriteIdx;
if (Hw_Get_bytes < 0)
Hw_Get_bytes += mBlock->u4BufferSize;
/* pr_debug("%s Get_bytes:0x%x,Cur_ReadIdx:0x%x,ReadIdx:0x%x,
* WriteIdx:0x%x,BufAddr:0x%x Remained = 0x%x\n",
* __func__, Hw_Get_bytes, HW_Cur_ReadIdx, mBlock->u4DMAReadIdx,
* mBlock->u4WriteIdx, mBlock->pucPhysBufAddr, mBlock->u4DataRemained);
*/
mBlock->u4WriteIdx += Hw_Get_bytes;
mBlock->u4WriteIdx %= mBlock->u4BufferSize;
mBlock->u4DataRemained += Hw_Get_bytes;
/* buffer overflow */
if (mBlock->u4DataRemained > mBlock->u4BufferSize) {
pr_debug(
"%s buffer overflow u4DMAReadIdx:%x, u4WriteIdx:%x, u4DataRemained:%x, u4BufferSize:%x\n",
__func__, mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
mBlock->u4DataRemained, mBlock->u4BufferSize);
mBlock->u4DataRemained %= mBlock->u4BufferSize;
}
Mem_Block->interruptTrigger = 1;
temp = Mem_Block->substreamL;
while (temp != NULL) {
if (temp->substream != NULL) {
temp_cnt = Mem_Block->MemIfNum;
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(temp->substream);
Mem_Block->mWaitForIRQ = false;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (temp_cnt != Mem_Block->MemIfNum) {
pr_debug(
"%s() temp_cnt = %u, Mem_Block->MemIfNum = %u\n",
__func__, temp_cnt,
Mem_Block->MemIfNum);
temp = Mem_Block->substreamL;
}
}
if (temp != NULL)
temp = temp->next;
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
/* pr_debug( "-%s u4DMAReadIdx:0x%x, u4WriteIdx:0x%x
* mBlock->u4DataRemained = 0x%x\n", __func__,
* mBlock->u4DMAReadIdx, mBlock->u4WriteIdx, mBlock->u4DataRemained);
*/
}
void Auddrv_DSP_DL1_Interrupt_Handler(void *PrivateData)
{
/* irq1 ISR handler */
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DL1];
kal_int32 Afe_consumed_bytes = 0;
kal_int32 HW_memory_index = 0;
kal_int32 HW_Cur_ReadIdx = 0;
struct afe_block_t *Afe_Block = &(
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DL1]->rBlock);
unsigned long flags;
if (Mem_Block == NULL)
return;
if (get_voice_usb_status() &&
GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1)) {
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL)
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
}
return;
}
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1) == false) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
HW_Cur_ReadIdx = word_size_align(Afe_Get_Reg(AFE_DL1_CUR));
if (HW_Cur_ReadIdx == 0) {
/* pr_debug("[Auddrv] HW_Cur_ReadIdx ==0\n"); */
HW_Cur_ReadIdx = Afe_Block->pucPhysBufAddr;
}
HW_memory_index = HW_Cur_ReadIdx - Afe_Get_Reg(AFE_DL1_BASE);
/* pr_debug("[Auddrv] HW_Cur_ReadIdx=0x%x HW_memory_index = 0x%x
* Afe_Block->pucPhysBufAddr = 0x%x\n", HW_Cur_ReadIdx,
* HW_memory_index, Afe_Block->pucPhysBufAddr);
*/
/* get hw consume bytes */
if (HW_memory_index >= Afe_Block->u4DMAReadIdx) {
Afe_consumed_bytes = HW_memory_index - Afe_Block->u4DMAReadIdx;
} else {
Afe_consumed_bytes = Afe_Block->u4BufferSize + HW_memory_index -
Afe_Block->u4DMAReadIdx;
}
Afe_consumed_bytes = word_size_align(Afe_consumed_bytes);
/* pr_debug("+%s ReadIdx:%x WriteIdx:%x,Remained:%x,
* consumed_bytes:%x HW_memory_index = %x\n", __func__,
* Afe_Block->u4DMAReadIdx, Afe_Block->u4WriteIdx,
* Afe_Block->u4DataRemained, Afe_consumed_bytes, HW_memory_index);
*/
if (Afe_Block->u4DataRemained < Afe_consumed_bytes ||
Afe_Block->u4DataRemained <= 0 ||
Afe_Block->u4DataRemained > Afe_Block->u4BufferSize) {
if (AFE_dL_Abnormal_context.u4UnderflowCnt <
DL_ABNORMAL_CONTROL_MAX) {
AFE_dL_Abnormal_context.pucPhysBufAddr
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->pucPhysBufAddr;
AFE_dL_Abnormal_context.u4BufferSize
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->u4BufferSize;
AFE_dL_Abnormal_context.u4ConsumedBytes
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_consumed_bytes;
AFE_dL_Abnormal_context.u4DataRemained
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->u4DataRemained;
AFE_dL_Abnormal_context.u4DMAReadIdx
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->u4DMAReadIdx;
AFE_dL_Abnormal_context.u4HwMemoryIndex
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
HW_memory_index;
AFE_dL_Abnormal_context.u4WriteIdx
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->u4WriteIdx;
AFE_dL_Abnormal_context.MemIfNum
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Soc_Aud_Digital_Block_MEM_DL1;
}
AFE_dL_Abnormal_context.u4UnderflowCnt++;
} else {
/* pr_debug("+DL_Handling normal ReadIdx:%x ,DataRemained:%x,
* WriteIdx:%x\n", Afe_Block->u4DMAReadIdx,
* Afe_Block->u4DataRemained, Afe_Block->u4WriteIdx);
*/
Afe_Block->u4DataRemained -= Afe_consumed_bytes;
Afe_Block->u4DMAReadIdx += Afe_consumed_bytes;
Afe_Block->u4DMAReadIdx %= Afe_Block->u4BufferSize;
}
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DL1]
->interruptTrigger = 1;
/* pr_debug("-DL_Handling normal ReadIdx:%x ,
* DataRemained:%x, WriteIdx:%x\n", Afe_Block->u4DMAReadIdx,
* Afe_Block->u4DataRemained,Afe_Block->u4WriteIdx);
*/
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
Mem_Block->mWaitForIRQ = false;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
}
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
}
void Auddrv_DL1_Interrupt_Handler(void)
{
/* irq1 ISR handler */
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DL1];
kal_int32 Afe_consumed_bytes = 0;
kal_int32 HW_memory_index = 0;
kal_int32 HW_Cur_ReadIdx = 0;
struct afe_block_t *Afe_Block = &(
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DL1]->rBlock);
unsigned long flags;
if (Mem_Block == NULL)
return;
if (get_voice_usb_status() &&
GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1)) {
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL)
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
}
return;
}
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1) == false) {
/* pr_debug("%s(),
* GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1) == false,
* return\n ", __func__);
*/
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
HW_Cur_ReadIdx = Afe_Get_Reg(AFE_DL1_CUR);
if (HW_Cur_ReadIdx == 0) {
/* pr_debug("[Auddrv] HW_Cur_ReadIdx ==0\n"); */
HW_Cur_ReadIdx = Afe_Block->pucPhysBufAddr;
}
HW_memory_index = (HW_Cur_ReadIdx - Afe_Block->pucPhysBufAddr);
/* pr_debug("[Auddrv] HW_Cur_ReadIdx=0x%x HW_memory_index = 0x%x
* Afe_Block->pucPhysBufAddr = 0x%x\n",
* HW_Cur_ReadIdx, HW_memory_index, Afe_Block->pucPhysBufAddr);
*/
/* get hw consume bytes */
if (HW_memory_index >= Afe_Block->u4DMAReadIdx) {
Afe_consumed_bytes = HW_memory_index - Afe_Block->u4DMAReadIdx;
} else {
Afe_consumed_bytes = Afe_Block->u4BufferSize + HW_memory_index -
Afe_Block->u4DMAReadIdx;
}
Afe_consumed_bytes = word_size_align(Afe_consumed_bytes);
/* pr_debug("%s ReadIdx:%x WriteIdx:%x,Remained:%x,
* consumed_bytes:%x HW_memory_index = %x\n",
* __func__, Afe_Block->u4DMAReadIdx, Afe_Block->u4WriteIdx,
* Afe_Block->u4DataRemained, Afe_consumed_bytes, HW_memory_index);
*/
if (Afe_Block->u4DataRemained < Afe_consumed_bytes ||
Afe_Block->u4DataRemained <= 0 ||
Afe_Block->u4DataRemained > Afe_Block->u4BufferSize) {
if (AFE_dL_Abnormal_context.u4UnderflowCnt <
DL_ABNORMAL_CONTROL_MAX) {
AFE_dL_Abnormal_context.pucPhysBufAddr
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->pucPhysBufAddr;
AFE_dL_Abnormal_context.u4BufferSize
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->u4BufferSize;
AFE_dL_Abnormal_context.u4ConsumedBytes
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_consumed_bytes;
AFE_dL_Abnormal_context.u4DataRemained
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->u4DataRemained;
AFE_dL_Abnormal_context.u4DMAReadIdx
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->u4DMAReadIdx;
AFE_dL_Abnormal_context.u4HwMemoryIndex
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
HW_memory_index;
AFE_dL_Abnormal_context.u4WriteIdx
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Afe_Block->u4WriteIdx;
AFE_dL_Abnormal_context.MemIfNum
[AFE_dL_Abnormal_context.u4UnderflowCnt] =
Soc_Aud_Digital_Block_MEM_DL1;
}
AFE_dL_Abnormal_context.u4UnderflowCnt++;
} else {
/* pr_debug("+DL_Handling normal ReadIdx:%x ,DataRemained:%x,
* WriteIdx:%x\n", Afe_Block->u4DMAReadIdx,
* Afe_Block->u4DataRemained, Afe_Block->u4WriteIdx);
*/
Afe_Block->u4DataRemained -= Afe_consumed_bytes;
Afe_Block->u4DMAReadIdx += Afe_consumed_bytes;
Afe_Block->u4DMAReadIdx %= Afe_Block->u4BufferSize;
}
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DL1]
->interruptTrigger = 1;
/* pr_debug("-DL_Handling normal ReadIdx:%x ,DataRemained:%x,
* WriteIdx:%x\n", Afe_Block->u4DMAReadIdx, Afe_Block->u4DataRemained,
* Afe_Block->u4WriteIdx);
*/
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
Mem_Block->mWaitForIRQ = false;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
}
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
}
void Auddrv_DL1_Data2_Interrupt_Handler(enum soc_aud_digital_block mem_block)
{
/* irq6 ISR handler */
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[mem_block];
unsigned long flags;
if (GetMemoryPathEnable(mem_block)) {
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
spin_lock_irqsave(&Mem_Block->substream_lock,
flags);
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(
&Mem_Block->substream_lock, flags);
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
spin_lock_irqsave(&Mem_Block->substream_lock,
flags);
Mem_Block->mWaitForIRQ = false;
spin_unlock_irqrestore(
&Mem_Block->substream_lock, flags);
}
}
} else {
pr_debug("%s, memif use wrong irq handler", __func__);
}
}
void Auddrv_DL2_Interrupt_Handler(void)
{
/* irq2 ISR handler */
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_DL2];
unsigned long flags;
if (Mem_Block == NULL)
return;
Auddrv_Dl2_Spinlock_lock();
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL2) == false) {
/* pr_debug("%s(),
* GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL2) == false,
* return\n ", __func__);
*/
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
Auddrv_Dl2_Spinlock_unlock();
return;
}
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
Mem_Block->mWaitForIRQ = false;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
}
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
#ifdef AUDIO_DL2_ISR_COPY_SUPPORT
mtk_dl2_copy_l();
#endif
Auddrv_Dl2_Spinlock_unlock();
}
struct snd_dma_buffer *Get_Mem_Buffer(enum soc_aud_digital_block MemBlock)
{
pr_debug("%s MemBlock = %d\n", __func__, MemBlock);
switch (MemBlock) {
case Soc_Aud_Digital_Block_MEM_DL1:
return Audio_dma_buf[MemBlock];
case Soc_Aud_Digital_Block_MEM_DL2:
return Audio_dma_buf[MemBlock];
case Soc_Aud_Digital_Block_MEM_DL3:
return Audio_dma_buf[MemBlock];
case Soc_Aud_Digital_Block_MEM_VUL2:
case Soc_Aud_Digital_Block_MEM_VUL:
return Audio_dma_buf[MemBlock];
case Soc_Aud_Digital_Block_MEM_DAI:
return Audio_dma_buf[MemBlock];
case Soc_Aud_Digital_Block_MEM_AWB:
return Audio_dma_buf[MemBlock];
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
return Audio_dma_buf[MemBlock];
/*
* case Soc_Aud_Digital_Block_MEM_DL1_DATA2:
* return Audio_dma_buf[MemBlock];
*/
case Soc_Aud_Digital_Block_MEM_VUL_DATA2:
return Audio_dma_buf[MemBlock];
case Soc_Aud_Digital_Block_MEM_HDMI:
return Audio_dma_buf[MemBlock];
default:
break;
}
return NULL;
}
void Auddrv_UL1_Interrupt_Handler(void)
{
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_VUL];
kal_uint32 HW_Cur_ReadIdx = 0;
kal_int32 Hw_Get_bytes = 0;
struct afe_block_t *mBlock = NULL;
unsigned long flags;
struct snd_pcm_substream *temp_substream = NULL;
if (Mem_Block == NULL) {
pr_err("Mem_Block == NULL\n ");
return;
}
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_VUL) == false) {
/* pr_debug("%s(),
* GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_VUL) == false,
* return\n ", __func__);
*/
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
mBlock = &Mem_Block->rBlock;
HW_Cur_ReadIdx = word_size_align(Afe_Get_Reg(AFE_VUL_CUR));
if (CheckSize(HW_Cur_ReadIdx)) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
if (mBlock->pucVirtBufAddr == NULL) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
/* HW already fill in */
Hw_Get_bytes =
(HW_Cur_ReadIdx - mBlock->pucPhysBufAddr) - mBlock->u4WriteIdx;
if (Hw_Get_bytes < 0)
Hw_Get_bytes += mBlock->u4BufferSize;
/* pr_debug("%s Get_bytes:%x, Cur_ReadIdx:%x,ReadIdx:%x, WriteIdx:0x%x,
* BufAddr:%x MemIfNum = %d\n", __func__, Hw_Get_bytes, HW_Cur_ReadIdx,
* mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
* mBlock->pucPhysBufAddr, Mem_Block->MemIfNum);
*/
mBlock->u4WriteIdx += Hw_Get_bytes;
mBlock->u4WriteIdx %= mBlock->u4BufferSize;
mBlock->u4DataRemained += Hw_Get_bytes;
/* buffer overflow */
if (mBlock->u4DataRemained > mBlock->u4BufferSize) {
pr_debug(
"buffer overflow u4DMAReadIdx:%x,u4WriteIdx:%x, u4DataRemained:%x, u4BufferSize:%x\n",
mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
mBlock->u4DataRemained, mBlock->u4BufferSize);
}
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_VUL]
->interruptTrigger = 1;
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
temp_substream = Mem_Block->substreamL->substream;
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(temp_substream);
Mem_Block->mWaitForIRQ = false;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
}
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
}
static void Clear_Mem_CopySize(enum soc_aud_digital_block MemBlock)
{
struct substream_list *head;
/* unsigned long flags; */
/* spin_lock_irqsave(&AFE_Mem_Control_context[MemBlock]->substream_lock,
* flags);
*/
head = AFE_Mem_Control_context[MemBlock]->substreamL;
while (head != NULL) { /* frst item is NULL */
head->u4MaxCopySize = 0;
head = head->next;
}
}
kal_uint32 Get_Mem_CopySizeByStream(enum soc_aud_digital_block MemBlock,
struct snd_pcm_substream *substream)
{
struct substream_list *head;
unsigned long flags;
kal_uint32 MaxCopySize;
spin_lock_irqsave(&AFE_Mem_Control_context[MemBlock]->substream_lock,
flags);
head = AFE_Mem_Control_context[MemBlock]->substreamL;
/* pr_debug("+%s MemBlock = %d\n ", __func__, MemBlock); */
while (head != NULL) { /* frst item is NULL */
if (head->substream == substream) {
MaxCopySize = head->u4MaxCopySize;
spin_unlock_irqrestore(
&AFE_Mem_Control_context[MemBlock]
->substream_lock,
flags);
return MaxCopySize;
}
head = head->next;
}
spin_unlock_irqrestore(
&AFE_Mem_Control_context[MemBlock]->substream_lock, flags);
/* pr_debug("-%s MemBlock = %d\n ", __func__, MemBlock); */
return 0;
}
static kal_uint32 Get_Mem_MaxCopySize(enum soc_aud_digital_block MemBlock)
{
struct substream_list *head;
/* unsigned long flags; */
kal_uint32 MaxCopySize;
/* spin_lock_irqsave(&AFE_Mem_Control_context[MemBlock]->substream_lock,
* flags);
*/
head = AFE_Mem_Control_context[MemBlock]->substreamL;
MaxCopySize = 0;
/* pr_debug("+%s MemBlock = %d\n ", __func__, MemBlock); */
while (head != NULL) { /* frst item is NULL */
if (MaxCopySize < head->u4MaxCopySize)
MaxCopySize = head->u4MaxCopySize;
head = head->next;
}
/* spin_unlock_irqrestore(
* &AFE_Mem_Control_context[MemBlock]->substream_lock,
* flags);
*/
/* pr_debug("-%s MemBlock = %d\n ", __func__, MemBlock); */
return MaxCopySize;
}
void Set_Mem_CopySizeByStream(enum soc_aud_digital_block MemBlock,
struct snd_pcm_substream *substream,
unsigned int size)
{
struct substream_list *head;
unsigned long flags;
spin_lock_irqsave(&AFE_Mem_Control_context[MemBlock]->substream_lock,
flags);
head = AFE_Mem_Control_context[MemBlock]->substreamL;
/* pr_debug("+%s MemBlock = %d\n ", __func__, MemBlock); */
while (head != NULL) { /* frst item is NULL */
if (head->substream == substream) {
head->u4MaxCopySize += size;
break;
}
head = head->next;
}
spin_unlock_irqrestore(
&AFE_Mem_Control_context[MemBlock]->substream_lock, flags);
/* pr_debug("-%s MemBlock = %d\n ", __func__, MemBlock); */
}
void Auddrv_UL2_Interrupt_Handler(void)
{
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_VUL_DATA2];
kal_uint32 HW_Cur_ReadIdx = 0;
kal_int32 Hw_Get_bytes = 0;
struct afe_block_t *mBlock = NULL;
unsigned long flags;
if (Mem_Block == NULL) {
pr_err("Mem_Block == NULL\n ");
return;
}
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_VUL_DATA2) == false) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
mBlock = &Mem_Block->rBlock;
HW_Cur_ReadIdx = word_size_align(Afe_Get_Reg(AFE_VUL_D2_CUR));
if (CheckSize(HW_Cur_ReadIdx)) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
if (mBlock->pucVirtBufAddr == NULL) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
/* HW already fill in */
Hw_Get_bytes =
(HW_Cur_ReadIdx - mBlock->pucPhysBufAddr) - mBlock->u4WriteIdx;
if (Hw_Get_bytes < 0)
Hw_Get_bytes += mBlock->u4BufferSize;
/* pr_debug("%s Get_bytes:%x, Cur_ReadIdx:%x,RadIdx:%x, WriteIdx:0x%x,
* BufAddr:%x MemIfNum = %d\n", __func__, Hw_Get_bytes, HW_Cur_ReadIdx,
* mBlock->u4DMAReadIdx, mBlock->u4WriteIdx, mBlock->pucPhysBufAddr,
* Mem_Block->MemIfNum);
*/
mBlock->u4WriteIdx += Hw_Get_bytes;
mBlock->u4WriteIdx %= mBlock->u4BufferSize;
mBlock->u4DataRemained += Hw_Get_bytes;
/* buffer overflow */
if (mBlock->u4DataRemained > mBlock->u4BufferSize) {
pr_debug(
"buffer overflow u4DMAReadIdx:%x,u4WriteIdx:%x, u4DataRemained:%x, u4BufferSize:%x\n",
mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
mBlock->u4DataRemained, mBlock->u4BufferSize);
}
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_VUL_DATA2]
->interruptTrigger = 1;
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
Mem_Block->mWaitForIRQ = true;
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
Mem_Block->mWaitForIRQ = false;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
}
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
}
void Auddrv_MOD_DAI_Interrupt_Handler(void)
{
struct afe_mem_control_t *Mem_Block =
AFE_Mem_Control_context[Soc_Aud_Digital_Block_MEM_MOD_DAI];
kal_uint32 HW_Cur_ReadIdx = 0;
kal_int32 Hw_Get_bytes = 0;
struct afe_block_t *mBlock = NULL;
unsigned long flags;
if (Mem_Block == NULL)
return;
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
if (GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_MOD_DAI) == false) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
mBlock = &Mem_Block->rBlock;
HW_Cur_ReadIdx = word_size_align(Afe_Get_Reg(AFE_MOD_DAI_CUR));
if (CheckSize(HW_Cur_ReadIdx)) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
if (mBlock->pucVirtBufAddr == NULL) {
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
return;
}
Hw_Get_bytes =
(HW_Cur_ReadIdx - mBlock->pucPhysBufAddr) - mBlock->u4WriteIdx;
if (Hw_Get_bytes < 0)
Hw_Get_bytes += mBlock->u4BufferSize;
mBlock->u4WriteIdx += Hw_Get_bytes;
mBlock->u4WriteIdx %= mBlock->u4BufferSize;
mBlock->u4DataRemained += Hw_Get_bytes;
if (mBlock->u4DataRemained > mBlock->u4BufferSize) {
pr_warn("%s buffer overflow u4DMAReadIdx:%x, u4WriteIdx:%x, u4DataRemained:%x, u4BufferSize:%x\n",
__func__, mBlock->u4DMAReadIdx, mBlock->u4WriteIdx,
mBlock->u4DataRemained, mBlock->u4BufferSize);
}
Mem_Block->interruptTrigger = 1;
if (Mem_Block->substreamL != NULL) {
if (Mem_Block->substreamL->substream != NULL) {
spin_unlock_irqrestore(&Mem_Block->substream_lock,
flags);
snd_pcm_period_elapsed(
Mem_Block->substreamL->substream);
spin_lock_irqsave(&Mem_Block->substream_lock, flags);
}
}
spin_unlock_irqrestore(&Mem_Block->substream_lock, flags);
}
bool Restore_Audio_Register(void)
{
/* 6752 TODO? */
return true;
}
unsigned int word_size_align(unsigned int in_size)
{
unsigned int align_size;
#if defined(CONFIG_MTK_AUDIO_SCP_SPKPROTECT_SUPPORT)
if (scp_smartpa_used_flag) {
/* SCP use cache. Cache use 32 bytes data alignment */
align_size = in_size & 0xFFFFFFE0;
} else
#endif
{
/* sram is device memory, need word size align,
* 8 byte for 64 bit platform.
* [3:0] = 4'h0 for the convenience of the hardware
* implementation.
*/
align_size = in_size & 0xFFFFFFF0;
}
return align_size;
}
void AudDrv_checkDLISRStatus(void)
{
unsigned long flags1;
struct afe_dl_abnormal_control_t localctl;
bool dumplog = false;
spin_lock_irqsave(&afe_dl_abnormal_context_lock, flags1);
if (AFE_dL_Abnormal_context.IrqDelayCnt ||
AFE_dL_Abnormal_context.u4UnderflowCnt) {
memcpy((void *)&localctl, (void *)&AFE_dL_Abnormal_context,
sizeof(struct afe_dl_abnormal_control_t));
dumplog = true;
if (AFE_dL_Abnormal_context.IrqDelayCnt > 0)
AFE_dL_Abnormal_context.IrqDelayCnt = 0;
if (AFE_dL_Abnormal_context.u4UnderflowCnt > 0)
AFE_dL_Abnormal_context.u4UnderflowCnt = 0;
}
spin_unlock_irqrestore(&afe_dl_abnormal_context_lock, flags1);
if (dumplog) {
int index = 0;
if (localctl.IrqDelayCnt) {
for (index = 0; index < localctl.IrqDelayCnt &&
index < DL_ABNORMAL_CONTROL_MAX;
index++) {
pr_warn("AudWarn isr blocked [%d/%d] %llu - %llu = %llu > %d ms\n",
index, localctl.IrqDelayCnt,
localctl.IrqCurrentTimeNs[index],
localctl.IrqLastTimeNs[index],
localctl.IrqIntervalNs[index],
localctl.IrqIntervalLimitMs[index]);
}
}
if (localctl.u4UnderflowCnt) {
for (index = 0; index < localctl.u4UnderflowCnt &&
index < DL_ABNORMAL_CONTROL_MAX;
index++) {
static DEFINE_RATELIMIT_STATE(_rs, HZ, 5);
if (__ratelimit(&_rs)) {
pr_warn(
"AudWarn data underflow [%d/%d] MemType %d, Remain:0x%x, R:0x%x W:0x%x, BufSize:0x%x, consumebyte:0x%x, hw index:0x%x, addr:0x%x\n",
index,
localctl.u4UnderflowCnt,
localctl.MemIfNum[index],
localctl.u4DataRemained[index],
localctl.u4DMAReadIdx[index],
localctl.u4WriteIdx[index],
localctl.u4BufferSize[index],
localctl.u4ConsumedBytes[index],
localctl.u4HwMemoryIndex[index],
localctl.pucPhysBufAddr[index]);
}
}
}
}
}
static void update_sram_block_valid(enum audio_sram_mode mode)
{
int i;
for (i = 0; i < mAud_Sram_Manager.mBlocknum; i++) {
if ((i + 1) * mAud_Sram_Manager.mBlockSize >
sram_mode_size[mode]) {
mAud_Sram_Manager.mAud_Sram_Block[i].mValid = false;
} else {
mAud_Sram_Manager.mAud_Sram_Block[i].mValid = true;
}
}
}
bool InitSramManager(struct device *pDev, unsigned int sramblocksize)
{
int i = 0;
memset((void *)&mAud_Sram_Manager, 0,
sizeof(struct audio_sram_manager));
mAud_Sram_Manager.msram_phys_addr = Get_Afe_Sram_Phys_Addr();
mAud_Sram_Manager.msram_virt_addr = Get_Afe_SramBase_Pointer();
mAud_Sram_Manager.mSramLength = Get_Afe_Sram_Length();
mAud_Sram_Manager.mBlockSize = sramblocksize;
mAud_Sram_Manager.mBlocknum =
(mAud_Sram_Manager.mSramLength / mAud_Sram_Manager.mBlockSize);
pr_debug("%s mBlocknum = %d mAud_Sram_Manager.mSramLength = %d mAud_Sram_Manager.mBlockSize = %d\n",
__func__, mAud_Sram_Manager.mBlocknum,
mAud_Sram_Manager.mSramLength, mAud_Sram_Manager.mBlockSize);
/* Dynamic allocate mAud_Sram_Block according to mBlocknum */
mAud_Sram_Manager.mAud_Sram_Block =
devm_kzalloc(pDev, mAud_Sram_Manager.mBlocknum *
sizeof(struct audio_sram_block),
GFP_KERNEL);
if (!mAud_Sram_Manager.mAud_Sram_Block)
return -ENOMEM;
for (i = 0; i < mAud_Sram_Manager.mBlocknum; i++) {
mAud_Sram_Manager.mAud_Sram_Block[i].mValid = true;
mAud_Sram_Manager.mAud_Sram_Block[i].mLength =
mAud_Sram_Manager.mBlockSize;
mAud_Sram_Manager.mAud_Sram_Block[i].mUser = 0;
mAud_Sram_Manager.mAud_Sram_Block[i].msram_phys_addr =
mAud_Sram_Manager.msram_phys_addr + (sramblocksize * i);
mAud_Sram_Manager.mAud_Sram_Block[i].msram_virt_addr =
(void *)((char *)mAud_Sram_Manager.msram_virt_addr +
(sramblocksize * (dma_addr_t)i));
}
/* init for normal mode or compact mode */
mAud_Sram_Manager.sram_mode = get_prefer_sram_mode();
update_sram_block_valid(mAud_Sram_Manager.sram_mode);
return true;
}
bool CheckSramAvail(unsigned int mSramLength, unsigned int *mSramBlockidx,
unsigned int *mSramBlocknum)
{
unsigned int MaxSramSize = 0;
bool StartRecord = false;
struct audio_sram_block *SramBlock = NULL;
int i = 0;
*mSramBlockidx = 0;
for (i = 0; i < mAud_Sram_Manager.mBlocknum; i++) {
SramBlock = &mAud_Sram_Manager.mAud_Sram_Block[i];
if ((SramBlock->mUser == NULL) && SramBlock->mValid) {
MaxSramSize += mAud_Sram_Manager.mBlockSize;
if (StartRecord == false) {
StartRecord = true;
*mSramBlockidx = i;
}
(*mSramBlocknum)++;
/* can callocate sram */
if (MaxSramSize >= mSramLength)
break;
}
/* when reach allocate buffer , reset condition*/
if ((SramBlock->mUser != NULL) && SramBlock->mValid) {
MaxSramSize = 0;
*mSramBlocknum = 0;
*mSramBlockidx = 0;
StartRecord = false;
}
if (SramBlock->mValid == 0) {
pr_warn("%s SramBlock->mValid == 0 i = %d\n", __func__,
i);
break;
}
}
pr_info("%s MaxSramSize = %d mSramLength = %d mSramBlockidx = %d mSramBlocknum= %d\n",
__func__, MaxSramSize, mSramLength, *mSramBlockidx,
*mSramBlocknum);
if (MaxSramSize >= mSramLength)
return true;
else
return false;
}
int AllocateAudioSram(dma_addr_t *sram_phys_addr,
unsigned char **msram_virt_addr, unsigned int mSramLength,
void *user, snd_pcm_format_t format, bool force_normal)
{
unsigned int SramBlockNum = 0;
unsigned int SramBlockidx = 0;
struct audio_sram_block *sram_block = NULL;
enum audio_sram_mode request_sram_mode;
bool has_user = false;
int ret = 0;
int i;
AfeControlSramLock();
/* check if sram has user */
for (i = 0; i < mAud_Sram_Manager.mBlocknum; i++) {
sram_block = &mAud_Sram_Manager.mAud_Sram_Block[i];
if (sram_block->mValid == true && sram_block->mUser != NULL) {
has_user = true;
break;
}
}
/* get sram mode for this request */
if (force_normal) {
request_sram_mode = audio_sram_normal_mode;
} else {
if (format == SNDRV_PCM_FORMAT_S32_LE ||
format == SNDRV_PCM_FORMAT_U32_LE) {
request_sram_mode =
has_user ? mAud_Sram_Manager.sram_mode
: get_prefer_sram_mode();
} else {
request_sram_mode = audio_sram_normal_mode;
}
}
/* change sram mode if needed */
if (mAud_Sram_Manager.sram_mode != request_sram_mode) {
if (has_user) {
pr_debug("%s(), cannot change mode to %d\n", __func__,
request_sram_mode);
AfeControlSramUnLock();
return -ENOMEM;
}
mAud_Sram_Manager.sram_mode = request_sram_mode;
update_sram_block_valid(mAud_Sram_Manager.sram_mode);
}
set_sram_mode(mAud_Sram_Manager.sram_mode);
if (CheckSramAvail(mSramLength, &SramBlockidx, &SramBlockNum) == true) {
*sram_phys_addr =
mAud_Sram_Manager.mAud_Sram_Block[SramBlockidx]
.msram_phys_addr;
*msram_virt_addr =
(char *)mAud_Sram_Manager.mAud_Sram_Block[SramBlockidx]
.msram_virt_addr;
/* set aud sram with user*/
while (SramBlockNum) {
mAud_Sram_Manager.mAud_Sram_Block[SramBlockidx].mUser =
user;
SramBlockNum--;
SramBlockidx++;
}
AfeControlSramUnLock();
} else {
AfeControlSramUnLock();
ret = -ENOMEM;
}
return ret;
}
int freeAudioSram(void *user)
{
unsigned int i = 0;
struct audio_sram_block *SramBlock = NULL;
AfeControlSramLock();
for (i = 0; i < mAud_Sram_Manager.mBlocknum; i++) {
SramBlock = &mAud_Sram_Manager.mAud_Sram_Block[i];
if (SramBlock->mUser == user) {
SramBlock->mUser = NULL;
/* pr_debug("%s SramBlockidx = %d\n", __func__, i); */
}
}
AfeControlSramUnLock();
return 0;
}
/* IRQ Manager */
static int enable_aud_irq(const struct irq_user *_irq_user,
enum Soc_Aud_IRQ_MCU_MODE _irq, unsigned int _rate,
unsigned int _count)
{
SetIrqMcuSampleRate(_irq, _rate);
SetIrqMcuCounter(_irq, _count);
SetIrqEnable(_irq, true);
irq_managers[_irq].is_on = true;
irq_managers[_irq].rate = _rate;
irq_managers[_irq].count = _count;
irq_managers[_irq].selected_user = _irq_user;
return 0;
}
static int disable_aud_irq(enum Soc_Aud_IRQ_MCU_MODE _irq)
{
SetIrqEnable(_irq, false);
SetIrqMcuCounter(_irq, 0);
irq_managers[_irq].is_on = false;
irq_managers[_irq].count = 0;
irq_managers[_irq].selected_user = NULL;
return 0;
}
static int update_aud_irq(const struct irq_user *_irq_user,
enum Soc_Aud_IRQ_MCU_MODE _irq, unsigned int _count)
{
SetIrqMcuCounter(_irq, _count);
irq_managers[_irq].count = _count;
irq_managers[_irq].selected_user = _irq_user;
return 0;
}
static void dump_irq_manager(void)
{
struct irq_user *ptr;
int i;
for (i = 0; i < Soc_Aud_IRQ_MCU_MODE_NUM; i++) {
pr_info("irq_managers[%d], is_on %d, rate %d, count %d, selected_user %p\n",
i, irq_managers[i].is_on, irq_managers[i].rate,
irq_managers[i].count,
(void *)irq_managers[i].selected_user);
list_for_each_entry(ptr, &irq_managers[i].users, list) {
pr_info("\tirq_user: user %p, rate %d, count %d\n",
ptr->user, ptr->request_rate,
ptr->request_count);
}
}
}
static unsigned int get_tgt_count(unsigned int _rate, unsigned int _count,
unsigned int _tgt_rate)
{
return ((_tgt_rate / 100) * _count) / (_rate / 100);
}
static bool is_tgt_rate_ok(unsigned int _rate, unsigned int _count,
unsigned int _tgt_rate)
{
unsigned int tgt_rate = _tgt_rate / 100;
unsigned int request_rate = _rate / 100;
unsigned int target_cnt = get_tgt_count(_rate, _count, _tgt_rate);
unsigned int val_1 = _count * tgt_rate;
unsigned int val_2 = target_cnt * request_rate;
unsigned int val_3 = (IRQ_TOLERANCE_US * tgt_rate * request_rate) / 100;
if (target_cnt <= 1)
return false;
if (val_1 > val_2) {
if (val_1 - val_2 >= val_3)
return false;
} else {
if (val_2 - val_1 >= val_3)
return false;
}
return true;
}
static bool is_period_smaller(enum Soc_Aud_IRQ_MCU_MODE _irq,
struct irq_user *_user)
{
const struct irq_user *selected_user = irq_managers[_irq].selected_user;
if (selected_user != NULL) {
if (get_tgt_count(_user->request_rate, _user->request_count,
IRQ_MAX_RATE) >=
get_tgt_count(selected_user->request_rate,
selected_user->request_count, IRQ_MAX_RATE))
return false;
}
return true;
}
static const struct irq_user *
get_min_period_user(enum Soc_Aud_IRQ_MCU_MODE _irq)
{
struct irq_user *ptr;
struct irq_user *min_user = NULL;
unsigned int min_count = IRQ_MAX_RATE;
unsigned int cur_count;
if (list_empty(&irq_managers[_irq].users)) {
pr_info("error, irq_managers[%d].users is empty\n", _irq);
dump_irq_manager();
AUDIO_AEE("error, irq_managers[].users is empty\n");
}
list_for_each_entry(ptr, &irq_managers[_irq].users, list) {
cur_count = get_tgt_count(ptr->request_rate, ptr->request_count,
IRQ_MAX_RATE);
if (cur_count < min_count) {
min_count = cur_count;
min_user = ptr;
}
}
return min_user;
}
static int check_and_update_irq(const struct irq_user *_irq_user,
enum Soc_Aud_IRQ_MCU_MODE _irq)
{
if (_irq_user == NULL) {
pr_info("error, irq_user is empty\n");
return -EINVAL;
}
if (!is_tgt_rate_ok(_irq_user->request_rate, _irq_user->request_count,
irq_managers[_irq].rate)) {
/* if you got here, you should reconsider your irq usage */
pr_info("error, irq not updated, irq %d, irq rate %d, rate %d, count %d\n",
_irq, irq_managers[_irq].rate, _irq_user->request_rate,
_irq_user->request_count);
dump_irq_manager();
/* mt6797 disable for MP, enable before enter SQC !!!! */
/* AUDIO_AEE("error, irq not updated\n"); */
return -EINVAL;
}
update_aud_irq(_irq_user, _irq, get_tgt_count(_irq_user->request_rate,
_irq_user->request_count,
irq_managers[_irq].rate));
return 0;
}
int init_irq_manager(void)
{
int i;
memset((void *)&irq_managers, 0, sizeof(irq_managers));
for (i = 0; i < Soc_Aud_IRQ_MCU_MODE_NUM; i++)
INIT_LIST_HEAD(&irq_managers[i].users);
return 0;
}
int irq_add_substream_user(struct snd_pcm_substream *substream,
enum Soc_Aud_IRQ_MCU_MODE _irq, unsigned int _rate,
unsigned int _count)
{
if (substream->runtime->no_period_wakeup == true)
return 0;
else
return irq_add_user(substream, _irq, _rate, _count);
}
int irq_add_user(const void *_user, enum Soc_Aud_IRQ_MCU_MODE _irq,
unsigned int _rate, unsigned int _count)
{
unsigned long flags;
struct irq_user *new_user;
struct irq_user *ptr;
spin_lock_irqsave(&afe_control_lock, flags);
list_for_each_entry(ptr, &irq_managers[_irq].users, list) {
if (ptr->user == _user) {
pr_info("error, _user %p already exist\n", _user);
dump_irq_manager();
AUDIO_AEE("error, _user already exist\n");
}
}
/* create instance */
new_user = kzalloc(sizeof(*new_user), GFP_ATOMIC);
if (!new_user) {
spin_unlock_irqrestore(&afe_control_lock, flags);
return -ENOMEM;
}
new_user->user = _user;
new_user->request_rate = _rate;
new_user->request_count = _count;
INIT_LIST_HEAD(&new_user->list);
/* add user to list */
list_add(&new_user->list, &irq_managers[_irq].users);
/* */
if (irq_managers[_irq].is_on) {
if (is_period_smaller(_irq, new_user))
check_and_update_irq(new_user, _irq);
} else {
enable_aud_irq(new_user, _irq, _rate, _count);
}
spin_unlock_irqrestore(&afe_control_lock, flags);
return 0;
}
int irq_remove_user(const void *_user, enum Soc_Aud_IRQ_MCU_MODE _irq)
{
unsigned long flags;
struct irq_user *ptr;
struct irq_user *corr_user = NULL;
spin_lock_irqsave(&afe_control_lock, flags);
list_for_each_entry(ptr, &irq_managers[_irq].users, list) {
if (ptr->user == _user) {
corr_user = ptr;
break;
}
}
if (corr_user == NULL) {
pr_info("%s(), error, _user not found\n", __func__);
dump_irq_manager();
AUDIO_AEE("error, _user not found\n");
spin_unlock_irqrestore(&afe_control_lock, flags);
return -EINVAL;
}
/* remove from irq_handler[_irq].users */
list_del(&corr_user->list);
/* check if is selected user */
if (corr_user == irq_managers[_irq].selected_user) {
if (list_empty(&irq_managers[_irq].users))
disable_aud_irq(_irq);
else
check_and_update_irq(get_min_period_user(_irq), _irq);
}
/* free */
kfree(corr_user);
spin_unlock_irqrestore(&afe_control_lock, flags);
return 0;
}
int irq_remove_substream_user(struct snd_pcm_substream *substream,
enum Soc_Aud_IRQ_MCU_MODE _irq)
{
/* for no period wake up , do not set irq*/
if (substream->runtime->no_period_wakeup == true)
return 0;
else
return irq_remove_user(substream, _irq);
}
int irq_update_user(const void *_user, enum Soc_Aud_IRQ_MCU_MODE _irq,
unsigned int _rate, unsigned int _count)
{
unsigned long flags;
struct irq_user *ptr;
struct irq_user *corr_user = NULL;
spin_lock_irqsave(&afe_control_lock, flags);
list_for_each_entry(ptr, &irq_managers[_irq].users, list) {
if (ptr->user == _user) {
corr_user = ptr;
break;
}
}
if (corr_user == NULL) {
pr_err("%s(), error, _user not found\n", __func__);
dump_irq_manager();
AUDIO_AEE("error, _user not found\n");
spin_unlock_irqrestore(&afe_control_lock, flags);
return -EINVAL;
}
/* if _rate == 0, just update count */
if (_rate)
corr_user->request_rate = _rate;
corr_user->request_count = _count;
/* update irq user */
if (corr_user == irq_managers[_irq].selected_user) {
/* selected user */
check_and_update_irq(get_min_period_user(_irq), _irq);
} else {
/* not selected user */
if (is_period_smaller(_irq, corr_user))
check_and_update_irq(corr_user, _irq);
}
spin_unlock_irqrestore(&afe_control_lock, flags);
return 0;
}
int irq_get_total_user(enum Soc_Aud_IRQ_MCU_MODE _irq)
{
unsigned long flags;
struct irq_user *ptr;
unsigned int users = 0;
spin_lock_irqsave(&afe_control_lock, flags);
list_for_each_entry(ptr, &irq_managers[_irq].users, list) {
users++;
}
spin_unlock_irqrestore(&afe_control_lock, flags);
return users;
}
/* IRQ Manager END*/
/* memif lpbk api */
/*
* implementation of hw data delay mechanism using memif
* dl and ul memif share one same memory,
* buffer size is 2 * delay_us
* dl memif will start first, after a delay_us the ul will start
*/
static struct memif_lpbk *cur_memif_lpbk;
int memif_lpbk_enable(struct memif_lpbk *memif_lpbk)
{
size_t mem_size;
unsigned int format_bytes;
unsigned int rate = memif_lpbk->rate;
unsigned int delay_us = memif_lpbk->delay_us;
unsigned int format = memif_lpbk->format;
if (cur_memif_lpbk != NULL) {
pr_err("%s(), cur_memif_lpbk %p != NULL\n", __func__,
cur_memif_lpbk);
return -EINVAL;
}
if (memif_lpbk->enable) {
pr_err("%s(), memif_lpbk %p already enabled\n", __func__,
memif_lpbk);
return -EINVAL;
}
if (GetMemoryPathEnable(memif_lpbk->dl_memif)) {
pr_err("%s(), dl_memif %d in use\n", __func__,
memif_lpbk->dl_memif);
return -EBUSY;
}
if (GetMemoryPathEnable(memif_lpbk->ul_memif)) {
pr_err("%s(), ul_memif %d in use\n", __func__,
memif_lpbk->ul_memif);
return -EBUSY;
}
#ifdef MEMIF_LPBK_IRQ
if (irq_get_total_user(memif_lpbk->irq) != 0) {
pr_err("%s(), irq %d in use\n", __func__, memif_lpbk->irq);
return -EBUSY;
}
#endif
/* calculate memory size for delay_us */
if (format == SNDRV_PCM_FORMAT_S32_LE ||
format == SNDRV_PCM_FORMAT_U32_LE ||
format == SNDRV_PCM_FORMAT_S24_LE ||
format == SNDRV_PCM_FORMAT_U24_LE)
format_bytes = 4;
else
format_bytes = 2;
mem_size = ((delay_us * rate) / 1000000);
mem_size *= memif_lpbk->channel * format_bytes;
mem_size = word_size_align(mem_size);
pr_debug(
"%s(), ul_memif %d, dl_memif %d, rate %u, ch %u, fmt %d, delay_us %u, mem_size %zu\n",
__func__, memif_lpbk->ul_memif, memif_lpbk->dl_memif, rate,
memif_lpbk->channel, format, delay_us, mem_size);
AudDrv_Clk_On();
/* allocate memory */
memif_lpbk->dma_bytes = mem_size;
if (AllocateAudioSram(&memif_lpbk->dma_addr, &memif_lpbk->dma_area,
memif_lpbk->dma_bytes, memif_lpbk, format,
false) == 0) {
memif_lpbk->use_dram = false;
} else {
memif_lpbk->dma_area = dma_alloc_coherent(memif_lpbk->dev,
memif_lpbk->dma_bytes,
&memif_lpbk->dma_addr,
GFP_KERNEL | GFP_DMA);
if (!memif_lpbk->dma_area) {
pr_err("%s(), dma_alloc_coherent fail\n", __func__);
AudDrv_Clk_Off();
return -ENOMEM;
}
memif_lpbk->use_dram = true;
AudDrv_Emi_Clk_On();
}
memset_io(memif_lpbk->dma_area, 0, memif_lpbk->dma_bytes);
/* setup memif */
SetHighAddr(memif_lpbk->dl_memif, memif_lpbk->use_dram,
memif_lpbk->dma_addr);
SetHighAddr(memif_lpbk->ul_memif, memif_lpbk->use_dram,
memif_lpbk->dma_addr);
set_memif_addr(memif_lpbk->dl_memif, memif_lpbk->dma_addr,
memif_lpbk->dma_bytes);
SetSampleRate(memif_lpbk->dl_memif, memif_lpbk->rate);
SetChannels(memif_lpbk->dl_memif, memif_lpbk->channel);
set_memif_addr(memif_lpbk->ul_memif, memif_lpbk->dma_addr,
memif_lpbk->dma_bytes);
SetSampleRate(memif_lpbk->ul_memif, memif_lpbk->rate);
SetChannels(memif_lpbk->ul_memif, memif_lpbk->channel);
/* set memif format */
if (format == SNDRV_PCM_FORMAT_S32_LE ||
format == SNDRV_PCM_FORMAT_U32_LE ||
format == SNDRV_PCM_FORMAT_S24_LE ||
format == SNDRV_PCM_FORMAT_U24_LE) {
SetMemIfFetchFormatPerSample(
memif_lpbk->dl_memif,
AFE_WLEN_32_BIT_ALIGN_8BIT_0_24BIT_DATA);
SetMemIfFetchFormatPerSample(
memif_lpbk->ul_memif,
AFE_WLEN_32_BIT_ALIGN_8BIT_0_24BIT_DATA);
} else {
SetMemIfFetchFormatPerSample(memif_lpbk->dl_memif,
AFE_WLEN_16_BIT);
SetMemIfFetchFormatPerSample(memif_lpbk->ul_memif,
AFE_WLEN_16_BIT);
}
/* set pbuf size */
set_memif_pbuf_size(memif_lpbk->dl_memif, MEMIF_PBUF_SIZE_32_BYTES);
/* enable memif with a bit delay */
EnableAfe(true);
/* note: dl memif have prefetch buffer, it will have a leap at the
* beginning
*/
SetMemoryPathEnable(memif_lpbk->dl_memif, true);
udelay(30);
SetMemoryPathEnable(memif_lpbk->ul_memif, true);
pr_debug("%s(), memif_lpbk path hw enabled\n", __func__);
memif_lpbk->enable = true;
cur_memif_lpbk = memif_lpbk;
return 0;
}
int memif_lpbk_disable(struct memif_lpbk *memif_lpbk)
{
pr_debug("%s()\n", __func__);
if (!cur_memif_lpbk) {
pr_err("%s(), cur_memif_lpbk %p == NULL\n", __func__,
cur_memif_lpbk);
return -EINVAL;
}
if (!memif_lpbk->enable) {
pr_err("%s(), memif_lpbk %p not enabled\n", __func__,
memif_lpbk);
return -EINVAL;
}
SetMemoryPathEnable(memif_lpbk->dl_memif, false);
SetMemoryPathEnable(memif_lpbk->ul_memif, false);
/* resume pbuf size */
set_memif_pbuf_size(memif_lpbk->dl_memif, MEMIF_PBUF_SIZE_256_BYTES);
EnableAfe(false);
/* free memory */
if (memif_lpbk->use_dram) {
dma_free_coherent(memif_lpbk->dev, memif_lpbk->dma_bytes,
memif_lpbk->dma_area, memif_lpbk->dma_addr);
AudDrv_Emi_Clk_Off();
} else {
freeAudioSram(memif_lpbk);
}
AudDrv_Clk_Off();
memif_lpbk->enable = false;
cur_memif_lpbk = NULL;
return 0;
}
#ifdef MEMIF_LPBK_IRQ
int memif_lpbk_irq_handler(void)
{
pr_debug("%s()\n", __func__);
if (!cur_memif_lpbk) {
pr_err("%s(), cur_memif_lpbk %p == NULL\n", __func__,
cur_memif_lpbk);
return -EINVAL;
}
SetMemoryPathEnable(cur_memif_lpbk->ul_memif, true);
irq_remove_user(cur_memif_lpbk, cur_memif_lpbk->irq);
return 0;
}
bool memif_lpbk_is_enable(void)
{
if (cur_memif_lpbk) {
if (cur_memif_lpbk->enable)
return true;
}
return false;
}
int memif_lpbk_get_irq(void)
{
if (cur_memif_lpbk)
return cur_memif_lpbk->irq;
return 0;
}
#endif
/* api for other module */
static int irq_from_ext_module;
bool is_irq_from_ext_module(void)
{
return irq_from_ext_module > 0 ? true : false;
}
/* VCORE DVFS START*/
static void vcore_dvfs_enable(bool enable, bool reset)
{
#ifdef AUDIO_VCOREFS_SUPPORT
static DEFINE_MUTEX(vcore_control_mutex);
static int counter;
pr_debug("%s(), counter %d, enable %d, reset %d\n", __func__, counter,
enable, reset);
mutex_lock(&vcore_control_mutex);
if (enable) {
counter++;
if (counter == 1) {
vcorefs_request_dvfs_opp(KIR_AUDIO, OPPI_ULTRA_LOW_PWR);
pr_debug("%s(), OPPI_ULTRA_LOW_PWR\n", __func__);
}
} else {
counter--;
if (counter == 0) {
vcorefs_request_dvfs_opp(KIR_AUDIO, OPPI_UNREQ);
pr_debug("%s(), OPPI_UNREQ\n", __func__);
}
}
if (reset) {
counter = 0;
vcorefs_request_dvfs_opp(KIR_AUDIO, OPPI_UNREQ);
}
mutex_unlock(&vcore_control_mutex);
#endif
}
int vcore_dvfs(bool *enable, bool reset)
{
if (ScreenState == false && reset == false && *enable == false) {
*enable = true;
vcore_dvfs_enable(true, false);
} else if ((ScreenState == true || reset == true) && *enable == true) {
*enable = false;
vcore_dvfs_enable(false, false);
}
return 0;
}
EXPORT_SYMBOL(vcore_dvfs);
void set_screen_state(bool state)
{
ScreenState = state;
}
EXPORT_SYMBOL(set_screen_state);
/* VCORE DVFS END*/
struct timeval ext_time;
struct timeval ext_time_prev;
struct timeval ext_time_diff;
static struct timeval ext_diff(struct timeval start, struct timeval end)
{
struct timeval temp;
if ((end.tv_usec - start.tv_usec) < 0) {
temp.tv_sec = end.tv_sec - start.tv_sec - 1;
temp.tv_usec = 1000000 + end.tv_usec - start.tv_usec;
} else {
temp.tv_sec = end.tv_sec - start.tv_sec;
temp.tv_usec = end.tv_usec - start.tv_usec;
}
return temp;
}
int start_ext_sync_signal(void)
{
unsigned int dl1_state;
ext_sync_signal_lock();
dl1_state = GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1);
do_gettimeofday(&ext_time);
ext_time_prev = ext_time;
#if 0
pr_debug("%s(), irq_from_ext_module = %d, dl1_state = %d, time = %ld, %ld\n",
__func__,
irq_from_ext_module,
dl1_state,
ext_time.tv_sec,
ext_time.tv_usec);
#endif
irq_from_ext_module++;
if (dl1_state == true)
Auddrv_DL1_Interrupt_Handler();
ext_sync_signal_unlock();
return 0;
}
EXPORT_SYMBOL(start_ext_sync_signal);
int stop_ext_sync_signal(void)
{
unsigned int dl1_state;
ext_sync_signal_lock();
dl1_state = GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1);
do_gettimeofday(&ext_time);
ext_time_diff = ext_diff(ext_time_prev, ext_time);
ext_time_prev = ext_time;
pr_debug("%s(), irq_from_ext_module = %d, dl1_state = %d, time diff= %ld, %ld\n",
__func__, irq_from_ext_module, dl1_state, ext_time_diff.tv_sec,
ext_time_diff.tv_usec);
if (irq_from_ext_module > 0) {
irq_from_ext_module--;
} else {
irq_from_ext_module = 0;
pr_warn("%s(), irq_from_ext_module %d <= 0\n", __func__,
irq_from_ext_module);
}
if (dl1_state == true)
Auddrv_DL1_Interrupt_Handler();
ext_sync_signal_unlock();
return 0;
}
EXPORT_SYMBOL(stop_ext_sync_signal);
int ext_sync_signal(void)
{
unsigned int dl1_state;
ext_sync_signal_lock();
dl1_state = GetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1);
do_gettimeofday(&ext_time);
ext_time_diff = ext_diff(ext_time_prev, ext_time);
ext_time_prev = ext_time;
pr_debug("%s(), irq_from_ext_module = %d, dl1_state = %d, time diff= %ld, %ld\n",
__func__, irq_from_ext_module, dl1_state, ext_time_diff.tv_sec,
ext_time_diff.tv_usec);
if (irq_from_ext_module && dl1_state == true)
Auddrv_DL1_Interrupt_Handler();
ext_sync_signal_unlock();
return 0;
}
EXPORT_SYMBOL(ext_sync_signal);
static DEFINE_SPINLOCK(ext_sync_lock);
static unsigned long ext_sync_lock_flags;
void ext_sync_signal_lock(void)
{
spin_lock_irqsave(&ext_sync_lock, ext_sync_lock_flags);
}
void ext_sync_signal_unlock(void)
{
spin_unlock_irqrestore(&ext_sync_lock, ext_sync_lock_flags);
}
/* api for other modules */
static int request_sram_count;
int mtk_audio_request_sram(dma_addr_t *phys_addr, unsigned char **virt_addr,
unsigned int length, void *user)
{
int ret;
pr_debug("%s(), user = %p, length = %d, count = %d\n", __func__, user,
length, request_sram_count);
AudDrv_Clk_On();
ret = AllocateAudioSram(phys_addr, virt_addr, length, user,
SNDRV_PCM_FORMAT_S32_LE, true);
if (ret) {
pr_warn("%s(), allocate sram fail, ret %d\n", __func__, ret);
AudDrv_Clk_Off();
return ret;
}
request_sram_count++;
pr_debug("%s(), return 0, count = %d\n", __func__, request_sram_count);
return 0;
}
EXPORT_SYMBOL(mtk_audio_request_sram);
void mtk_audio_free_sram(void *user)
{
pr_debug("%s(), user = %p, count = %d\n", __func__, user,
request_sram_count);
freeAudioSram(user);
AudDrv_Clk_Off();
request_sram_count--;
pr_debug("%s(), return, count = %d\n", __func__, request_sram_count);
}
EXPORT_SYMBOL(mtk_audio_free_sram);
static snd_pcm_uframes_t
get_dlmem_frame_index(struct snd_pcm_substream *substream,
struct afe_mem_control_t *afe_mem_control,
enum soc_aud_digital_block mem_block)
{
kal_int32 HW_memory_index = 0;
kal_int32 HW_Cur_ReadIdx = 0;
unsigned long Frameidx = 0;
kal_int32 Afe_consumed_bytes = 0;
struct afe_block_t *Afe_Block = &afe_mem_control->rBlock;
unsigned long flags;
if (afe_mem_control == NULL) {
pr_err("%s err afe_mem_control = NULL", __func__);
return 0;
}
spin_lock_irqsave(&afe_mem_control->substream_lock, flags);
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug(" %s u4DMAReadIdx = 0x%x\n", __func__,
Afe_Block->u4DMAReadIdx);
#endif
if (GetMemoryPathEnable(mem_block) == true) {
switch (mem_block) {
case Soc_Aud_Digital_Block_MEM_DL1:
HW_Cur_ReadIdx = Afe_Get_Reg(AFE_DL1_CUR);
break;
case Soc_Aud_Digital_Block_MEM_DL2:
HW_Cur_ReadIdx = Afe_Get_Reg(AFE_DL2_CUR);
break;
case Soc_Aud_Digital_Block_MEM_DL3:
break;
default:
pr_info("%s err mem_block = %d", __func__, mem_block);
}
if (HW_Cur_ReadIdx == 0) {
pr_warn("[Auddrv] HW_Cur_ReadIdx ==0\n");
HW_Cur_ReadIdx = Afe_Block->pucPhysBufAddr;
}
HW_memory_index = (HW_Cur_ReadIdx - Afe_Block->pucPhysBufAddr);
if (HW_memory_index >= Afe_Block->u4DMAReadIdx)
Afe_consumed_bytes =
HW_memory_index - Afe_Block->u4DMAReadIdx;
else {
Afe_consumed_bytes = Afe_Block->u4BufferSize +
HW_memory_index -
Afe_Block->u4DMAReadIdx;
}
Afe_consumed_bytes = word_size_align(Afe_consumed_bytes);
/* if using mmap , do not calculate data remain*/
switch (substream->runtime->access) {
case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
break;
case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
default:
Afe_Block->u4DataRemained -= Afe_consumed_bytes;
break;
}
Afe_Block->u4DMAReadIdx += Afe_consumed_bytes;
Afe_Block->u4DMAReadIdx %= Afe_Block->u4BufferSize;
if (Afe_Block->u4DataRemained < 0) {
static DEFINE_RATELIMIT_STATE(_rs, HZ, 5);
if (__ratelimit(&_rs)) {
pr_warn(
"[AudioWarn] u4DataRemained=0x%x, mem_block %d\n",
Afe_Block->u4DataRemained, mem_block);
}
};
Frameidx = bytes_to_frames(substream->runtime,
Afe_Block->u4DMAReadIdx);
} else {
Frameidx = bytes_to_frames(substream->runtime,
Afe_Block->u4DMAReadIdx);
}
spin_unlock_irqrestore(&afe_mem_control->substream_lock, flags);
return Frameidx;
}
static snd_pcm_uframes_t
get_ulmem_frame_index(struct snd_pcm_substream *substream,
struct afe_mem_control_t *afe_mem_control,
enum soc_aud_digital_block mem_block)
{
kal_int32 HW_memory_index = 0;
kal_int32 HW_Cur_ReadIdx = 0;
kal_int32 Hw_Get_bytes = 0;
bool bIsOverflow = false;
unsigned long flags;
struct afe_block_t *UL1_Block = &(afe_mem_control->rBlock);
/* pr_debug("%s Awb_Block->u4WriteIdx;= 0x%x\n", __func__,
* UL1_Block->u4WriteIdx);
*/
mem_blk_spinlock(mem_block);
spin_lock_irqsave(&afe_mem_control->substream_lock, flags);
/* pr_debug("mtk_capture_pcm_pointer UL1_Block->u4WriteIdx= 0x%x,
* u4DataRemained=0x%x\n", UL1_Block->u4WriteIdx,
* UL1_Block->u4DataRemained);
*/
if (GetMemoryPathEnable(mem_block) == true) {
switch (mem_block) {
case Soc_Aud_Digital_Block_MEM_VUL:
HW_Cur_ReadIdx =
word_size_align(Afe_Get_Reg(AFE_VUL_CUR));
break;
case Soc_Aud_Digital_Block_MEM_DAI:
HW_Cur_ReadIdx =
word_size_align(Afe_Get_Reg(AFE_DAI_CUR));
break;
case Soc_Aud_Digital_Block_MEM_AWB:
HW_Cur_ReadIdx =
word_size_align(Afe_Get_Reg(AFE_AWB_CUR));
break;
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
HW_Cur_ReadIdx =
word_size_align(Afe_Get_Reg(AFE_MOD_DAI_CUR));
break;
case Soc_Aud_Digital_Block_MEM_VUL_DATA2:
HW_Cur_ReadIdx =
word_size_align(Afe_Get_Reg(AFE_VUL_D2_CUR));
break;
case Soc_Aud_Digital_Block_MEM_VUL2:
HW_Cur_ReadIdx =
word_size_align(Afe_Get_Reg(AFE_VUL2_CUR));
break;
default:
pr_err("%s error mem_block = %d", __func__, mem_block);
}
if (HW_Cur_ReadIdx == 0) {
/* pr_debug("[Auddrv] %s HW_Cur_ReadIdx ==0\n",
* __func__);
*/
HW_Cur_ReadIdx = UL1_Block->pucPhysBufAddr;
}
HW_memory_index = (HW_Cur_ReadIdx - UL1_Block->pucPhysBufAddr);
/* update for data get to hardware */
Hw_Get_bytes = (HW_Cur_ReadIdx - UL1_Block->pucPhysBufAddr) -
UL1_Block->u4WriteIdx;
if (Hw_Get_bytes < 0)
Hw_Get_bytes += UL1_Block->u4BufferSize;
UL1_Block->u4WriteIdx += Hw_Get_bytes;
UL1_Block->u4WriteIdx %= UL1_Block->u4BufferSize;
/* if using mmap , do not calculate dataremind*/
switch (substream->runtime->access) {
case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
break;
case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
default:
UL1_Block->u4DataRemained += Hw_Get_bytes;
/* buffer overflow */
if (UL1_Block->u4DataRemained >
UL1_Block->u4BufferSize) {
bIsOverflow = true;
pr_info("%s buffer overflow u4DMAReadIdx:%x, u4WriteIdx:%x, DataRemained:%x, BufferSize:%x\n",
__func__, UL1_Block->u4DMAReadIdx,
UL1_Block->u4WriteIdx,
UL1_Block->u4DataRemained,
UL1_Block->u4BufferSize);
#if defined(CONFIG_MT_USERDEBUG_BUILD)
AUDIO_AEE("ulmem_frame_index - UL overflow");
#endif
}
break;
}
/* pr_debug("[Auddrv] mtk_capture_pcm_pointer =0x%x
* HW_memory_index = 0x%x\n",
* HW_Cur_ReadIdx, HW_memory_index);
*/
spin_unlock_irqrestore(&afe_mem_control->substream_lock, flags);
mem_blk_spinunlock(mem_block);
if (bIsOverflow == true)
return -1;
return audio_bytes_to_frame(substream, HW_memory_index);
}
spin_unlock_irqrestore(&afe_mem_control->substream_lock, flags);
mem_blk_spinunlock(mem_block);
return 0;
}
snd_pcm_uframes_t get_mem_frame_index(struct snd_pcm_substream *substream,
struct afe_mem_control_t *afe_mem_control,
enum soc_aud_digital_block mem_block)
{
switch (mem_block) {
case Soc_Aud_Digital_Block_MEM_DL1:
case Soc_Aud_Digital_Block_MEM_DL2:
case Soc_Aud_Digital_Block_MEM_DL3:
return get_dlmem_frame_index(substream, afe_mem_control,
mem_block);
case Soc_Aud_Digital_Block_MEM_VUL:
case Soc_Aud_Digital_Block_MEM_VUL2:
case Soc_Aud_Digital_Block_MEM_DAI:
case Soc_Aud_Digital_Block_MEM_AWB:
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
case Soc_Aud_Digital_Block_MEM_VUL_DATA2:
return get_ulmem_frame_index(substream, afe_mem_control,
mem_block);
default:
pr_warn("%s not support", __func__);
}
return 0;
}
void mem_blk_spinlock(enum soc_aud_digital_block mem_blk)
{
switch (mem_blk) {
case Soc_Aud_Digital_Block_MEM_DL1:
spin_lock_irqsave(
&afe_mem_blk_dl1_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DL1]);
break;
case Soc_Aud_Digital_Block_MEM_DL2:
spin_lock_irqsave(
&afe_mem_blk_dl2_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DL2]);
break;
case Soc_Aud_Digital_Block_MEM_DL3:
spin_lock_irqsave(
&afe_mem_blk_dl3_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DL3]);
break;
case Soc_Aud_Digital_Block_MEM_DL1_DATA2:
spin_lock_irqsave(
&afe_mem_blk_dl1_2_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DL1_DATA2]);
break;
case Soc_Aud_Digital_Block_MEM_VUL:
spin_lock_irqsave(
&afe_mem_blk_ul1_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_VUL]);
break;
case Soc_Aud_Digital_Block_MEM_DAI:
spin_lock_irqsave(
&afe_mem_blk_dai_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DAI]);
break;
case Soc_Aud_Digital_Block_MEM_AWB:
spin_lock_irqsave(
&afe_mem_blk_awb_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_AWB]);
break;
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
spin_lock_irqsave(
&afe_mem_blk_moddai_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_MOD_DAI]);
break;
case Soc_Aud_Digital_Block_MEM_VUL_DATA2:
spin_lock_irqsave(
&afe_mem_blk_ul2_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_VUL_DATA2]);
break;
case Soc_Aud_Digital_Block_MEM_VUL2:
spin_lock_irqsave(
&afe_mem_blk_ul3_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_VUL2]);
break;
default:
pr_warn("%s is not support", __func__);
}
}
void mem_blk_spinunlock(enum soc_aud_digital_block mem_blk)
{
switch (mem_blk) {
case Soc_Aud_Digital_Block_MEM_DL1:
spin_unlock_irqrestore(
&afe_mem_blk_dl1_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DL1]);
break;
case Soc_Aud_Digital_Block_MEM_DL2:
spin_unlock_irqrestore(
&afe_mem_blk_dl2_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DL2]);
break;
case Soc_Aud_Digital_Block_MEM_DL3:
spin_unlock_irqrestore(
&afe_mem_blk_dl3_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DL3]);
break;
case Soc_Aud_Digital_Block_MEM_DL1_DATA2:
spin_unlock_irqrestore(
&afe_mem_blk_dl1_2_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DL1_DATA2]);
break;
case Soc_Aud_Digital_Block_MEM_VUL:
spin_unlock_irqrestore(
&afe_mem_blk_ul1_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_VUL]);
break;
case Soc_Aud_Digital_Block_MEM_DAI:
spin_unlock_irqrestore(
&afe_mem_blk_dai_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_DAI]);
break;
case Soc_Aud_Digital_Block_MEM_AWB:
spin_unlock_irqrestore(
&afe_mem_blk_awb_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_AWB]);
break;
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
spin_unlock_irqrestore(
&afe_mem_blk_moddai_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_MOD_DAI]);
break;
case Soc_Aud_Digital_Block_MEM_VUL_DATA2:
spin_unlock_irqrestore(
&afe_mem_blk_ul2_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_VUL_DATA2]);
break;
case Soc_Aud_Digital_Block_MEM_VUL2:
spin_unlock_irqrestore(
&afe_mem_blk_ul3_lock,
spinlock_flags[Soc_Aud_Digital_Block_MEM_VUL2]);
break;
default:
pr_warn("%s is not support", __func__);
}
}
static int mtk_mem_dlblk_copy(struct snd_pcm_substream *substream, int channel,
unsigned long pos, void __user *dst,
unsigned long count,
struct afe_mem_control_t *pMemControl,
enum soc_aud_digital_block mem_blk)
{
struct afe_block_t *Afe_Block = NULL;
int copy_size = 0, Afe_WriteIdx_tmp;
char *data_w_ptr = (char *)dst;
/* check which memif nned to be write */
Afe_Block = &pMemControl->rBlock;
/* handle for buffer management */
/* pr_debug(" WriteIdx=0x%x, ReadIdx=0x%x, DataRemained=0x%x\n",
* Afe_Block->u4WriteIdx, Afe_Block->u4DMAReadIdx,
* Afe_Block->u4DataRemained);
*/
if (Afe_Block->u4BufferSize == 0) {
pr_err(" u4BufferSize=0 Error");
return 0;
}
if (mem_blk == Soc_Aud_Digital_Block_MEM_DL1)
AudDrv_checkDLISRStatus();
mem_blk_spinlock(mem_blk);
/* free space of the buffer */
copy_size = Afe_Block->u4BufferSize - Afe_Block->u4DataRemained;
mem_blk_spinunlock(mem_blk);
if (count <= copy_size) {
if (copy_size < 0)
copy_size = 0;
else
copy_size = count;
}
copy_size = word_size_align(copy_size);
if (copy_size != 0) {
mem_blk_spinlock(mem_blk);
Afe_WriteIdx_tmp = Afe_Block->u4WriteIdx;
mem_blk_spinunlock(mem_blk);
if (Afe_WriteIdx_tmp + copy_size <
Afe_Block->u4BufferSize) { /* copy once */
if (!access_ok(VERIFY_READ, data_w_ptr, copy_size)) {
pr_warn("0 w_ptr=%p, size=%d Size=%d,left=%d",
data_w_ptr, copy_size,
Afe_Block->u4BufferSize,
Afe_Block->u4DataRemained);
} else {
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug(
"memcpy Idx= %p data_w_ptr = %p copy_size = 0x%x\n",
Afe_Block->pucVirtBufAddr +
Afe_WriteIdx_tmp,
data_w_ptr, copy_size);
#endif
if (copy_from_user((Afe_Block->pucVirtBufAddr +
Afe_WriteIdx_tmp),
data_w_ptr, copy_size)) {
pr_warn("[AudioWarn] Fail copy from user\n");
return -1;
}
}
mem_blk_spinlock(mem_blk);
Afe_Block->u4DataRemained += copy_size;
Afe_Block->u4WriteIdx = Afe_WriteIdx_tmp + copy_size;
Afe_Block->u4WriteIdx %= Afe_Block->u4BufferSize;
mem_blk_spinunlock(mem_blk);
data_w_ptr += copy_size;
count -= copy_size;
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug("finish1, copy_size:%x, WriteIdx:%x, ReadIdx=%x, Remained:%x, count=%x \r\n",
copy_size, Afe_Block->u4WriteIdx,
Afe_Block->u4DMAReadIdx,
Afe_Block->u4DataRemained,
(unsigned int)count);
#endif
} else { /* copy twice */
kal_uint32 size_1 = 0, size_2 = 0;
size_1 = word_size_align(
(Afe_Block->u4BufferSize - Afe_WriteIdx_tmp));
size_2 = word_size_align((copy_size - size_1));
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug("size_1=0x%x, size_2=0x%x\n", size_1,
size_2);
#endif
if (!access_ok(VERIFY_READ, data_w_ptr, size_1)) {
pr_warn("1 w_ptr=%p, size_1=%d bSize=%d,left=%d",
data_w_ptr, size_1,
Afe_Block->u4BufferSize,
Afe_Block->u4DataRemained);
} else {
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug(
"mcmcpy Idx= %p data_w_ptr = %p size_1 = %x\n",
Afe_Block->pucVirtBufAddr +
Afe_WriteIdx_tmp,
data_w_ptr, size_1);
#endif
if ((copy_from_user((Afe_Block->pucVirtBufAddr +
Afe_WriteIdx_tmp),
data_w_ptr, size_1))) {
pr_warn(" Fail 1 copy from user");
return -1;
}
}
mem_blk_spinlock(mem_blk);
Afe_Block->u4DataRemained += size_1;
Afe_Block->u4WriteIdx = Afe_WriteIdx_tmp + size_1;
Afe_Block->u4WriteIdx %= Afe_Block->u4BufferSize;
Afe_WriteIdx_tmp = Afe_Block->u4WriteIdx;
mem_blk_spinunlock(mem_blk);
if (!access_ok(VERIFY_READ, data_w_ptr + size_1,
size_2)) {
pr_warn("2ptr invalid data_w_ptr=%p, size_1=%d, size_2=%d u4BufferSize=%d, u4DataRemained=%d",
data_w_ptr, size_1, size_2,
Afe_Block->u4BufferSize,
Afe_Block->u4DataRemained
);
} else {
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug(
"mcmcpy Idx= %p data_w_ptr+size_1 = %p size_2 = %x\n",
Afe_Block->pucVirtBufAddr +
Afe_WriteIdx_tmp,
data_w_ptr + size_1, size_2);
#endif
if ((copy_from_user((Afe_Block->pucVirtBufAddr +
Afe_WriteIdx_tmp),
(data_w_ptr + size_1),
size_2))) {
pr_warn("AudDrv_write Fail 2 copy from user");
return -1;
}
}
mem_blk_spinlock(mem_blk);
Afe_Block->u4DataRemained += size_2;
Afe_Block->u4WriteIdx = Afe_WriteIdx_tmp + size_2;
Afe_Block->u4WriteIdx %= Afe_Block->u4BufferSize;
mem_blk_spinunlock(mem_blk);
count -= copy_size;
data_w_ptr += copy_size;
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug("finish2, copy size:%x, WriteIdx:%x,ReadIdx=%x DataRemained:%x \r\n",
copy_size, Afe_Block->u4WriteIdx,
Afe_Block->u4DMAReadIdx,
Afe_Block->u4DataRemained);
#endif
}
}
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug("pcm_copy return\n");
#endif
return 0;
}
static bool CheckNullPointer(void *pointer)
{
if (pointer == NULL) {
pr_info("%s(), pointer = NULL", __func__);
return true;
}
return false;
}
static int mtk_mem_ulblk_copy(struct snd_pcm_substream *substream, int channel,
unsigned long pos, void __user *dst,
unsigned long count,
struct afe_mem_control_t *pMemControl,
enum soc_aud_digital_block mem_blk)
{
struct afe_mem_control_t *pVUL_MEM_ConTrol = NULL;
struct afe_block_t *Vul_Block = NULL;
char *Read_Data_Ptr = (char *)dst;
ssize_t DMA_Read_Ptr = 0, read_size = 0, read_count = 0;
struct snd_pcm_runtime *runtime = substream->runtime;
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug("%s(), pos = %lucount = %lu\n ", __func__, pos,
count);
#endif
/* check which memif nned to be write */
pVUL_MEM_ConTrol = pMemControl;
Vul_Block = &(pVUL_MEM_ConTrol->rBlock);
if (pVUL_MEM_ConTrol == NULL) {
pr_warn("cannot find MEM control !!!!!!!\n");
msleep(50);
return 0;
}
if (Vul_Block->u4BufferSize <= 0) {
msleep(50);
pr_err("Vul_Block->u4BufferSize <= 0 =%d\n",
Vul_Block->u4BufferSize);
return 0;
}
if (CheckNullPointer((void *)Vul_Block->pucVirtBufAddr)) {
pr_err("CheckNullPointer pucVirtBufAddr = %p\n",
Vul_Block->pucVirtBufAddr);
return 0;
}
mem_blk_spinlock(mem_blk);
if (Vul_Block->u4DataRemained > Vul_Block->u4BufferSize) {
/* pr_debug("%s u4DataRemained=%x > u4BufferSize=%x",
* __func__, Vul_Block->u4DataRemained,
* Vul_Block->u4BufferSize);
*/
Vul_Block->u4DataRemained = 0;
Vul_Block->u4DMAReadIdx = Vul_Block->u4WriteIdx;
}
if (count > Vul_Block->u4DataRemained)
read_size = Vul_Block->u4DataRemained;
else
read_size = count;
DMA_Read_Ptr = Vul_Block->u4DMAReadIdx;
mem_blk_spinunlock(mem_blk);
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug(
"%s finish0, read_count:%x, read_size:%x, Remained:%x, ReadIdx:0x%x, WriteIdx:%x \r\n",
__func__, (unsigned int)read_count, (unsigned int)read_size,
Vul_Block->u4DataRemained, Vul_Block->u4DMAReadIdx,
Vul_Block->u4WriteIdx);
#endif
if (DMA_Read_Ptr + read_size < Vul_Block->u4BufferSize) {
if (DMA_Read_Ptr != Vul_Block->u4DMAReadIdx) {
pr_warn("%s 1, read_size:%zu, Remained:%x, Ptr:%zu, DMAReadIdx:%x \r\n",
__func__, read_size, Vul_Block->u4DataRemained,
DMA_Read_Ptr, Vul_Block->u4DMAReadIdx);
}
if (copy_to_user((void __user *)Read_Data_Ptr,
(Vul_Block->pucVirtBufAddr + DMA_Read_Ptr),
read_size)) {
pr_err("%s Fail 1 copy to user Ptr:%p, Addr:%p, ReadIdx:0x%x, Read_Ptr:%zu,size:%zu",
__func__, Read_Data_Ptr,
Vul_Block->pucVirtBufAddr,
Vul_Block->u4DMAReadIdx, DMA_Read_Ptr,
read_size);
return 0;
}
read_count += read_size;
mem_blk_spinlock(mem_blk);
Vul_Block->u4DataRemained -= read_size;
Vul_Block->u4DMAReadIdx += read_size;
Vul_Block->u4DMAReadIdx %= Vul_Block->u4BufferSize;
DMA_Read_Ptr = Vul_Block->u4DMAReadIdx;
mem_blk_spinunlock(mem_blk);
Read_Data_Ptr += read_size;
count -= read_size;
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug(
"%s finish1, copy size:%x, ReadIdx:0x%x, WriteIdx:%x, Remained:%x \r\n",
__func__, (unsigned int)read_size,
Vul_Block->u4DMAReadIdx, Vul_Block->u4WriteIdx,
Vul_Block->u4DataRemained);
#endif
}
else {
unsigned int size_1 = Vul_Block->u4BufferSize - DMA_Read_Ptr;
unsigned int size_2 = read_size - size_1;
if (DMA_Read_Ptr != Vul_Block->u4DMAReadIdx) {
pr_warn("%s 2, read_size1:%x, Remained:%x, Read_Ptr:%zu, ReadIdx:%x \r\n",
__func__, size_1, Vul_Block->u4DataRemained,
DMA_Read_Ptr, Vul_Block->u4DMAReadIdx);
}
if (copy_to_user((void __user *)Read_Data_Ptr,
(Vul_Block->pucVirtBufAddr + DMA_Read_Ptr),
(unsigned int)size_1)) {
pr_err("%s Fail 2 copy to user Ptr:%p, Addr:%p, ReadIdx:0x%x, Read_Ptr:%zu,read_size:%zu",
__func__, Read_Data_Ptr,
Vul_Block->pucVirtBufAddr,
Vul_Block->u4DMAReadIdx, DMA_Read_Ptr,
read_size);
return 0;
}
read_count += size_1;
mem_blk_spinlock(mem_blk);
Vul_Block->u4DataRemained -= size_1;
Vul_Block->u4DMAReadIdx += size_1;
Vul_Block->u4DMAReadIdx %= Vul_Block->u4BufferSize;
DMA_Read_Ptr = Vul_Block->u4DMAReadIdx;
mem_blk_spinunlock(mem_blk);
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug(
"%s finish2, copy size_1:%x, ReadIdx:0x%x, WriteIdx:0x%x, Remained:%x \r\n",
__func__, size_1, Vul_Block->u4DMAReadIdx,
Vul_Block->u4WriteIdx, Vul_Block->u4DataRemained);
#endif
if (DMA_Read_Ptr != Vul_Block->u4DMAReadIdx) {
pr_warn("%s 3, read_size2:%x, Remained:%x, DMA_Read_Ptr:%zu, DMAReadIdx:%x \r\n",
__func__, size_2, Vul_Block->u4DataRemained,
DMA_Read_Ptr, Vul_Block->u4DMAReadIdx);
}
if (copy_to_user((void __user *)(Read_Data_Ptr + size_1),
(Vul_Block->pucVirtBufAddr + DMA_Read_Ptr),
size_2)) {
pr_err("%s Fail 3 copy to user Ptr:%p, Addr:%p, ReadIdx:0x%x , Read_Ptr:%zu, read_size:%zu",
__func__, Read_Data_Ptr,
Vul_Block->pucVirtBufAddr,
Vul_Block->u4DMAReadIdx, DMA_Read_Ptr,
read_size);
return bytes_to_frames(runtime, read_count);
}
read_count += size_2;
mem_blk_spinlock(mem_blk);
Vul_Block->u4DataRemained -= size_2;
Vul_Block->u4DMAReadIdx += size_2;
DMA_Read_Ptr = Vul_Block->u4DMAReadIdx;
mem_blk_spinunlock(mem_blk);
count -= read_size;
Read_Data_Ptr += read_size;
#ifdef AFE_CONTROL_DEBUG_LOG
pr_debug(
"%s finish3, copy size_2:%x, u4DMAReadIdx:0x%x, u4WriteIdx:0x%x u4DataRemained:%x \r\n",
__func__, size_2, Vul_Block->u4DMAReadIdx,
Vul_Block->u4WriteIdx, Vul_Block->u4DataRemained);
#endif
}
return bytes_to_frames(runtime, read_count);
}
int mtk_memblk_copy(struct snd_pcm_substream *substream, int channel,
unsigned long pos, void __user *dst,
unsigned long count,
struct afe_mem_control_t *pMemControl,
enum soc_aud_digital_block mem_blk)
{
if (pMemControl == NULL)
return 0;
switch (mem_blk) {
case Soc_Aud_Digital_Block_MEM_DL1:
case Soc_Aud_Digital_Block_MEM_DL2:
case Soc_Aud_Digital_Block_MEM_DL3:
mtk_mem_dlblk_copy(substream, channel, pos, dst, count,
pMemControl, mem_blk);
break;
case Soc_Aud_Digital_Block_MEM_VUL:
case Soc_Aud_Digital_Block_MEM_DAI:
case Soc_Aud_Digital_Block_MEM_AWB:
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
case Soc_Aud_Digital_Block_MEM_VUL_DATA2:
case Soc_Aud_Digital_Block_MEM_VUL2:
mtk_mem_ulblk_copy(substream, channel, pos, dst, count,
pMemControl, mem_blk);
break;
default:
pr_info("%s not support", __func__);
}
return 0;
}
int set_memif_addr(int mem_blk, dma_addr_t addr, size_t size)
{
int ret;
/* by platform to implement*/
if (s_mem_blk_ops != NULL &&
s_mem_blk_ops->set_chip_memif_addr != NULL) {
ret = s_mem_blk_ops->set_chip_memif_addr(mem_blk, addr, size);
return ret;
}
/* set address hardware , default implemant*/
switch (mem_blk) {
case Soc_Aud_Digital_Block_MEM_DL1:
Afe_Set_Reg(AFE_DL1_BASE, addr, 0xffffffff);
Afe_Set_Reg(AFE_DL1_END, addr + (size - 1), 0xffffffff);
break;
case Soc_Aud_Digital_Block_MEM_DL2:
Afe_Set_Reg(AFE_DL2_BASE, addr, 0xffffffff);
Afe_Set_Reg(AFE_DL2_END, addr + (size - 1), 0xffffffff);
break;
case Soc_Aud_Digital_Block_MEM_VUL:
Afe_Set_Reg(AFE_VUL_BASE, addr, 0xffffffff);
Afe_Set_Reg(AFE_VUL_END, addr + (size - 1), 0xffffffff);
break;
case Soc_Aud_Digital_Block_MEM_DAI:
Afe_Set_Reg(AFE_DAI_BASE, addr, 0xffffffff);
Afe_Set_Reg(AFE_DAI_END, addr + (size - 1), 0xffffffff);
break;
case Soc_Aud_Digital_Block_MEM_MOD_DAI:
Afe_Set_Reg(AFE_MOD_DAI_BASE, addr, 0xffffffff);
Afe_Set_Reg(AFE_MOD_DAI_END, addr + (size - 1), 0xffffffff);
break;
case Soc_Aud_Digital_Block_MEM_VUL_DATA2:
Afe_Set_Reg(AFE_VUL_D2_BASE, addr, 0xffffffff);
Afe_Set_Reg(AFE_VUL_D2_END, addr + (size - 1), 0xffffffff);
break;
case Soc_Aud_Digital_Block_MEM_AWB:
Afe_Set_Reg(AFE_AWB_BASE, addr, 0xffffffff);
Afe_Set_Reg(AFE_AWB_END, addr + (size - 1), 0xffffffff);
break;
case Soc_Aud_Digital_Block_MEM_DL1_DATA2:
case Soc_Aud_Digital_Block_MEM_DL3:
case Soc_Aud_Digital_Block_MEM_HDMI:
default:
pr_warn("%s not suuport mem_blk = %d", __func__, mem_blk);
return -EINVAL;
}
return 0;
}
int set_mem_block(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params,
struct afe_mem_control_t *pMemControl,
enum soc_aud_digital_block mem_blk)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct afe_block_t *pblock = &pMemControl->rBlock;
pblock->pucPhysBufAddr = runtime->dma_addr;
pblock->pucVirtBufAddr = runtime->dma_area;
pblock->u4BufferSize = runtime->dma_bytes;
pblock->u4SampleNumMask = 0x001f; /* 32 byte align */
pblock->u4WriteIdx = 0;
pblock->u4DMAReadIdx = 0;
pblock->u4DataRemained = 0;
pblock->u4fsyncflag = false;
pblock->uResetFlag = true;
/*
*pr_debug("%s u4BufferSize = %d pucVirtBufAddr = %p pucPhysBufAddr =
*0x%x\n",
* __func__, pblock->u4BufferSize, pblock->pucVirtBufAddr,
*pblock->pucPhysBufAddr);
*/
set_memif_addr(mem_blk, pblock->pucPhysBufAddr, pblock->u4BufferSize);
memset_io((void *)pblock->pucVirtBufAddr, 0, pblock->u4BufferSize);
return 0;
}
bool handle_suspend(bool suspend)
{
bool ret = false;
if (s_afe_platform_ops->handle_suspend != NULL) {
s_afe_platform_ops->handle_suspend(suspend);
ret = true;
}
return ret;
}
void set_mem_blk_ops(struct mtk_mem_blk_ops *ops)
{
s_mem_blk_ops = ops;
}
void set_afe_platform_ops(struct mtk_afe_platform_ops *ops)
{
s_afe_platform_ops = ops;
}
struct mtk_afe_platform_ops *get_afe_platform_ops(void)
{
return s_afe_platform_ops;
}
/* low latency debug */
int get_LowLatencyDebug(void)
{
return LowLatencyDebug;
}
void set_LowLatencyDebug(unsigned int bFlag)
{
LowLatencyDebug = bFlag;
pr_debug("%s LowLatencyDebug = %d\n", __func__, LowLatencyDebug);
}
int mtk_pcm_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
struct snd_pcm_runtime *runtime = substream->runtime;
pr_debug("+%s dma_mmap_coherent\n", __func__);
/* set mmap meory with no cache*/
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
return dma_mmap_coherent(substream->pcm->card->dev, vma,
runtime->dma_area, runtime->dma_addr,
runtime->dma_bytes);
}
/* calculate the target DMA-buffer position to be written/read */
static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
int channel, unsigned long hwoff)
{
return runtime->dma_area + hwoff +
channel * (runtime->dma_bytes / runtime->channels);
}
/* default copy_user ops for write; used for both interleaved and non- modes */
static int default_write_copy(struct snd_pcm_substream *substream,
int channel, unsigned long hwoff,
void *buf, unsigned long bytes)
{
if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
(void __user *)buf, bytes))
return -EFAULT;
return 0;
}
/* default copy_user ops for read; used for both interleaved and non- modes */
static int default_read_copy(struct snd_pcm_substream *substream,
int channel, unsigned long hwoff,
void *buf, unsigned long bytes)
{
if (copy_to_user((void __user *)buf,
get_dma_ptr(substream->runtime, channel, hwoff),
bytes))
return -EFAULT;
return 0;
}
int mtk_afe_pcm_copy(struct snd_pcm_substream *substream,
int channel, unsigned long hwoff,
void *buf, unsigned long bytes)
{
int (*sp_copy)(struct snd_pcm_substream *substream,
int channel, unsigned long hwoff,
void *buf, unsigned long bytes) = NULL;
int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
sp_copy = is_playback ? default_write_copy : default_read_copy;
sp_copy(substream, channel, hwoff,
(void __user *)buf, bytes);
return 0;
}