kernel_samsung_a34x-permissive/drivers/misc/mediatek/usb20/musb_host.c

3436 lines
89 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 MediaTek Inc.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/usb/ch9.h>
#include <linux/dma-mapping.h>
#include "musb_core.h"
#include "musb_host.h"
#include "musb_qmu.h"
/* MUSB HOST status 22-mar-2006
*
* - There's still lots of partial code duplication for fault paths, so
* they aren't handled as consistently as they need to be.
*
* - PIO mostly behaved when last tested.
* + including ep0, with all usbtest cases 9, 10
* + usbtest 14 (ep0out) doesn't seem to run at all
* + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
* configurations, but otherwise double buffering passes basic tests.
* + for 2.6.N, for N > ~10, needs API changes for hcd framework.
*
* - DMA (CPPI) ... partially behaves, not currently recommended
* + about 1/15 the speed of typical EHCI implementations (PCI)
* + RX, all too often reqpkt seems to misbehave after tx
* + TX, no known issues (other than evident silicon issue)
*
* - DMA (Mentor/OMAP) ...has at least toggle update problems
*
* - [23-feb-2009] minimal traffic scheduling to avoid bulk RX packet
* starvation ... nothing yet for TX, interrupt, or bulk.
*
* - Not tested with HNP, but some SRP paths seem to behave.
*
* NOTE 24-August-2006:
*
* - Bulk traffic finally uses both sides of hardware ep1, freeing up an
* extra endpoint for periodic use enabling hub + keybd + mouse. That
* mostly works, except that with "usbnet" it's easy to trigger cases
* with "ping" where RX loses. (a) ping to davinci, even "ping -f",
* fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
* although ARP RX wins. (That test was done with a full speed link.)
*/
/*
* NOTE on endpoint usage:
*
* CONTROL transfers all go through ep0. BULK ones go through dedicated IN
* and OUT endpoints ... hardware is dedicated for those "async" queue(s).
* (Yes, bulk _could_ use more of the endpoints than that, and would even
* benefit from it.)
*
* INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
* So far that scheduling is both dumb and optimistic: the endpoint will be
* "claimed" until its software queue is no longer refilled. No multiplexing
* of transfers between endpoints, or anything clever.
*/
static struct usb_host_endpoint pre_hep;
static u8 dynamic_fifo_total_slot = 15;
enum {
TX_OPS_PIO,
TX_OPS_DMAMODE0,
TX_OPS_DMAMODE1,
TX_OPS_DMAMODE1_SHORT,
};
static int last_tx_ops;
static int last_tx_len;
static u8 last_c_size;
void dump_tx_ops(u8 ep_num)
{
u8 c_size;
void __iomem *mbase = mtk_musb->mregs;
musb_writeb(mbase, MUSB_INDEX, ep_num);
c_size = musb_read_txfifosz(mbase);
dump_stack();
DBG(0, "ep<%d>, ops<%d>, len<%d> c_size<%x, %x>\n",
ep_num,
last_tx_ops,
last_tx_len,
last_c_size,
c_size);
}
void musb_host_tx_db_enable(struct musb *musb,
u8 epnum, bool enable, int ops, int len)
{
u8 c_size;
void __iomem *mbase = musb->mregs;
bool cur_dpb;
bool need_update = false;
musb_writeb(musb->mregs, MUSB_INDEX, epnum);
c_size = musb_read_txfifosz(mbase);
cur_dpb = c_size & MUSB_FIFOSZ_DPB;
if (enable && !cur_dpb) {
c_size |= MUSB_FIFOSZ_DPB;
need_update = true;
} else if (!enable && cur_dpb) {
c_size &= ~(MUSB_FIFOSZ_DPB);
need_update = true;
DBG_LIMIT(1, "to disable, c_size<%x>",
c_size);
}
if (need_update) {
DBG(1, "new c_size<%x>\n", c_size);
musb_write_txfifosz(mbase, c_size);
}
last_tx_ops = ops;
last_tx_len = len;
last_c_size = c_size;
}
int musb_host_alloc_ep_fifo(struct musb *musb, struct musb_qh *qh, u8 is_in)
{
void __iomem *mbase = musb->mregs;
int epnum = qh->hw_ep->epnum;
u16 maxpacket;
u16 request_fifo_sz = 0, fifo_unit_nr = 0;
u16 idx_start = 0;
u8 index, i;
u16 c_off = 0;
u8 c_size = 0;
u16 free_uint = 0;
u8 found = 0;
if (!is_in)
host_tx_refcnt_reset(epnum);
if (qh->hb_mult)
maxpacket = qh->maxpacket * qh->hb_mult;
else
maxpacket = qh->maxpacket;
if (maxpacket <= 512) {
if (musb_host_db_enable && qh->type == USB_ENDPOINT_XFER_BULK) {
request_fifo_sz = 1024;
fifo_unit_nr = 2;
c_size = 6;
/* mark double buffer used */
qh->db_used = true;
} else {
request_fifo_sz = 512;
fifo_unit_nr = 1;
c_size = 6;
}
} else if (maxpacket <= 1024) {
request_fifo_sz = 1024;
fifo_unit_nr = 2;
c_size = 7;
} else if (maxpacket <= 2048) {
request_fifo_sz = 2048;
fifo_unit_nr = 4;
c_size = 8;
} else if (maxpacket <= 4096) {
request_fifo_sz = 4096;
fifo_unit_nr = 8;
c_size = 9;
} else {
DBG(0,
"should not be here qh maxp:%d maxp:%d\n"
, qh->maxpacket, maxpacket);
request_fifo_sz = 0;
fifo_unit_nr = 0;
musb_bug();
return -ENOSPC;
}
for (i = 0; i < dynamic_fifo_total_slot; i++) {
if (!(musb_host_dynamic_fifo_usage_msk & (1 << i)))
free_uint++;
else
free_uint = 0;
if (free_uint == fifo_unit_nr) {
found = 1;
break;
}
}
if (found == 0) {
DBG(0,
"!enough, dynamic_fifo_usage_msk:0x%x,maxp:%d,req_len:%d,ep%d-%s\n",
musb_host_dynamic_fifo_usage_msk, maxpacket,
request_fifo_sz, epnum, is_in ? "in":"out");
return -1;
}
idx_start = i - (fifo_unit_nr - 1);
c_off = (64 >> 3) + idx_start * (512 >> 3);
for (i = 0; i < fifo_unit_nr; i++)
musb_host_dynamic_fifo_usage_msk |= (1 << (idx_start + i));
index = musb_readb(mbase, MUSB_INDEX);
musb_writeb(musb->mregs, MUSB_INDEX, epnum);
if (is_in) {
musb_write_rxfifosz(mbase, c_size);
musb_write_rxfifoadd(mbase, c_off);
DBG(1,
"addr:0x%x, size:0x%x\n",
musb_read_rxfifoadd(mbase),
musb_read_rxfifosz(mbase));
} else {
musb_write_txfifosz(mbase, c_size);
musb_write_txfifoadd(mbase, c_off);
DBG(1,
"addr:0x%x, size:0x%x\n",
musb_read_txfifoadd(mbase),
musb_read_txfifosz(mbase));
}
musb_writeb(mbase, MUSB_INDEX, index);
DBG(1,
"maxp:%d, req_len:%d, dynamic_fifo_usage_msk:0x%x, ep%d-%s, qh->type:%d\n",
maxpacket, request_fifo_sz,
musb_host_dynamic_fifo_usage_msk
, epnum, is_in ? "in":"out", qh->type);
return 0;
}
void musb_host_free_ep_fifo(struct musb *musb, struct musb_qh *qh, u8 is_in)
{
void __iomem *mbase = musb->mregs;
int epnum = qh->hw_ep->epnum;
u16 maxpacket = qh->maxpacket;
u16 request_fifo_sz, fifo_unit_nr;
u16 idx_start = 0;
u8 index, i;
u16 c_off = 0;
if (!is_in)
host_tx_refcnt_reset(epnum);
if (qh->hb_mult)
maxpacket = qh->maxpacket * qh->hb_mult;
else
maxpacket = qh->maxpacket;
if (maxpacket <= 512) {
if (musb_host_db_enable && qh->type == USB_ENDPOINT_XFER_BULK) {
request_fifo_sz = 1024;
fifo_unit_nr = 2;
} else {
request_fifo_sz = 512;
fifo_unit_nr = 1;
}
} else if (maxpacket <= 1024) {
request_fifo_sz = 1024;
fifo_unit_nr = 2;
} else if (maxpacket <= 2048) {
request_fifo_sz = 2048;
fifo_unit_nr = 4;
} else if (maxpacket <= 4096) {
request_fifo_sz = 4096;
fifo_unit_nr = 8;
} else {
DBG(0,
"should not be here qh maxp:%d maxp:%d\n"
, qh->maxpacket, maxpacket);
request_fifo_sz = 0;
fifo_unit_nr = 0;
musb_bug();
}
index = musb_readb(mbase, MUSB_INDEX);
musb_writeb(mbase, MUSB_INDEX, epnum);
if (is_in)
c_off = musb_read_rxfifoadd(mbase);
else
c_off = musb_read_txfifoadd(mbase);
idx_start = (c_off - (64 >> 3)) / (512 >> 3);
for (i = 0; i < fifo_unit_nr; i++)
musb_host_dynamic_fifo_usage_msk &= ~(1 << (idx_start + i));
if (mtk_host_audio_free_ep_udelay && qh->type == USB_ENDPOINT_XFER_ISOC)
udelay(mtk_host_audio_free_ep_udelay);
if (is_in) {
musb_write_rxfifosz(mbase, 0);
musb_write_rxfifoadd(mbase, 0);
} else {
musb_write_txfifosz(mbase, 0);
musb_write_txfifoadd(mbase, 0);
}
musb_writeb(mbase, MUSB_INDEX, index);
DBG(1,
"maxp:%d, req_len:%d, dynamic_fifo_usage_msk:0x%x, ep%d-%s, qh->type:%d\n",
maxpacket, request_fifo_sz, musb_host_dynamic_fifo_usage_msk,
epnum, is_in ? "in":"out", qh->type);
}
static void musb_ep_program(struct musb *musb, u8 epnum,
struct urb *urb, int is_out
, u8 *buf, u32 offset, u32 len);
/*
* Clear TX fifo. Needed to avoid BABBLE errors.
*/
static void musb_h_tx_flush_fifo(struct musb_hw_ep *ep)
{
void __iomem *epio = ep->regs;
u16 csr;
u16 lastcsr = 0;
int retries = 1000;
csr = musb_readw(epio, MUSB_TXCSR);
while (csr & MUSB_TXCSR_FIFONOTEMPTY) {
if (csr != lastcsr)
DBG(4, "Host TX FIFONOTEMPTY csr: %02x\n", csr);
lastcsr = csr;
csr &= ~MUSB_TXCSR_TXPKTRDY;
csr |= MUSB_TXCSR_FLUSHFIFO;
musb_writew(epio, MUSB_TXCSR, csr);
csr = musb_readw(epio, MUSB_TXCSR);
if (WARN(retries-- < 1,
"Could not flush host TX%d fifo: csr: %04x\n"
, ep->epnum, csr))
return;
udelay(10);
}
}
static void musb_h_ep0_flush_fifo(struct musb_hw_ep *ep)
{
void __iomem *epio = ep->regs;
u16 csr;
int retries = 5;
/* scrub any data left in the fifo */
do {
csr = musb_readw(epio, MUSB_TXCSR);
if (!(csr & (MUSB_CSR0_TXPKTRDY | MUSB_CSR0_RXPKTRDY)))
break;
musb_writew(epio, MUSB_TXCSR, MUSB_CSR0_FLUSHFIFO);
csr = musb_readw(epio, MUSB_TXCSR);
udelay(10);
} while (--retries);
WARN(!retries,
"Could not flush host TX%d fifo: csr: %04x\n"
, ep->epnum, csr);
/* and reset for the next transfer */
musb_writew(epio, MUSB_TXCSR, 0);
}
/*
* Start transmit. Caller is responsible for locking shared resources.
* musb must be locked.
*/
void wait_tx_done(u8 epnum, unsigned int timeout_ns)
{
u16 txcsr;
u16 int_tx;
void __iomem *mbase = mtk_musb->mregs;
int offset = MUSB_EP_OFFSET(epnum,
MUSB_TXCSR);
struct timeval tv_before, tv_after;
u64 diff_ns = 0;
musb_ep_select(mbase, epnum);
txcsr = musb_readw(mbase, offset);
do_gettimeofday(&tv_before);
while ((txcsr & (MUSB_TXCSR_FIFONOTEMPTY | MUSB_TXCSR_TXPKTRDY))
&& (diff_ns < timeout_ns)) {
txcsr = musb_readw(mbase, offset);
do_gettimeofday(&tv_after);
diff_ns = timeval_to_ns(&tv_after) - timeval_to_ns(&tv_before);
}
if (diff_ns >= timeout_ns)
DBG(0, "ERROR !!!, packet still in FIFO, CSR %04x\n", txcsr);
int_tx = musb_readw(mbase, MUSB_INTRTX);
while (!(int_tx & 1<<epnum) && (diff_ns < timeout_ns))
int_tx = musb_readw(mbase, MUSB_INTRTX);
if (diff_ns >= timeout_ns)
DBG(0, "ERROR !!!, not TX INTR <%x>\n", int_tx);
musb_host_db_delay_ns += diff_ns;
}
static int host_tx_refcnt[8 + 1];
int host_tx_refcnt_inc(int epnum)
{
host_tx_refcnt[epnum]++;
return host_tx_refcnt[epnum];
}
int host_tx_refcnt_dec(int epnum)
{
host_tx_refcnt[epnum]--;
return host_tx_refcnt[epnum];
}
void host_tx_refcnt_reset(int epnum)
{
host_tx_refcnt[epnum] = 0;
}
static inline void musb_h_tx_start(struct musb_hw_ep *ep)
{
u16 txcsr;
/* NOTE: no locks here; caller should lock and select EP */
if (ep->epnum) {
host_tx_refcnt_inc(ep->epnum);
txcsr = musb_readw(ep->regs, MUSB_TXCSR);
txcsr |= MUSB_TXCSR_TXPKTRDY
| MUSB_TXCSR_H_WZC_BITS;
musb_writew(ep->regs, MUSB_TXCSR, txcsr);
if (musb_host_db_workaround2)
wait_tx_done(ep->epnum, 2000000000);
} else {
txcsr = MUSB_CSR0_H_DIS_PING
| MUSB_CSR0_H_SETUPPKT
| MUSB_CSR0_TXPKTRDY;
musb_writew(ep->regs, MUSB_CSR0, txcsr);
}
}
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
void musb_ep_set_qh(struct musb_hw_ep *ep, int is_in, struct musb_qh *qh)
#else
static void musb_ep_set_qh(struct musb_hw_ep *ep, int is_in, struct musb_qh *qh)
#endif
{
if (is_in != 0 || ep->is_shared_fifo)
ep->in_qh = qh;
if (is_in == 0 || ep->is_shared_fifo)
ep->out_qh = qh;
}
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
struct musb_qh *musb_ep_get_qh(struct musb_hw_ep *ep, int is_in)
#else
static struct musb_qh *musb_ep_get_qh(struct musb_hw_ep *ep, int is_in)
#endif
{
return is_in ? ep->in_qh : ep->out_qh;
}
/*
* Start the URB at the front of an endpoint's queue
* end must be claimed from the caller.
*
* Context: controller locked, irqs blocked
*/
static void musb_start_urb(struct musb *musb, int is_in, struct musb_qh *qh)
{
u16 frame;
u32 len;
void __iomem *mbase = musb->mregs;
struct urb *urb = next_urb(qh);
void *buf = urb->transfer_buffer;
u32 offset = 0;
struct musb_hw_ep *hw_ep = qh->hw_ep;
unsigned int pipe = urb->pipe;
u8 address = usb_pipedevice(pipe);
int epnum = hw_ep->epnum;
DBG(4,
"address=%d,hw_ep->epnum=%d,urb_ep_addr:0x%x\r\n"
, address, epnum,
urb->ep->desc.bEndpointAddress);
DBG(3, "qh->epnum=%d,epnum=%d\r\n", qh->epnum, epnum);
if (is_in)
DBG(3, "toggle_IN=0x%x\n", urb->dev->toggle[0]);
else
DBG(3, "toggle_OUT=0x%x\n", urb->dev->toggle[1]);
/* initialize software qh state */
qh->offset = 0;
qh->segsize = 0;
/* gather right source of data */
switch (qh->type) {
case USB_ENDPOINT_XFER_CONTROL:
/* control transfers always start with SETUP */
is_in = 0;
musb->ep0_stage = MUSB_EP0_START;
buf = urb->setup_packet;
len = 8;
break;
case USB_ENDPOINT_XFER_ISOC:
qh->iso_idx = 0;
qh->frame = 0;
offset = urb->iso_frame_desc[0].offset;
len = urb->iso_frame_desc[0].length;
break;
default: /* bulk, interrupt */
/* actual_length may be nonzero on retry paths */
buf = urb->transfer_buffer + urb->actual_length;
len = urb->transfer_buffer_length - urb->actual_length;
}
DBG(3, "[MUSB]qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n",
qh, urb, address, qh->epnum, is_in ? "in" : "out", ({
char *s; switch (qh->type) {
case USB_ENDPOINT_XFER_CONTROL:
s = ""; break; case USB_ENDPOINT_XFER_BULK:
s = "-bulk"; break; case USB_ENDPOINT_XFER_ISOC:
s = "-iso"; break; default:
s = "-intr"; break; }; s; }
), epnum, buf + offset, len);
/* Configure endpoint */
musb_ep_set_qh(hw_ep, is_in, qh);
musb_ep_program(musb, epnum, urb, !is_in, buf, offset, len);
/* transmit may have more work: start it when it is time */
if (is_in)
return;
/* determine if the time is right for a periodic transfer */
switch (qh->type) {
case USB_ENDPOINT_XFER_ISOC:
case USB_ENDPOINT_XFER_INT:
DBG(3, "check whether there's still time for periodic Tx\n");
frame = musb_readw(mbase, MUSB_FRAME);
/* FIXME this doesn't implement that scheduling policy ...
* or handle framecounter wrapping
*/
if ((urb->transfer_flags & URB_ISO_ASAP)
|| (frame >= urb->start_frame)) {
/* REVISIT the SOF irq handler shouldn't duplicate
* this code; and we don't init urb->start_frame...
*/
qh->frame = 0;
goto start;
} else {
qh->frame = urb->start_frame;
/* enable SOF interrupt so we can count down */
DBG(1, "SOF for %d\n", epnum);
/* ifndef CONFIG_ARCH_DAVINCI */
musb_writeb(mbase, MUSB_INTRUSBE, 0xff);
}
break;
default:
start:
DBG(4,
"Start TX%d %s\n", epnum, hw_ep->tx_channel ?
"dma" : "pio");
if (!hw_ep->tx_channel) {
/*
* for pio mode, dma mode will send
* data after the configuration of
* the dma channel
*/
musb_h_tx_start(hw_ep);
}
/* else if (is_cppi_enabled() || tusb_dma_omap()) */
/* musb_h_tx_dma_start(hw_ep); */
}
}
/* Context: caller owns controller lock, IRQs are blocked */
static void musb_giveback(struct musb *musb, struct urb *urb, int status)
__releases(musb->lock) __acquires(musb->lock)
{
DBG(3, "complete %p %pS (%d), dev%d ep%d%s, %d/%d\n",
urb, urb->complete, status,
usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "in" : "out",
urb->actual_length, urb->transfer_buffer_length);
usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb), urb);
spin_unlock(&musb->lock);
usb_hcd_giveback_urb(musb_to_hcd(musb), urb, status);
spin_lock(&musb->lock);
}
/* For bulk/interrupt endpoints only */
static inline void
musb_save_toggle(struct musb_qh *qh, int is_in, struct urb *urb)
{
#ifdef NEVER
void __iomem *epio = qh->hw_ep->regs;
u16 csr;
/*
* FIXME: the current Mentor DMA code seems to have
* problems getting toggle correct.
*/
if (is_in)
csr = musb_readw(epio, MUSB_RXCSR) & MUSB_RXCSR_H_DATATOGGLE;
else
csr = musb_readw(epio, MUSB_TXCSR) & MUSB_TXCSR_H_DATATOGGLE;
usb_settoggle(urb->dev, qh->epnum, !is_in, csr ? 1 : 0);
#endif
struct musb *musb = qh->hw_ep->musb;
u8 epnum = qh->hw_ep->epnum;
int toggle;
DBG(3,
"qh->hw_ep->epnum %d, qh->epnum %d\n",
qh->hw_ep->epnum, qh->epnum);
if (is_in) {
toggle = musb_readl(musb->mregs, MUSB_RXTOG);
DBG(3, "toggle_IN=0x%x\n", toggle);
} else {
toggle = musb_readl(musb->mregs, MUSB_TXTOG);
DBG(3, "toggle_OUT=0x%x\n", toggle);
}
if (toggle & (1 << epnum))
usb_settoggle(urb->dev, qh->epnum, !is_in, 1);
else
usb_settoggle(urb->dev, qh->epnum, !is_in, 0);
}
static inline void
musb_set_toggle(struct musb_qh *qh, int is_in, struct urb *urb)
{
struct musb *musb = qh->hw_ep->musb;
u8 epnum = qh->hw_ep->epnum;
int toggle;
DBG(3,
"qh->hw_ep->epnum %d, qh->epnum %d\n",
qh->hw_ep->epnum, qh->epnum);
toggle = usb_gettoggle(urb->dev, qh->epnum, !is_in);
if (is_in) {
DBG(3, "qh->dev->toggle[IN]=0x%x\n", qh->dev->toggle[!is_in]);
musb_writel(musb->mregs, MUSB_RXTOG,
(((1 << epnum) << 16)
| (toggle << epnum)));
musb_writel(musb->mregs, MUSB_RXTOG, (toggle << epnum));
} else {
DBG(3, "qh->dev->toggle[OUT]=0x%x\n"
, qh->dev->toggle[!is_in]);
musb_writel(musb->mregs, MUSB_TXTOG,
(((1 << epnum) << 16)
| (toggle << epnum)));
musb_writel(musb->mregs, MUSB_TXTOG, (toggle << epnum));
}
}
/*
* Advance this hardware endpoint's queue, completing the specified URB and
* advancing to either the next URB queued to that qh, or else invalidating
* that qh and advancing to the next qh scheduled after the current one.
*
* Context: caller owns controller lock, IRQs are blocked
*/
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
void musb_advance_schedule(struct musb *musb
, struct urb *urb, struct musb_hw_ep *hw_ep, int is_in)
#else
static void musb_advance_schedule
(struct musb *musb, struct urb *urb,
struct musb_hw_ep *hw_ep, int is_in)
#endif
{
struct musb_qh *qh = musb_ep_get_qh(hw_ep, is_in);
struct musb_hw_ep *ep = qh->hw_ep;
int ready = qh->is_ready;
int status;
u64 urb_val;
/* special case to handle QH memory leak */
urb_val = (u64)(uintptr_t)urb;
switch (urb_val) {
case QH_FREE_RESCUE_INTERRUPT:
case QH_FREE_RESCUE_EP_DISABLE:
DBG(0,
"case<%d>, ep<%d>, qh<%p>, type<%d>, is_in<%d>, empty<%d>, use_qmu<%d>\n",
(unsigned int)urb_val,
hw_ep->epnum,
qh, qh->type,
is_in, list_empty(&qh->hep->urb_list),
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
qh->is_use_qmu);
#else
0);
#endif
goto check_recycle_qh;
default:
break;
}
status = (urb->status == -EINPROGRESS) ? 0 : urb->status;
/* save toggle eagerly, for paranoia */
switch (qh->type) {
case USB_ENDPOINT_XFER_BULK:
case USB_ENDPOINT_XFER_INT:
musb_save_toggle(qh, is_in, urb);
break;
case USB_ENDPOINT_XFER_ISOC:
if (status == 0 && urb->error_count)
status = -EXDEV;
break;
}
if (ready)
qh->is_ready = 0;
musb_giveback(musb, urb, status);
/* QH might be freed after giveback, check again */
if ((is_in && !hw_ep->in_qh)
|| (!is_in && !hw_ep->out_qh)
) {
DBG(0, "QH already freed\n");
return;
}
if (ready)
qh->is_ready = ready;
check_recycle_qh:
/* reclaim resources (and bandwidth) ASAP; deschedule it, and
* invalidate qh as soon as list_empty(&hep->urb_list)
*/
if (list_empty(&qh->hep->urb_list)) {
struct list_head *head;
struct dma_controller *dma = musb->dma_controller;
if (qh->type == USB_ENDPOINT_XFER_ISOC) {
static DEFINE_RATELIMIT_STATE(ratelimit, HZ, 10);
if (__ratelimit(&ratelimit))
pr_debug("<ratelimit> no URB in QH, possible performance drop\n");
}
DBG(3, "musb_advance_schedule::ep urb_list is empty\n");
if (is_in) {
ep->rx_reinit = 1;
if (ep->rx_channel) {
dma->channel_release(ep->rx_channel);
ep->rx_channel = NULL;
}
} else {
ep->tx_reinit = 1;
if (ep->tx_channel) {
dma->channel_release(ep->tx_channel);
ep->tx_channel = NULL;
}
}
/* Clobber old pointers to this qh */
musb_ep_set_qh(ep, is_in, NULL);
qh->hep->hcpriv = NULL;
if (musb_host_dynamic_fifo &&
qh->type != USB_ENDPOINT_XFER_CONTROL)
musb_host_free_ep_fifo(musb, qh, is_in);
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (qh->is_use_qmu)
mtk_disable_q(musb, hw_ep->epnum, is_in);
#endif
switch (qh->type) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_BULK:
/* fifo policy for these lists, except that NAKing
* should rotate a qh to the end (for fairness).
*/
if (qh->mux == 1) {
head = qh->ring.prev;
list_del(&qh->ring);
kfree(qh);
qh = first_qh(head);
break;
}
case USB_ENDPOINT_XFER_ISOC:
case USB_ENDPOINT_XFER_INT:
/* this is where periodic bandwidth should be
* de-allocated if it's tracked and allocated;
* and where we'd update the schedule tree...
*/
kfree(qh);
qh = NULL;
break;
}
}
if (qh != NULL && qh->is_ready) {
DBG(3, "[MUSB]... next ep%d %cX urb %p\n",
hw_ep->epnum, is_in ? 'R' : 'T', next_urb(qh));
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (qh->is_use_qmu && !mtk_host_qmu_concurrent) {
musb_ep_set_qh(hw_ep, is_in, qh);
mtk_kick_CmdQ(musb, is_in ? 1:0, qh, next_urb(qh));
} else if (!qh->is_use_qmu)
musb_start_urb(musb, is_in, qh);
#else
musb_start_urb(musb, is_in, qh);
#endif
}
}
u16 musb_h_flush_rxfifo(struct musb_hw_ep *hw_ep, u16 csr)
{
/* we don't want fifo to fill itself again;
* ignore dma (various models),
* leave toggle alone (may not have been saved yet)
*/
csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_RXPKTRDY;
csr &= ~(MUSB_RXCSR_H_REQPKT
| MUSB_RXCSR_H_AUTOREQ
| MUSB_RXCSR_AUTOCLEAR);
/* write 2x to allow double buffering */
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
/* flush writebuffer */
return musb_readw(hw_ep->regs, MUSB_RXCSR);
}
/*
* PIO RX for a packet (or part of it).
*/
static bool musb_host_packet_rx
(struct musb *musb, struct urb *urb, u8 epnum, u8 iso_err)
{
u16 rx_count;
u8 *buf;
u16 csr;
bool done = false;
u32 length;
int do_flush = 0;
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = hw_ep->in_qh;
int pipe = urb->pipe;
void *buffer = urb->transfer_buffer;
/* musb_ep_select(mbase, epnum); */
rx_count = musb_readw(epio, MUSB_RXCOUNT);
DBG(4, "RX%d count %d, buffer %p len %d/%d\n", epnum, rx_count,
urb->transfer_buffer, qh->offset, urb->transfer_buffer_length);
/* unload FIFO */
if (usb_pipeisoc(pipe)) {
int status = 0;
struct usb_iso_packet_descriptor *d;
if (iso_err) {
status = -EILSEQ;
urb->error_count++;
}
d = urb->iso_frame_desc + qh->iso_idx;
buf = buffer + d->offset;
length = d->length;
if (rx_count > length) {
if (status == 0) {
status = -EOVERFLOW;
urb->error_count++;
}
DBG(0, "** OVERFLOW %d into %d\n", rx_count, length);
do_flush = 1;
} else
length = rx_count;
urb->actual_length += length;
d->actual_length = length;
d->status = status;
/* see if we are done */
done = (++qh->iso_idx >= urb->number_of_packets);
} else {
/* non-isoch */
buf = buffer + qh->offset;
length = urb->transfer_buffer_length - qh->offset;
if (rx_count > length) {
if (urb->status == -EINPROGRESS)
urb->status = -EOVERFLOW;
DBG(0, "** OVERFLOW %d into %d\n", rx_count, length);
do_flush = 1;
} else
length = rx_count;
urb->actual_length += length;
qh->offset += length;
/* see if we are done */
done = (urb->actual_length == urb->transfer_buffer_length)
|| (rx_count < qh->maxpacket)
|| (urb->status != -EINPROGRESS);
if (done && (urb->status == -EINPROGRESS)
&& (urb->transfer_flags & URB_SHORT_NOT_OK)
&& (urb->actual_length < urb->transfer_buffer_length))
urb->status = -EREMOTEIO;
}
musb_read_fifo(hw_ep, length, buf);
csr = musb_readw(epio, MUSB_RXCSR);
csr |= MUSB_RXCSR_H_WZC_BITS;
if (unlikely(do_flush))
musb_h_flush_rxfifo(hw_ep, csr);
else {
/* REVISIT this assumes AUTOCLEAR is never set */
csr &= ~(MUSB_RXCSR_RXPKTRDY | MUSB_RXCSR_H_REQPKT);
if (!done)
csr |= MUSB_RXCSR_H_REQPKT;
musb_writew(epio, MUSB_RXCSR, csr);
}
return done;
}
/* we don't always need to reinit a given side of an endpoint...
* when we do, use tx/rx reinit routine and then construct a new CSR
* to address data toggle, NYET, and DMA or PIO.
*
* it's possible that driver bugs (especially for DMA) or aborting a
* transfer might have left the endpoint busier than it should be.
* the busy/not-empty tests are basically paranoia.
*/
static void musb_rx_reinit
(struct musb *musb, struct musb_qh *qh, struct musb_hw_ep *ep)
{
u16 csr;
/* NOTE: we know the "rx" fifo reinit never triggers for ep0.
* That always uses tx_reinit since ep0 repurposes TX register
* offsets; the initial SETUP packet is also a kind of OUT.
*/
DBG(3,
"%s:qh 0x%p, epnum %d, ep_addr 0x%x, func_addr %d\n"
, __func__, qh, ep->epnum, qh->hep->desc.bEndpointAddress
, qh->addr_reg);
/* if programmed for Tx, put it in RX mode */
if (ep->is_shared_fifo) {
csr = musb_readw(ep->regs, MUSB_TXCSR);
if (csr & MUSB_TXCSR_MODE) {
musb_h_tx_flush_fifo(ep);
csr = musb_readw(ep->regs, MUSB_TXCSR);
musb_writew(ep->regs, MUSB_TXCSR, csr
| MUSB_TXCSR_FRCDATATOG);
}
/*
* Clear the MODE bit (and everything else) to enable Rx.
* NOTE: we mustn't clear the DMAMODE bit before DMAENAB.
*/
if (csr & MUSB_TXCSR_DMAMODE)
musb_writew(ep->regs, MUSB_TXCSR, MUSB_TXCSR_DMAMODE);
musb_writew(ep->regs, MUSB_TXCSR, 0);
/* scrub all previous state, clearing toggle */
} else {
csr = musb_readw(ep->regs, MUSB_RXCSR);
if (csr & MUSB_RXCSR_RXPKTRDY)
pr_notice("[MUSB]rx%d, packet/%d ready?\n", ep->epnum,
musb_readw(ep->regs, MUSB_RXCOUNT));
/* musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG); */
musb_h_flush_rxfifo(ep, 0);
}
/* target addr and (for multipoint) hub addr/port */
if (musb->is_multipoint) {
musb_write_rxfunaddr(musb->mregs, ep->epnum, qh->addr_reg);
musb_write_rxhubaddr(musb->mregs, ep->epnum, qh->h_addr_reg);
musb_write_rxhubport(musb->mregs, ep->epnum, qh->h_port_reg);
#ifdef NEVER
musb_write_rxfunaddr(ep->target_regs, qh->addr_reg);
musb_write_rxhubaddr(ep->target_regs, qh->h_addr_reg);
musb_write_rxhubport(ep->target_regs, qh->h_port_reg)
#endif
} else
musb_writeb(musb->mregs, MUSB_FADDR, qh->addr_reg);
/* protocol/endpoint, interval/NAKlimit, i/o size */
musb_writeb(ep->regs, MUSB_RXTYPE, qh->type_reg);
musb_writeb(ep->regs, MUSB_RXINTERVAL, qh->intv_reg);
/* NOTE: bulk combining rewrites high bits of maxpacket */
/* Set RXMAXP with the FIFO size of the endpoint
* to disable double buffer mode.
*/
/* ALPS00798316, Enable DMA RxMode1 */
if (musb->double_buffer_not_ok)
musb_writew(ep->regs, MUSB_RXMAXP, ep->max_packet_sz_rx);
else {
/* qh->maxpacket | ((qh->hb_mult - 1) << 11)); */
musb_writew(ep->regs, MUSB_RXMAXP, qh->maxpacket);
}
/* ALPS00798316, Enable DMA RxMode1 */
ep->rx_reinit = 0;
}
static bool musb_tx_dma_program(struct dma_controller *dma,
struct musb_hw_ep *hw_ep, struct musb_qh *qh,
struct urb *urb, u32 offset, u32 length)
{
struct dma_channel *channel = hw_ep->tx_channel;
void __iomem *epio = hw_ep->regs;
u16 pkt_size = qh->maxpacket;
u16 csr;
u8 mode;
bool is_short = !!(length % pkt_size);
if (length > channel->max_len)
length = channel->max_len;
csr = musb_readw(epio, MUSB_TXCSR);
if (length > pkt_size) {
mode = 1;
csr |= MUSB_TXCSR_DMAMODE | MUSB_TXCSR_DMAENAB;
/* autoset shouldn't be set in high bandwidth */
/* if (qh->hb_mult == 1) */
csr |= MUSB_TXCSR_AUTOSET;
} else {
mode = 0;
csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAMODE);
csr |= MUSB_TXCSR_DMAENAB; /* against programmer's guide */
}
channel->desired_mode = mode;
musb_writew(epio, MUSB_TXCSR, csr);
#ifdef NEVER
if (!is_cppi_enabled() && !tusb_dma_omap())
return false;
channel->actual_len = 0;
/*
* TX uses "RNDIS" mode automatically but needs help
* to identify the zero-length-final-packet case.
*/
mode = (urb->transfer_flags & URB_ZERO_PACKET) ? 1 : 0;
#endif
if (qh->db_used) {
switch (mode) {
case 0:
musb_host_tx_db_enable(mtk_musb, hw_ep->epnum,
false, TX_OPS_DMAMODE0, length);
break;
case 1:
musb_host_tx_db_enable(mtk_musb, hw_ep->epnum,
true, TX_OPS_DMAMODE1, length);
break;
default:
break;
}
}
/* to avoid unexpected tx irq */
if (musb_host_db_workaround1
&& qh->db_used
&& mode == 1
&& is_short)
musb_host_tx_db_enable(mtk_musb, hw_ep->epnum,
false, TX_OPS_DMAMODE1_SHORT, length);
DBG(4, "%s,TXCSR=0x%x\r\n", __func__
, musb_readw(epio, MUSB_TXCSR));
qh->segsize = length;
/*
* Ensure the data reaches to main memory before starting
* DMA transfer
*/
wmb();
DBG(4, "%s,urb=%p,transfer_dma=0x%x\r\n", __func__, urb,
(unsigned int)urb->transfer_dma);
if (!dma->channel_program(channel, pkt_size,
mode, urb->transfer_dma + offset, length)) {
dma->channel_release(channel);
hw_ep->tx_channel = NULL;
csr = musb_readw(epio, MUSB_TXCSR);
csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB);
musb_writew(epio, MUSB_TXCSR, csr | MUSB_TXCSR_H_WZC_BITS);
return false;
}
return true;
}
/*
* Program an HDRC endpoint as per the given URB
* Context: irqs blocked, controller lock held
*/
static void musb_ep_program(struct musb *musb, u8 epnum,
struct urb *urb, int is_out, u8 *buf, u32 offset, u32 len)
{
struct dma_controller *dma_controller;
struct dma_channel *dma_channel;
/* u8 dma_ok; */
void __iomem *mbase = musb->mregs;
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = musb_ep_get_qh(hw_ep, !is_out);
u16 packet_sz = qh->maxpacket;
u8 use_dma = 1;
u16 csr;
DBG(4,
"%s hw%d urb %p spd%d dev%d ep%d%s h_addr%02x h_port%02x bytes %d\n"
, is_out ? "-->" : "<--",
epnum, urb, urb->dev->speed,
qh->addr_reg, qh->epnum, is_out ?
"out" : "in",
qh->h_addr_reg, qh->h_port_reg, len);
musb_ep_select(mbase, epnum);
if (epnum && is_out) {
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & (MUSB_TXCSR_FIFONOTEMPTY |
MUSB_TXCSR_TXPKTRDY)) {
DBG(0, "ERROR!packet still in FIFO, CSR %04x\n",
csr);
dump_tx_ops(epnum);
}
}
if (is_out && !len) {
use_dma = 0;
csr = musb_readw(epio, MUSB_TXCSR);
csr &= ~MUSB_TXCSR_DMAENAB;
musb_writew(epio, MUSB_TXCSR, csr);
hw_ep->tx_channel = NULL;
}
/* candidate for DMA? */
dma_controller = musb->dma_controller;
if (use_dma && is_dma_capable() && epnum && dma_controller) {
dma_channel = is_out ? hw_ep->tx_channel : hw_ep->rx_channel;
if (!dma_channel) {
dma_channel =
dma_controller->channel_alloc
(dma_controller, hw_ep, is_out);
if (is_out)
hw_ep->tx_channel = dma_channel;
else
hw_ep->rx_channel = dma_channel;
}
} else
dma_channel = NULL;
/* make sure we clear DMAEnab, autoSet bits from previous run */
/* OUT/transmit/EP0 or IN/receive? */
if (is_out) {
u16 csr;
u16 int_txe;
u16 load_count;
csr = musb_readw(epio, MUSB_TXCSR);
/* disable interrupt in case we flush */
int_txe = musb->intrtxe;
musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum));
/* general endpoint setup */
if (epnum) {
/* flush all old state, set default */
musb_h_tx_flush_fifo(hw_ep);
/*
* We must not clear the DMAMODE bit before or in
* the same cycle with the DMAENAB bit, so we clear
* the latter first...
*/
csr &= ~(MUSB_TXCSR_H_NAKTIMEOUT
| MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_FRCDATATOG
| MUSB_TXCSR_H_RXSTALL
| MUSB_TXCSR_H_ERROR
| MUSB_TXCSR_TXPKTRDY);
/* csr |= MUSB_TXCSR_MODE; */
#ifdef NEVER
if (usb_gettoggle(urb->dev, qh->epnum, 1))
csr |= MUSB_TXCSR_H_WR_DATATOGGLE
| MUSB_TXCSR_H_DATATOGGLE;
else
csr |= MUSB_TXCSR_CLRDATATOG;
#else
/* wz add to init the toggle */
musb_set_toggle(qh, !is_out, urb);
#endif
musb_writew(epio, MUSB_TXCSR, csr);
/* REVISIT may need to clear FLUSHFIFO ... */
csr &= ~MUSB_TXCSR_DMAMODE;
musb_writew(epio, MUSB_TXCSR, csr);
csr = musb_readw(epio, MUSB_TXCSR);
} else {
/* endpoint 0: just flush */
musb_h_ep0_flush_fifo(hw_ep);
}
/* target addr and (for multipoint) hub addr/port */
if (musb->is_multipoint) {
musb_write_txfunaddr(mbase, epnum, qh->addr_reg);
musb_write_txhubaddr(mbase, epnum, qh->h_addr_reg);
musb_write_txhubport(mbase, epnum, qh->h_port_reg);
/* FIXME if !epnum, do the same for RX ... */
} else
/* set the address of the device,very important!! */
musb_writeb(mbase, MUSB_FADDR, qh->addr_reg);
/* protocol/endpoint/interval/NAKlimit */
if (epnum) {
musb_writeb(epio, MUSB_TXTYPE, qh->type_reg);
if (musb->double_buffer_not_ok)
musb_writew(epio, MUSB_TXMAXP
, hw_ep->max_packet_sz_tx);
else if (can_bulk_split(musb, qh->type))
musb_writew(epio, MUSB_TXMAXP, packet_sz
| ((hw_ep->max_packet_sz_tx /
packet_sz) - 1) << 11);
else
musb_writew(epio, MUSB_TXMAXP,
qh->maxpacket
| ((qh->hb_mult ?
(qh->hb_mult - 1):0) << 11));
musb_writeb(epio, MUSB_TXINTERVAL, qh->intv_reg);
} else {
musb_writeb(epio, MUSB_NAKLIMIT0, qh->intv_reg);
if (musb->is_multipoint)
musb_writeb(epio, MUSB_TYPE0, qh->type_reg);
}
if (can_bulk_split(musb, qh->type))
load_count = min_t(u32, hw_ep->max_packet_sz_tx, len);
else
load_count = min_t(u32, packet_sz, len);
/* write data to the fifo */
if (dma_channel &&
musb_tx_dma_program
(dma_controller, hw_ep, qh, urb, offset, len))
load_count = 0;
if (load_count && qh->db_used)
musb_host_tx_db_enable(musb, epnum,
false, TX_OPS_PIO, len);
if (load_count) {
/* PIO to load FIFO */
qh->segsize = load_count;
if (!buf) {
sg_miter_start(&qh->sg_miter, urb->sg, 1,
SG_MITER_ATOMIC
| SG_MITER_FROM_SG);
if (!sg_miter_next(&qh->sg_miter)) {
dev_info(musb->controller, "error: sg list empty\n");
sg_miter_stop(&qh->sg_miter);
goto finish;
}
buf = qh->sg_miter.addr + urb->sg->offset +
urb->actual_length;
load_count = min_t(u32, load_count,
qh->sg_miter.length);
musb_write_fifo(hw_ep, load_count, buf);
qh->sg_miter.consumed = load_count;
sg_miter_stop(&qh->sg_miter);
} else
musb_write_fifo(hw_ep, load_count, buf);
}
finish:
/* re-enable interrupt */
musb_writew(mbase, MUSB_INTRTXE, int_txe);
/* IN/receive */
} else {
u16 csr;
if (hw_ep->rx_reinit) {
musb_rx_reinit(musb, qh, hw_ep);
#ifdef NEVER
/* init new state: toggle and NYET, maybe DMA later */
if (usb_gettoggle(urb->dev, qh->epnum, 0))
csr = MUSB_RXCSR_H_WR_DATATOGGLE
| MUSB_RXCSR_H_DATATOGGLE;
else
#endif
csr = 0;
/* wz add to init the toggle */
musb_set_toggle(qh, !is_out, urb);
if (qh->type == USB_ENDPOINT_XFER_INT)
csr |= MUSB_RXCSR_DISNYET;
} else {
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
if (csr & (MUSB_RXCSR_RXPKTRDY
| MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_H_REQPKT))
pr_notice("broken !rx_reinit, ep%d csr %04x\n"
, hw_ep->epnum, csr);
/* scrub any stale state, leaving toggle alone */
csr &= MUSB_RXCSR_DISNYET;
}
/* kick things off */
if (/*(is_cppi_enabled() || tusb_dma_omap()) && */
dma_channel) {
/* Candidate for DMA */
/* ALPS00798316, Enable DMA RxMode1 */
#ifdef NEVER
/* ALPS00798316, Enable DMA RxMode1 */
dma_channel->actual_len = 0L;
qh->segsize = len;
dma_channel->desired_mode = 0;
/* for MT65xx, Rx is configured as DMA mode 0! */
csr &= ~MUSB_RXCSR_DMAENAB;
/* AUTOREQ is in a DMA register */
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
#ifdef NEVER
/*
* Unless caller treats short RX transfers as
* errors, we dare not queue multiple transfers.
*/
dma_ok = dma_controller->channel_program(dma_channel,
packet_sz,
!(urb->transfer_flags &
URB_SHORT_NOT_OK),
urb->transfer_dma +
offset, qh->segsize);
if (!dma_ok) {
dma_controller->channel_release(dma_channel);
hw_ep->rx_channel = dma_channel = NULL;
} else
csr |= MUSB_RXCSR_DMAENAB;
#endif
/* ALPS00798316, Enable DMA RxMode1 */
#else
dma_channel->actual_len = 0L;
qh->segsize = len;
if ((urb->transfer_flags & URB_SHORT_NOT_OK)
&& (urb->transfer_buffer_length -
urb->actual_length)
> hw_ep->max_packet_sz_rx) {
/* pr_debug("Using DMA epnum%d: is_out=%d,
* urb->actual_length = %d,
* urb->transfer_buffer_length = %d\n",
* epnum, is_out, urb->actual_length,
* urb->transfer_buffer_length);
*/
u16 rx_count;
int ret, length;
dma_addr_t buf;
u16 shortPkt;
u16 packetSize;
rx_count =
musb_readw(hw_ep->regs, MUSB_RXCOUNT);
/* pr_debug("RX%d count %d,
* buffer 0x%p len %d/%d\n",
* epnum, rx_count,
* urb->transfer_dma
* + urb->actual_length,
* qh->offset, urb->transfer_buffer_length);
*/
length = rx_count;
buf = urb->transfer_dma + urb->actual_length;
/* pr_debug("urb->transfer_flags = 0x%x,
* urb->transfer_buffer_length = %d,
* urb->actual_length = %d,
* qh->maxpacket= %d, rx_count= %d\n",
* urb->transfer_flags,
* urb->transfer_buffer_length,
* urb->actual_length,
* qh->maxpacket, rx_count);
*
* because of the issue below, mode 1 will
* only rarely behave with correct semantics.
*/
dma_channel->desired_mode = 1;
length = urb->transfer_buffer_length;
/* Disadvantage of using mode 1:
* It's basically usable only for mass
* storage class; essentially all other
* protocols also terminate transfers
* on short packets.
* Details:
* An extra IN token is sent at the end
* of the transfer (due to AUTOREQ).
* If you try to use mode 1 for
* (transfer_buffer_length - 512),
* and try to use the extra IN token to
* grab the last packet using mode 0, then
* the problem is that you cannot be sure
* when the device will send the last packet
* and RxPktRdy set. Sometimes the packet is
* recd too soon such that it gets lost when
* RxCSR is re-set at the end of the mode 1
* transfer, while sometimes it is recd just
* a little late so that if you try to configure
* for mode 0 soon after the mode 1 transfer is
* completed, you will find rxcount 0.
* Okay, so you might think why not wait
* for an interrupt when the pkt is recd.
* Well, you won't get any!
*/
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
/* pr_debug("dma_channel->desired_mode = %d,
* length = %d, csr= 0x%x\n",
* dma_channel->desired_mode, length, csr);
*/
csr &= ~MUSB_RXCSR_H_REQPKT;
#if defined(USE_REQ_MODE1)
/* req mode1 */
csr |= (MUSB_RXCSR_H_AUTOREQ
| MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAMODE);
/* csr |= (MUSB_RXCSR_H_AUTOREQ
* | MUSB_RXCSR_DMAMODE);//req mode1
*/
#else
/* req mode0 */
csr |= (MUSB_RXCSR_H_AUTOREQ
| MUSB_RXCSR_AUTOCLEAR)
& (~MUSB_RXCSR_DMAMODE);
/*
* csr |= (MUSB_RXCSR_H_AUTOREQ)
* & (~MUSB_RXCSR_DMAMODE);//req mode0
*/
#endif
csr |= MUSB_RXCSR_DMAENAB;
/* autoclear shouldn't be set
* in high bandwidth
* if (qh->hb_mult == 1)
* csr |= MUSB_RXCSR_AUTOCLEAR;
*/
/* pr_notice("%s, line %d: csr = 0x%x,
* qh->hb_mult = %d,
* MUSB_RXCSR,MUSB_RXCSR_H_WZC_BITS
* | csr = 0x%x\n",
* __func__, __LINE__, csr,
* qh->hb_mult,
* (MUSB_RXCSR,MUSB_RXCSR_H_WZC_BITS | csr));
*/
musb_writew(hw_ep->regs,
MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS
| csr);
/* REVISIT if when actual_length != 0,
* transfer_buffer_length needs to be
* adjusted first...
* dma is a dma channel,
* which is already allocated
* for the Rx EP in the func:musbfsh_ep_program
*/
ret = dma_controller->channel_program(
dma_channel, qh->maxpacket
, dma_channel->desired_mode,
buf, length);
if (!ret) {
dma_controller->channel_release(
dma_channel);
hw_ep->rx_channel = NULL;
dma_channel = NULL;
/* REVISIT reset CSR */
}
shortPkt = (length % qh->maxpacket) ? 1 : 0;
packetSize = (length / qh->maxpacket)
+ shortPkt;
/* pr_debug("length = %d, packetSize = %d,
* shortPkt = %d, epnum = %d\n",
* length, packetSize, shortPkt, epnum);
*/
musb_writew(mbase, MUSB_EP_RXPKTCOUNT +
4 * epnum, packetSize);
}
#endif
/* ALPS00798316, Enable DMA RxMode1 */
}
csr |= MUSB_RXCSR_H_REQPKT; /* ask packet from the device */
/* DBG(7, "RXCSR%d := %04x\n", epnum, csr); */
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
}
}
/* Schedule next QH from musb->in_bulk/out_bulk and move the current qh to
* the end; avoids starvation for other endpoints.
*/
static void musb_bulk_nak_timeout
(struct musb *musb, struct musb_hw_ep *ep, int is_in)
{
struct dma_channel *dma;
struct urb *urb;
void __iomem *mbase = musb->mregs;
void __iomem *epio = ep->regs;
struct musb_qh *cur_qh, *next_qh;
u16 rx_csr, tx_csr;
musb_ep_select(mbase, ep->epnum);
if (is_in) {
dma = is_dma_capable() ? ep->rx_channel : NULL;
/* clear nak timeout bit */
rx_csr = musb_readw(epio, MUSB_RXCSR);
rx_csr |= MUSB_RXCSR_H_WZC_BITS;
rx_csr &= ~MUSB_RXCSR_DATAERROR;
musb_writew(epio, MUSB_RXCSR, rx_csr);
cur_qh = first_qh(&musb->in_bulk);
} else {
dma = is_dma_capable() ? ep->tx_channel : NULL;
/* clear nak timeout bit */
tx_csr = musb_readw(epio, MUSB_TXCSR);
tx_csr |= MUSB_TXCSR_H_WZC_BITS;
tx_csr &= ~MUSB_TXCSR_H_NAKTIMEOUT;
musb_writew(epio, MUSB_TXCSR, tx_csr);
cur_qh = first_qh(&musb->out_bulk);
}
if (cur_qh) {
urb = next_urb(cur_qh);
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
musb->dma_controller->channel_abort(dma);
urb->actual_length += dma->actual_len;
dma->actual_len = 0L;
}
musb_save_toggle(cur_qh, is_in, urb);
if (is_in) {
/* move cur_qh to end of queue */
list_move_tail(&cur_qh->ring, &musb->in_bulk);
/* get the next qh from musb->in_bulk */
next_qh = first_qh(&musb->in_bulk);
/* set rx_reinit and schedule the next qh */
ep->rx_reinit = 1;
} else {
/* move cur_qh to end of queue */
list_move_tail(&cur_qh->ring, &musb->out_bulk);
/* get the next qh from musb->out_bulk */
next_qh = first_qh(&musb->out_bulk);
/* set tx_reinit and schedule the next qh */
ep->tx_reinit = 1;
}
musb_start_urb(musb, is_in, next_qh);
}
}
/*
* Service the default endpoint (ep0) as host.
* Return true until it's time to start the status stage.
*/
static bool musb_h_ep0_continue(struct musb *musb, u16 len, struct urb *urb)
{
bool more = false;
u8 *fifo_dest = NULL;
u16 fifo_count = 0;
struct musb_hw_ep *hw_ep = musb->control_ep;
struct musb_qh *qh = hw_ep->in_qh;
struct usb_ctrlrequest *request;
switch (musb->ep0_stage) {
case MUSB_EP0_IN:
fifo_dest = urb->transfer_buffer +
urb->actual_length;
fifo_count = min_t(size_t, len,
urb->transfer_buffer_length -
urb->actual_length);
if (fifo_count < len)
urb->status = -EOVERFLOW;
musb_read_fifo(hw_ep, fifo_count, fifo_dest);
urb->actual_length += fifo_count;
if (len < qh->maxpacket) {
/* always terminate on short read; it's
* rarely reported as an error.
*/
} else if (urb->actual_length < urb->transfer_buffer_length)
more = true;
break;
case MUSB_EP0_START:
request = (struct usb_ctrlrequest *)urb->setup_packet;
if (!request->wLength) {
DBG(4, "start no-DATA\n");
break;
} else if (request->bRequestType & USB_DIR_IN) {
DBG(4, "start IN-DATA\n");
musb->ep0_stage = MUSB_EP0_IN;
more = true;
break;
}
DBG(4, "start OUT-DATA\n");
musb->ep0_stage = MUSB_EP0_OUT;
more = true;
/* FALLTHROUGH */
case MUSB_EP0_OUT:
fifo_count = min_t(size_t, qh->maxpacket,
urb->transfer_buffer_length -
urb->actual_length);
if (fifo_count) {
fifo_dest =
(u8 *) (urb->transfer_buffer +
urb->actual_length);
DBG(4, "Sending %d byte%s to ep0 fifo %p\n",
fifo_count, (fifo_count == 1) ? "" : "s",
fifo_dest);
musb_write_fifo(hw_ep, fifo_count, fifo_dest);
urb->actual_length += fifo_count;
more = true;
}
break;
default:
pr_notice("bogus ep0 stage %d\n", musb->ep0_stage);
break;
}
return more;
}
/*
* Handle default endpoint interrupt as host. Only called in IRQ time
* from musb_interrupt().
*
* called with controller irqlocked
*/
irqreturn_t musb_h_ep0_irq(struct musb *musb)
{
struct urb *urb;
u16 csr, len;
int status = 0;
void __iomem *mbase = musb->mregs;
struct musb_hw_ep *hw_ep = musb->control_ep;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = hw_ep->in_qh;
bool complete = false;
irqreturn_t retval = IRQ_NONE;
/* ep0 only has one queue, "in" */
urb = next_urb(qh);
musb_ep_select(mbase, 0);
csr = musb_readw(epio, MUSB_CSR0);
len = (csr & MUSB_CSR0_RXPKTRDY)
? musb_readb(epio, MUSB_COUNT0)
: 0;
DBG(4, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n",
csr, qh, len, urb, musb->ep0_stage);
/* if we just did status stage, we are done */
if (musb->ep0_stage == MUSB_EP0_STATUS) {
retval = IRQ_HANDLED;
complete = true;
}
/* prepare status */
if (csr & MUSB_CSR0_H_RXSTALL) {
DBG(0, "STALLING ENDPOINT\n");
status = -EPIPE;
} else if (csr & MUSB_CSR0_H_ERROR) {
DBG(0, "no response, csr0 %04x\n", csr);
status = -EPROTO;
} else if (csr & MUSB_CSR0_H_NAKTIMEOUT) {
DBG(0, "control NAK timeout\n");
/* NOTE: this code path would be a good place to PAUSE a
* control transfer, if another one is queued, so that
* ep0 is more likely to stay busy. That's already done
* for bulk RX transfers.
*
* if (qh->ring.next != &musb->control), then
* we have a candidate... NAKing is *NOT* an error
*/
musb_writew(epio, MUSB_CSR0, 0);
retval = IRQ_HANDLED;
}
if (status) {
DBG(4, "aborting\n");
retval = IRQ_HANDLED;
if (urb)
urb->status = status;
complete = true;
/* use the proper sequence to abort the transfer */
if (csr & MUSB_CSR0_H_REQPKT) {
csr &= ~MUSB_CSR0_H_REQPKT;
musb_writew(epio, MUSB_CSR0, csr);
csr &= ~MUSB_CSR0_H_NAKTIMEOUT;
musb_writew(epio, MUSB_CSR0, csr);
} else {
musb_h_ep0_flush_fifo(hw_ep);
}
musb_writeb(epio, MUSB_NAKLIMIT0, 0);
/* clear it */
musb_writew(epio, MUSB_CSR0, 0);
}
if (unlikely(!urb)) {
/* stop endpoint since we have no place for its data, this
* SHOULD NEVER HAPPEN!
*/
pr_notice("no URB for end 0\n");
musb_h_ep0_flush_fifo(hw_ep);
goto done;
}
if (!complete) {
/* call common logic and prepare response */
if (musb_h_ep0_continue(musb, len, urb)) {
/* more packets required */
csr = (musb->ep0_stage == MUSB_EP0_IN)
? MUSB_CSR0_H_REQPKT : MUSB_CSR0_TXPKTRDY;
} else {
/* data transfer complete; perform status phase */
if (usb_pipeout(urb->pipe)
|| !urb->transfer_buffer_length)
csr = MUSB_CSR0_H_STATUSPKT
| MUSB_CSR0_H_REQPKT;
else
csr = MUSB_CSR0_H_STATUSPKT
| MUSB_CSR0_TXPKTRDY;
/* flag status stage */
musb->ep0_stage = MUSB_EP0_STATUS;
DBG(4, "ep0 STATUS, csr %04x\n", csr);
}
musb_writew(epio, MUSB_CSR0, csr);
retval = IRQ_HANDLED;
} else
musb->ep0_stage = MUSB_EP0_IDLE;
/* call completion handler if done */
if (complete)
musb_advance_schedule(musb, urb, hw_ep, 1);
done:
return retval;
}
/* Host side TX (OUT) using Mentor DMA works as follows:
* submit_urb ->
* - if queue was empty, Program Endpoint
* - ... which starts DMA to fifo in mode 1 or 0
*
* DMA Isr (transfer complete) -> TxAvail()
* - Stop DMA (~DmaEnab) (<--- Alert ... currently happens
* only in musb_cleanup_urb)
* - TxPktRdy has to be set in mode 0 or for
* short packets in mode 1.
*/
/* Service a Tx-Available or dma completion irq for the endpoint */
void musb_host_tx(struct musb *musb, u8 epnum)
{
int pipe;
bool done = false;
u16 tx_csr;
size_t length = 0;
size_t offset = 0;
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = hw_ep->out_qh;
struct urb *urb = NULL;
u32 status = 0;
void __iomem *mbase = musb->mregs;
struct dma_channel *dma;
bool transfer_pending = false;
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (qh && qh->is_use_qmu)
return;
#endif
if (unlikely(!qh)) {
DBG(0, "hw_ep:%d, QH NULL\n", epnum);
return;
}
musb_ep_select(mbase, epnum);
tx_csr = musb_readw(epio, MUSB_TXCSR);
urb = next_urb(qh);
/* with CPPI, DMA sometimes triggers "extra" irqs */
if (unlikely(!urb)) {
DBG(0, "extra TX%d ready, csr %04x\n", epnum, tx_csr);
musb_advance_schedule(musb,
(struct urb *)QH_FREE_RESCUE_INTERRUPT, hw_ep,
USB_DIR_OUT);
return;
}
pipe = urb->pipe;
dma = is_dma_capable() ? hw_ep->tx_channel : NULL;
DBG(4, "OUT/TX%d end, csr %04x%s\n"
, epnum, tx_csr, dma ? ", dma" : "");
/* check for errors */
if (tx_csr & MUSB_TXCSR_H_RXSTALL) {
/* dma was disabled, fifo flushed */
DBG(0, "TX end %d stall\n", epnum);
/* stall; record URB status */
status = -EPIPE;
} else if (tx_csr & MUSB_TXCSR_H_ERROR) {
/* (NON-ISO) dma was disabled, fifo flushed */
DBG(0, "TX 3strikes on ep=%d\n", epnum);
status = -ETIMEDOUT;
} else if (tx_csr & MUSB_TXCSR_H_NAKTIMEOUT) {
if (qh->type == USB_ENDPOINT_XFER_BULK && qh->mux == 1
&& !list_is_singular(&musb->out_bulk)) {
DBG(0, "NAK timeout on TX%d ep\n", epnum);
musb_bulk_nak_timeout(musb, hw_ep, 0);
} else {
DBG(0, "TX end=%d device not responding\n", epnum);
/* NOTE: this code path would be a good place to PAUSE a
* transfer, if there's some other (nonperiodic) tx urb
* that could use this fifo. (dma complicates it...)
* That's already done for bulk RX transfers.
*
* if (bulk && qh->ring.next != &musb->out_bulk), then
* we have a candidate... NAKing is *NOT* an error
*/
musb_ep_select(mbase, epnum);
musb_writew(epio, MUSB_TXCSR,
MUSB_TXCSR_H_WZC_BITS | MUSB_TXCSR_TXPKTRDY);
}
return;
}
/* done: */
if (status) {
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
(void)musb->dma_controller->channel_abort(dma);
}
/* do the proper sequence to abort the transfer in the
* usb core; the dma engine should already be stopped.
*/
musb_h_tx_flush_fifo(hw_ep);
tx_csr &= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_H_ERROR
| MUSB_TXCSR_H_RXSTALL
| MUSB_TXCSR_H_NAKTIMEOUT);
musb_ep_select(mbase, epnum);
musb_writew(epio, MUSB_TXCSR, tx_csr);
/* REVISIT may need to clear FLUSHFIFO ... */
musb_writew(epio, MUSB_TXCSR, tx_csr);
musb_writeb(epio, MUSB_TXINTERVAL, 0);
done = true;
}
if (is_dma_capable() && dma && !status) {
/*
* DMA has completed. But if we're using DMA mode 1 (multi
* packet DMA), we need a terminal TXPKTRDY interrupt before
* we can consider this transfer completed, lest we trash
* its last packet when writing the next URB's data. So we
* switch back to mode 0 to get that interrupt; we'll come
* back here once it happens.
*/
#ifdef NEVER
if (tx_csr & MUSB_TXCSR_DMAMODE) {
/*
* We shouldn't clear DMAMODE with DMAENAB set; so
* clear them in a safe order. That should be OK
* once TXPKTRDY has been set (and I've never seen
* it being 0 at this moment -- DMA interrupt latency
* is significant) but if it hasn't been then we have
* no choice but to stop being polite and ignore the
* programmer's guide... :-)
*
* Note that we must write TXCSR with TXPKTRDY cleared
* in order not to re-trigger the packet send (this bit
* can't be cleared by CPU), and there's another caveat:
* TXPKTRDY may be set shortly and then cleared in the
* double-buffered FIFO mode, so we do an extra TXCSR
* read for debouncing...
*/
tx_csr &= musb_readw(epio, MUSB_TXCSR);
if (tx_csr & MUSB_TXCSR_TXPKTRDY) {
tx_csr &= ~(MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR, tx_csr
| MUSB_TXCSR_H_WZC_BITS);
}
tx_csr &= ~(MUSB_TXCSR_DMAMODE | MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR, tx_csr
| MUSB_TXCSR_H_WZC_BITS);
/*
* There is no guarantee that we'll get an interrupt
* after clearing DMAMODE as we might have done this
* too late (after TXPKTRDY was cleared by controller).
* Re-read TXCSR as we have spoiled its previous value.
*/
tx_csr = musb_readw(epio, MUSB_TXCSR);
}
#endif
/*
* We may get here from a DMA completion or TXPKTRDY interrupt.
* In any case, we must check the FIFO status here and bail out
* only if the FIFO still has data -- that should prevent the
* "missed" TXPKTRDY interrupts and deal with double-buffered
* FIFO mode too...
*/
{
struct timeval tv_before, tv_after;
int timeout = 0;
u64 diff_ns;
do_gettimeofday(&tv_before);
while (1) {
if (tx_csr & (MUSB_TXCSR_FIFONOTEMPTY |
MUSB_TXCSR_TXPKTRDY))
tx_csr = musb_readw(epio, MUSB_TXCSR);
else
break;
do_gettimeofday(&tv_after);
diff_ns = timeval_to_ns(&tv_after) -
timeval_to_ns(&tv_before);
/* 5 ms for timeout */
if (diff_ns >= 5000000) {
timeout = 1;
break;
}
}
if (timeout) {
DBG(0, "ERROR!packet still in FIFO, CSR %04x\n",
tx_csr);
dump_tx_ops(epnum);
}
}
}
if (!status || dma || usb_pipeisoc(pipe)) {
if (dma)
length = dma->actual_len;
else
length = qh->segsize;
qh->offset += length;
if (usb_pipeisoc(pipe)) {
struct usb_iso_packet_descriptor *d;
d = urb->iso_frame_desc + qh->iso_idx;
d->actual_length = length;
d->status = status;
if (++qh->iso_idx >= urb->number_of_packets) {
done = true;
} else {
d++;
offset = d->offset;
length = d->length;
}
/* } else if (dma) { */
} else if (dma && urb->transfer_buffer_length == qh->offset) {
done = true;
} else {
/* see if we need to send more data, or ZLP */
if (qh->segsize < qh->maxpacket)
done = true;
else if (qh->offset == urb->transfer_buffer_length
&& !(urb->transfer_flags & URB_ZERO_PACKET))
done = true;
if (!done) {
offset = qh->offset;
length = urb->transfer_buffer_length - offset;
transfer_pending = true;
}
}
}
/* urb->status != -EINPROGRESS means request has been faulted,
* so we must abort this transfer after cleanup
*/
if (urb->status != -EINPROGRESS) {
done = true;
if (status == 0)
status = urb->status;
}
if (done) {
/* set status */
urb->status = status;
urb->actual_length = qh->offset;
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_OUT);
return;
#ifdef NEVER
} else if ((usb_pipeisoc(pipe) || transfer_pending) && dma) {
if (musb_tx_dma_program(musb->dma_controller,
hw_ep, qh, urb, offset, length)) {
if (is_cppi_enabled() || tusb_dma_omap())
musb_h_tx_dma_start(hw_ep);
return;
}
#endif
} else if (tx_csr & MUSB_TXCSR_DMAENAB) {
DBG(4, "not complete, but DMA enabled?\n");
return;
}
/*
* PIO: start next packet in this URB.
*
* REVISIT: some docs say that when hw_ep->tx_double_buffered,
* (and presumably, FIFO is not half-full) we should write *two*
* packets before updating TXCSR; other docs disagree...
*/
if (length > qh->maxpacket)
length = qh->maxpacket;
/* Unmap the buffer so that CPU can use it */
usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb), urb);
musb_write_fifo(hw_ep, length, urb->transfer_buffer + offset);
qh->segsize = length;
host_tx_refcnt_inc(epnum);
musb_ep_select(mbase, epnum);
musb_writew(epio,
MUSB_TXCSR, MUSB_TXCSR_H_WZC_BITS
| MUSB_TXCSR_TXPKTRDY);
if (musb_host_db_workaround2)
wait_tx_done(epnum, 2000000000);
}
/* Host side RX (IN) using Mentor DMA works as follows:
* submit_urb ->
* - if queue was empty, ProgramEndpoint
* - first IN token is sent out (by setting ReqPkt)
* LinuxIsr -> RxReady()
* /\ => first packet is received
* | - Set in mode 0 (DmaEnab, ~ReqPkt)
* | -> DMA Isr (transfer complete) -> RxReady()
* | - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
* | - if urb not complete, send next IN token (ReqPkt)
* | | else complete urb.
* | |
* ---------------------------
*
* Nuances of mode 1:
* For short packets, no ack (+RxPktRdy) is sent automatically
* (even if AutoClear is ON)
* For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
* automatically => major problem, as collecting the next packet becomes
* difficult. Hence mode 1 is not used.
*
* REVISIT
* All we care about at this driver level is that
* (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
* (b) termination conditions are: short RX, or buffer full;
* (c) fault modes include
* - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
* (and that endpoint's dma queue stops immediately)
* - overflow (full, PLUS more bytes in the terminal packet)
*
* So for example, usb-storage sets URB_SHORT_NOT_OK, and would
* thus be a great candidate for using mode 1 ... for all but the
* last packet of one URB's transfer.
*/
/*
* Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
* and high-bandwidth IN transfer cases.
*/
void musb_host_rx(struct musb *musb, u8 epnum)
{
struct urb *urb = NULL;
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = hw_ep->in_qh;
size_t xfer_len;
void __iomem *mbase = musb->mregs;
int pipe;
u16 rx_csr, val;
bool iso_err = false;
bool done = false;
u32 status;
struct dma_channel *dma;
static bool use_sg;
unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (qh && qh->is_use_qmu)
return;
#endif
if (unlikely(!qh)) {
DBG(0, "hw_ep:%d, QH NULL\n", epnum);
return;
}
musb_ep_select(mbase, epnum);
urb = next_urb(qh);
dma = is_dma_capable() ? hw_ep->rx_channel : NULL;
status = 0;
xfer_len = 0;
rx_csr = musb_readw(epio, MUSB_RXCSR);
val = rx_csr;
if (unlikely(!urb)) {
/* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
* usbtest #11 (unlinks) triggers it regularly, sometimes
* with fifo full. (Only with DMA??)
*/
DBG(0, "BOGUS RX%d ready, csr %04x, count %d\n", epnum, val,
musb_readw(epio, MUSB_RXCOUNT));
/* musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG); */
musb_h_flush_rxfifo(hw_ep, 0);
musb_advance_schedule(musb,
(struct urb *)QH_FREE_RESCUE_INTERRUPT,
hw_ep,
USB_DIR_IN);
return;
}
pipe = urb->pipe;
DBG(4, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n",
epnum, rx_csr, urb->actual_length, dma ? dma->actual_len : 0);
/* check for errors, concurrent stall & unlink is not really
* handled yet!
*/
if (rx_csr & MUSB_RXCSR_H_RXSTALL) {
DBG(0, "RX end %d STALL\n", epnum);
/* handle stall in MAC */
rx_csr &= ~MUSB_RXCSR_H_RXSTALL;
musb_writew(epio, MUSB_RXCSR, rx_csr);
/* stall; record URB status */
status = -EPIPE;
} else if (rx_csr & MUSB_RXCSR_H_ERROR) {
DBG(0, "end %d RX proto error,rxtoggle=0x%x\n", epnum,
musb_readl(mbase, MUSB_RXTOG));
status = -EPROTO;
musb_writeb(epio, MUSB_RXINTERVAL, 0);
} else if (rx_csr & MUSB_RXCSR_DATAERROR) {
if (qh->type != USB_ENDPOINT_XFER_ISOC) {
DBG(0, "RX end %d NAK timeout,rxtoggle=0x%x\n", epnum,
musb_readl(mbase, MUSB_RXTOG));
/* NOTE: NAKing is *NOT* an error, so we want to
* continue. Except ... if there's a request for
* another QH, use that instead of starving it.
*
* Devices like Ethernet and serial adapters keep
* reads posted at all times, which will starve
* other devices without this logic.
*/
if (usb_pipebulk(urb->pipe)
&& qh->mux == 1
&& !list_is_singular(&musb->in_bulk)) {
musb_bulk_nak_timeout(musb, hw_ep, 1);
return;
}
musb_ep_select(mbase, epnum);
rx_csr |= MUSB_RXCSR_H_WZC_BITS;
rx_csr &= ~MUSB_RXCSR_DATAERROR;
musb_writew(epio, MUSB_RXCSR, rx_csr);
goto finish;
} else {
DBG(4, "RX end %d ISO data error\n", epnum);
/* packet error reported later */
iso_err = true;
}
} else if (rx_csr & MUSB_RXCSR_INCOMPRX) {
DBG(3, "end %d high bandwidth incomplete ISO packet RX\n"
, epnum);
status = -EPROTO;
}
/* faults abort the transfer */
if (status) {
/* clean up dma and collect transfer count */
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
(void)musb->dma_controller->channel_abort(dma);
xfer_len = dma->actual_len;
}
/* musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG); */
musb_h_flush_rxfifo(hw_ep, 0);
musb_writeb(epio, MUSB_RXINTERVAL, 0);
done = true;
goto finish;
}
if (unlikely(dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY)) {
/* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
pr_notice("RX%d dma busy, csr %04x\n", epnum, rx_csr);
goto finish;
}
/* thorough shutdown for now ... given more precise fault handling
* and better queueing support, we might keep a DMA pipeline going
* while processing this irq for earlier completions.
*/
/* FIXME this is _way_ too much in-line logic for Mentor DMA */
#ifdef NEVER
if (rx_csr & MUSB_RXCSR_H_REQPKT) {
/* REVISIT this happened for a while on some short reads...
* the cleanup still needs investigation... looks bad...
* and also duplicates dma cleanup code above ... plus,
* shouldn't this be the "half full" double buffer case?
*/
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
(void)musb->dma_controller->channel_abort(dma);
xfer_len = dma->actual_len;
done = true;
}
DBG(2, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum, rx_csr,
xfer_len, dma ? ", dma" : "");
rx_csr &= ~MUSB_RXCSR_H_REQPKT;
musb_ep_select(mbase, epnum);
musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS | rx_csr);
}
#endif
if (dma && (rx_csr & MUSB_RXCSR_DMAENAB)) {
xfer_len = dma->actual_len;
/* ALPS00798316, Enable DMA RxMode1 */
/* DBG(7, "urb->actual_length = %d, xfer_len = %d,
* urb->transfer_buffer_length = %d,
* dma->actual_len=%d, qh->maxpacket = %d\n",
* urb->actual_length, xfer_len, urb->transfer_buffer_length,
* dma->actual_len, qh->maxpacket);
*/
#ifdef NEVER
/* ALPS00798316, Enable DMA RxMode1 */
val &= ~(MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_H_AUTOREQ
| MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_RXPKTRDY);
/* ALPS00798316, Enable DMA RxMode1 */
#else
val &= ~(MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_H_AUTOREQ
| MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_RXPKTRDY
| MUSB_RXCSR_DMAMODE); /* should be clear! */
#endif
/* ALPS00798316, Enable DMA RxMode1 */
musb_writew(hw_ep->regs, MUSB_RXCSR, val);
if (usb_pipeisoc(pipe)) {
struct usb_iso_packet_descriptor *d;
d = urb->iso_frame_desc + qh->iso_idx;
d->actual_length = xfer_len;
/* even if there was an error, we did the dma
* for iso_frame_desc->length
*/
if (d->status != -EILSEQ && d->status != -EOVERFLOW)
d->status = 0;
if (++qh->iso_idx >= urb->number_of_packets)
done = true;
else
done = false;
} else {
/* done if urb buffer is full or short packet is recd */
done = (urb->actual_length + xfer_len >=
urb->transfer_buffer_length
|| dma->actual_len < qh->maxpacket);
}
/* send IN token for next packet, without AUTOREQ */
if (!done) {
val |= MUSB_RXCSR_H_REQPKT;
musb_writew(epio, MUSB_RXCSR,
MUSB_RXCSR_H_WZC_BITS | val);
}
DBG(4, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum,
done ? "off" : "reset",
musb_readw(epio, MUSB_RXCSR),
musb_readw(epio, MUSB_RXCOUNT));
} else if (urb->status == -EINPROGRESS) {
/* if no errors, be sure a packet is ready for unloading */
if (unlikely(!(rx_csr & MUSB_RXCSR_RXPKTRDY))) {
status = -EPROTO;
pr_notice("Rx interrupt with no errors or packet!\n");
/* FIXME this is another "SHOULD NEVER HAPPEN" */
/* SCRUB (RX) */
/* do the proper sequence to abort the transfer */
musb_ep_select(mbase, epnum);
val &= ~MUSB_RXCSR_H_REQPKT;
musb_writew(epio, MUSB_RXCSR, val);
goto finish;
}
/* we are expecting IN packets */
if (dma) {
struct dma_controller *c;
u16 rx_count;
int ret, length;
dma_addr_t buf;
rx_count = musb_readw(epio, MUSB_RXCOUNT);
DBG(4, "RX%d count %d, buffer 0x%x len %d/%d\n",
epnum, rx_count,
(unsigned int)urb->transfer_dma
+ urb->actual_length,
qh->offset,
urb->transfer_buffer_length);
c = musb->dma_controller;
if (usb_pipeisoc(pipe)) {
int d_status = 0;
struct usb_iso_packet_descriptor *d;
d = urb->iso_frame_desc + qh->iso_idx;
if (iso_err) {
d_status = -EILSEQ;
urb->error_count++;
}
if (rx_count > d->length) {
if (d_status == 0) {
d_status = -EOVERFLOW;
urb->error_count++;
}
DBG(2, "** OVERFLOW %d into %d\n"
, rx_count, d->length);
length = d->length;
} else
length = rx_count;
d->status = d_status;
buf = urb->transfer_dma + d->offset;
} else {
length = rx_count;
buf = urb->transfer_dma + urb->actual_length;
}
dma->desired_mode = 0;
#ifdef NEVER
/* #ifdef USE_MODE1 */
/* because of the issue below, mode 1 will
* only rarely behave with correct semantics.
*/
if ((urb->transfer_flags & URB_SHORT_NOT_OK)
&& (urb->transfer_buffer_length -
urb->actual_length)
> qh->maxpacket)
dma->desired_mode = 1;
if (rx_count < hw_ep->max_packet_sz_rx) {
length = rx_count;
dma->desired_mode = 0;
} else {
length = urb->transfer_buffer_length;
}
#endif
/* Disadvantage of using mode 1:
* It's basically usable only for mass storage class; essentially all
* other protocols also terminate transfers on short packets.
*
* Details:
* An extra IN token is sent at the end of the transfer (due to AUTOREQ)
* If you try to use mode 1 for (transfer_buffer_length - 512), and try
* to use the extra IN token to grab the last packet using mode 0, then
* the problem is that you cannot be sure when the device will send the
* last packet and RxPktRdy set. Sometimes the packet is recd too soon
* such that it gets lost when RxCSR is re-set at the end of the mode 1
* transfer, while sometimes it is recd just a little late so that if you
* try to configure for mode 0 soon after the mode 1 transfer is
* completed, you will find rxcount 0. Okay, so you might think why not
* wait for an interrupt when the pkt is recd. Well, you won't get any!
*/
val = musb_readw(epio, MUSB_RXCSR);
val &= ~MUSB_RXCSR_H_REQPKT;
if (dma->desired_mode == 0)
val &= ~MUSB_RXCSR_H_AUTOREQ;
else
val |= MUSB_RXCSR_H_AUTOREQ;
val |= MUSB_RXCSR_DMAENAB;
/* autoclear shouldn't be set in high bandwidth */
if (qh->hb_mult == 1)
val |= MUSB_RXCSR_AUTOCLEAR;
musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS
| val);
/* REVISIT if when actual_length != 0,
* transfer_buffer_length needs to be
* adjusted first...
*/
/* dma is a dma channel,
* which is already allocated for the Rx EP
* in the func:musb_ep_program
*/
ret = c->channel_program(dma, qh->maxpacket,
dma->desired_mode,
buf, length);
if (!ret) {
c->channel_release(dma);
hw_ep->rx_channel = NULL;
dma = NULL;
/* REVISIT reset CSR */
val = musb_readw(epio, MUSB_RXCSR);
val &= ~(MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_H_AUTOREQ
| MUSB_RXCSR_AUTOCLEAR);
musb_writew(epio, MUSB_RXCSR, val);
}
}
if (!dma) {
unsigned int received_len;
/* Unmap the buffer so that CPU can use it */
usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb), urb);
/*
* We need to map sg if the transfer_buffer is
* NULL.
*/
if (!urb->transfer_buffer) {
use_sg = true;
sg_miter_start(&qh->sg_miter,
urb->sg, 1, sg_flags);
}
if (use_sg) {
if (!sg_miter_next(&qh->sg_miter)) {
dev_info(musb->controller, "error: sg list empty\n");
sg_miter_stop(&qh->sg_miter);
status = -EINVAL;
done = true;
goto finish;
}
urb->transfer_buffer = qh->sg_miter.addr;
received_len = urb->actual_length;
qh->offset = 0x0;
done =
musb_host_packet_rx(musb,
urb, epnum, iso_err);
/* Calculate the number of bytes received */
received_len =
urb->actual_length - received_len;
qh->sg_miter.consumed = received_len;
sg_miter_stop(&qh->sg_miter);
} else {
/* Unmap the buffer so that CPU can use it */
usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb)
, urb);
done = musb_host_packet_rx(musb,
urb, epnum, iso_err);
}
DBG(4, "read %spacket\n", done ? "last " : "");
}
}
finish:
urb->actual_length += xfer_len;
qh->offset += xfer_len;
if (done) {
if (use_sg)
use_sg = false;
if (urb->status == -EINPROGRESS)
urb->status = status;
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_IN);
}
}
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
/*
* X: isoc_ep_end_idx
Y: MAX_QMU_EP
Z: musb->nr_endpoints - 1
<-----------(X)---------(Y)---------(Z)>
((EP_GROUP_A))
<--isoc ep-->((EP_GROUP_B))
<-----------qmu ep------->((EP_GROUP_C))
<---------------all ep----------------->
EP_GROUP_A : QMU EP and GPD# a lot (for ISOC)
EP_GROUP_B : QMU EP and GPD# normal
EP_GROUP_C : non-QMU EP
*
*/
enum {
EP_GROUP_A,
EP_GROUP_B,
EP_GROUP_C,
};
static int
ep_group_match(struct musb *musb,
struct musb_qh *qh,
int is_in, int group_type)
{
int match_begin[3], match_end[3];
int epnum, hw_end = 0;
int begin, end, i;
struct musb_hw_ep *hw_ep = NULL;
if (group_type == EP_GROUP_A) {
match_begin[0] = 1;
match_end[0] = isoc_ep_end_idx;
match_begin[1] = isoc_ep_end_idx + 1;
match_end[1] = MAX_QMU_EP;
match_begin[2] = MAX_QMU_EP + 1;
match_end[2] = musb->nr_endpoints - 1;
} else if (group_type == EP_GROUP_B) {
match_begin[0] = isoc_ep_end_idx + 1;
match_end[0] = MAX_QMU_EP;
match_begin[1] = 1;
match_end[1] = isoc_ep_end_idx;
match_begin[2] = MAX_QMU_EP + 1;
match_end[2] = musb->nr_endpoints - 1;
} else {
match_begin[0] = MAX_QMU_EP + 1;
match_end[0] = musb->nr_endpoints - 1;
match_begin[1] = isoc_ep_end_idx + 1;
match_end[1] = MAX_QMU_EP;
match_begin[2] = 1;
match_end[2] = isoc_ep_end_idx;
}
for (i = 0; i < 3; i++) {
begin = match_begin[i];
end = match_end[i];
for (epnum = begin, hw_ep = musb->endpoints + epnum;
epnum <= end; epnum++, hw_ep++) {
if (musb_ep_get_qh(hw_ep, is_in) != NULL)
continue;
hw_end = epnum;
DBG(1,
"group<%d,%d>, qh->type:%d, find hw_ep%d, is_in:%d, intv[%d,%d], <%d,%d,%d>\n"
, group_type
, i, qh->type
, hw_end, is_in
, begin, end
, isoc_ep_end_idx
, MAX_QMU_EP
, musb->nr_endpoints);
/* REVERT for not matching where it belongs */
if (group_type < i)
qh->is_use_qmu = 0;
return hw_end;
}
}
return 0;
}
#endif
/* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
* the software schedule associates multiple such nodes with a given
* host side hardware endpoint + direction; scheduling may activate
* that hardware endpoint.
*/
static int musb_schedule(struct musb *musb, struct musb_qh *qh, int is_in)
{
int idle = 0;
int epnum, hw_end = 0;
struct musb_hw_ep *hw_ep = NULL;
struct list_head *head = NULL;
/* u8 toggle; */
/* u8 txtype; */
/* struct urb *urb = next_urb(qh); */
if (!musb->is_active)
return -ENODEV;
/* use fixed hardware for control and bulk */
if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
head = &musb->control;
hw_ep = musb->control_ep;
goto success;
}
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
{
int group_type;
if (!qh->is_use_qmu)
group_type = EP_GROUP_C;
else if (qh->type == USB_ENDPOINT_XFER_ISOC)
group_type = EP_GROUP_A;
else
group_type = EP_GROUP_B;
epnum = hw_end = ep_group_match(musb, qh, is_in, group_type);
if (!hw_end) {
DBG(0, "musb::error!not find a ep for the urb\r\n");
return -ENOSPC;
}
hw_ep = musb->endpoints + hw_end;
}
#else
for (epnum = 1, hw_ep = musb->endpoints + 1;
epnum < musb->nr_endpoints; epnum++, hw_ep++) {
/* int diff; */
if (musb_ep_get_qh(hw_ep, is_in) != NULL)
continue;
hw_end = epnum;
hw_ep = musb->endpoints + hw_end; /* got the right ep */
DBG(1, "qh->type:%d, find a hw_ep%d\n", qh->type, hw_end);
break;
}
if (!hw_end) {
DBG(0, "musb::error!not find a ep for the urb\r\n");
return -ENOSPC;
}
#endif
idle = 1;
qh->mux = 0;
success:
if (head) {
idle = list_empty(head);
list_add_tail(&qh->ring, head);
qh->mux = 1;
}
qh->hw_ep = hw_ep;
qh->hep->hcpriv = qh;
if (musb_host_dynamic_fifo && qh->type != USB_ENDPOINT_XFER_CONTROL) {
int ret;
/* take this after qh->hw_ep is set */
ret = musb_host_alloc_ep_fifo(musb, qh, is_in);
if (ret) {
qh->hw_ep = NULL;
qh->hep->hcpriv = NULL;
DBG(0, "NOT ENOUGH FIFO\n");
return -ENOSPC;
}
}
if (idle) {
if (qh->type == USB_ENDPOINT_XFER_ISOC) {
static DEFINE_RATELIMIT_STATE(ratelimit, HZ, 10);
if (__ratelimit(&ratelimit))
pr_debug("<ratelimit> QH create, 1st transfer\n");
}
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
/* downgrade to non-qmu
* if no specific ep grabbed
* when isoc_ep_gpd_count is set
*/
if (qh->is_use_qmu) {
musb_ep_set_qh(hw_ep, is_in, qh);
mtk_kick_CmdQ(musb, is_in ? 1:0, qh, next_urb(qh));
} else
musb_start_urb(musb, is_in, qh);
#else
musb_start_urb(musb, is_in, qh);
#endif
}
return 0;
}
static int
musb_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
{
unsigned long flags;
struct musb *musb = hcd_to_musb(hcd);
struct usb_host_endpoint *hep = urb->ep;
struct musb_qh *qh;
struct usb_endpoint_descriptor *epd = &hep->desc;
int ret;
unsigned int type_reg;
unsigned int interval;
DBG(4, "%s ++,\n", __func__);
DBG(4, "urb=%p,transfer_buf_length=0x%x\n"
, urb, urb->transfer_buffer_length);
/* workaround for DMA issue */
if (usb_endpoint_num(epd) == 0)
urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
/* host role must be active */
if (!is_host_active(musb) || !musb->is_active)
return -ENODEV;
spin_lock_irqsave(&musb->lock, flags);
ret = usb_hcd_link_urb_to_ep(hcd, urb);
qh = ret ? NULL : hep->hcpriv;
if (qh) {
DBG(4, "qh has been allocated before,%p\n", qh);
urb->hcpriv = qh;
}
/* DMA mapping was already done, if needed, and this urb is on
* hep->urb_list now ... so we're done, unless hep wasn't yet
* scheduled onto a live qh.
*
* REVISIT best to keep hep->hcpriv valid until the endpoint gets
* disabled, testing for empty qh->ring and avoiding qh setup costs
* except for the first urb queued after a config change.
*/
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (mtk_host_qmu_concurrent && qh && qh->is_use_qmu && (ret == 0)) {
mtk_kick_CmdQ(musb,
(epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK)
? 1:0, qh, urb);
spin_unlock_irqrestore(&musb->lock, flags);
return ret;
}
#endif
if (qh || ret) {
spin_unlock_irqrestore(&musb->lock, flags);
return ret;
}
/* Allocate and initialize qh, minimizing the work done each time
* hw_ep gets reprogrammed, or with irqs blocked. Then schedule it.
*
* REVISIT consider a dedicated qh kmem_cache, so it's harder
* for bugs in other kernel code to break this driver...
*/
qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
if (!qh) {
usb_hcd_unlink_urb_from_ep(hcd, urb);
spin_unlock_irqrestore(&musb->lock, flags);
return -ENOMEM;
}
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (urb->dev->devnum)
musb_host_active_dev_add((unsigned int)urb->dev->devnum);
#endif
DBG(4, "kzalloc a qh %p\n", qh);
qh->hep = hep;
qh->dev = urb->dev;
INIT_LIST_HEAD(&qh->ring);
qh->is_ready = 1;
qh->maxpacket = usb_endpoint_maxp(epd);
qh->type = usb_endpoint_type(epd);
/* Bits 11 & 12 of wMaxPacketSize encode high bandwidth multiplier.
* Some musb cores don't support high bandwidth ISO transfers; and
* we don't (yet!) support high bandwidth interrupt transfers.
*/
if (qh->type == USB_ENDPOINT_XFER_ISOC) {
qh->hb_mult = usb_endpoint_maxp_mult(epd);
if (qh->hb_mult > 1) {
int ok = (qh->type == USB_ENDPOINT_XFER_ISOC);
if (ok)
ok = (usb_pipein(urb->pipe) && musb->hb_iso_rx)
|| (usb_pipeout(urb->pipe)
&& musb->hb_iso_tx);
if (!ok) {
ret = -EMSGSIZE;
goto done;
}
qh->maxpacket &= 0x7ff;
}
}
qh->epnum = usb_endpoint_num(epd);
/* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
qh->addr_reg = (u8) usb_pipedevice(urb->pipe);
/* precompute rxtype/txtype/type0 register */
type_reg = (qh->type << 4) | qh->epnum;
switch (urb->dev->speed) {
case USB_SPEED_LOW:
type_reg |= 0xc0;
break;
case USB_SPEED_FULL:
type_reg |= 0x80;
break;
default:
type_reg |= 0x40;
}
qh->type_reg = type_reg;
/* Precompute RXINTERVAL/TXINTERVAL register */
switch (qh->type) {
case USB_ENDPOINT_XFER_INT:
/*
* Full/low speeds use the linear encoding,
* high speed uses the logarithmic encoding.
*/
if (urb->dev->speed <= USB_SPEED_FULL) {
interval = max_t(u8, epd->bInterval, 1);
break;
}
/* FALLTHROUGH */
case USB_ENDPOINT_XFER_ISOC:
/* ISO always uses logarithmic encoding */
interval = min_t(u8, epd->bInterval, 16);
break;
default:
/* REVISIT we actually want to use NAK limits, hinting to the
* transfer scheduling logic to try some other qh, e.g. try
* for 2 msec first:
*
* interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
*
* The downside of disabling this is that transfer scheduling
* gets VERY unfair for nonperiodic transfers; a misbehaving
* peripheral could make that hurt. That's perfectly normal
* for reads from network or serial adapters ... so we have
* partial NAKlimit support for bulk RX.
*
* The upside of disabling it is simpler transfer scheduling.
*/
interval = 0;
}
qh->intv_reg = interval;
/* precompute addressing for external hub/tt ports */
if (musb->is_multipoint) {
struct usb_device *parent = urb->dev->parent;
if (parent != hcd->self.root_hub) {
qh->h_addr_reg = (u8) parent->devnum;
/* set up tt info if needed */
if (urb->dev->tt) {
qh->h_port_reg = (u8) urb->dev->ttport;
if (urb->dev->tt->hub)
qh->h_addr_reg =
(u8) urb->dev->tt->hub->devnum;
if (urb->dev->tt->multi)
qh->h_addr_reg |= 0x80;
}
}
}
/* invariant: hep->hcpriv is null OR the qh that's already scheduled.
* until we get real dma queues (with an entry for each urb/buffer),
* we only have work to do in the former case.
*/
if (hep->hcpriv || !next_urb(qh)) {
/* some concurrent activity submitted another urb to hep...
* odd, rare, error prone, but legal.
*/
DBG(0, "run here??\n");
kfree(qh);
qh = NULL;
ret = 0;
} else {
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if ((!usb_pipecontrol(urb->pipe))
&& ((usb_pipetype(urb->pipe) + 1)
& mtk_host_qmu_pipe_msk))
qh->is_use_qmu = 1;
#endif
ret = musb_schedule(musb, qh,
epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK);
}
if (ret == 0) {
urb->hcpriv = qh;
/* FIXME set urb->start_frame for iso/intr, it's tested in
* musb_start_urb(), but otherwise only konicawc cares ...
*/
}
spin_unlock_irqrestore(&musb->lock, flags);
done:
if (ret != 0) {
spin_lock_irqsave(&musb->lock, flags);
usb_hcd_unlink_urb_from_ep(hcd, urb);
DBG(0, "%s - free qh after enqueue done!\n", __func__);
qh->hep->hcpriv = NULL;
kfree(qh);
spin_unlock_irqrestore(&musb->lock, flags);
}
return ret;
}
/*
* abort a transfer that's at the head of a hardware queue.
* called with controller locked, irqs blocked
* that hardware queue advances to the next transfer, unless prevented
*/
static int musb_cleanup_urb(struct urb *urb, struct musb_qh *qh)
{
struct musb_hw_ep *ep = qh->hw_ep;
/* struct musb *musb = ep->musb; */
void __iomem *epio = ep->regs;
unsigned int hw_end = ep->epnum;
void __iomem *regs = NULL;
int is_in = 0;
int status = 0;
u16 csr;
if (ep->musb->mregs)
regs = ep->musb->mregs;
else
DBG(4, "adfadsfadfasdf\n");
if (urb)
is_in = usb_pipein(urb->pipe);
else
DBG(4, "111111aaaaaaaaa\n");
if (regs)
musb_ep_select(regs, hw_end);
DBG(2, "is_in is %d,ep num is %d\n", is_in, ep->epnum);
if (is_dma_capable()) {
struct dma_channel *dma;
dma = is_in ? ep->rx_channel : ep->tx_channel;
/* DBG(2,"DMA is %x\n",dma); */
if (dma) {
status = ep->musb->dma_controller->channel_abort(dma);
DBG(status ? 1 : 3,
"abort %cX%d DMA for urb %p --> %d\n",
is_in ? 'R' : 'T', ep->epnum, urb, status);
urb->actual_length += dma->actual_len;
}
}
/* turn off DMA requests, discard state, stop polling ... */
if (ep->epnum && is_in) {
/* giveback saves bulk toggle */
csr = musb_h_flush_rxfifo(ep, 0);
/* REVISIT we still get an irq; should likely clear the
* endpoint's irq status here to avoid bogus irqs.
* clearing that status is platform-specific...
*/
} else if (ep->epnum) {
musb_h_tx_flush_fifo(ep);
csr = musb_readw(epio, MUSB_TXCSR);
csr &= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_H_RXSTALL
| MUSB_TXCSR_H_NAKTIMEOUT
| MUSB_TXCSR_H_ERROR
| MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR, csr);
/* REVISIT may need to clear FLUSHFIFO ... */
musb_writew(epio, MUSB_TXCSR, csr);
/* flush cpu writebuffer */
csr = musb_readw(epio, MUSB_TXCSR);
} else {
musb_h_ep0_flush_fifo(ep);
}
if (status == 0)
musb_advance_schedule(ep->musb, urb, ep, is_in);
return status;
}
static int musb_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
struct musb *musb = hcd_to_musb(hcd);
struct musb_qh *qh;
unsigned long flags;
int is_in = usb_pipein(urb->pipe);
int ret, pos;
char info[256];
spin_lock_irqsave(&musb->lock, flags);
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
if (ret) {
DBG(0, "ret<%d>\n", ret);
goto done;
}
qh = urb->hcpriv;
if (!qh) {
DBG(0, "!qh\n");
goto done;
}
pos = snprintf(info, 256, "urb<%p>,dev<%d>,ep<%d%s>,qh<%p>",
urb,
usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe),
is_in ? "in" : "out",
qh);
if (pos < 256) {
ret = snprintf(info + pos, 256 - pos, ",rdy<%d>,prev<%d>,cur<%d>",
qh->is_ready,
urb->urb_list.prev != &qh->hep->urb_list,
musb_ep_get_qh(qh->hw_ep, is_in) == qh);
if (ret < 0)
DBG(0, "ret<%d>\n", ret);
}
DBG_LIMIT(5, "%s", info);
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
/* abort HW transaction on this ep */
if (qh->is_use_qmu)
mtk_disable_q(musb, qh->hw_ep->epnum, is_in);
#endif
/*
* Any URB not actively programmed into endpoint hardware can be
* immediately given back; that's any URB not at the head of an
* endpoint queue, unless someday we get real DMA queues. And even
* if it's at the head, it might not be known to the hardware...
*
* Otherwise abort current transfer, pending DMA, etc.; urb->status
* has already been updated. This is a synchronous abort; it'd be
* OK to hold off until after some IRQ, though.
*
* NOTE: qh is invalid unless !list_empty(&hep->urb_list)
*/
if (!qh->is_ready
|| urb->urb_list.prev != &qh->hep->urb_list
|| musb_ep_get_qh(qh->hw_ep, is_in) != qh) {
int ready = qh->is_ready;
struct musb_hw_ep *hw_ep = qh->hw_ep;
if (ready)
qh->is_ready = 0;
musb_giveback(musb, urb, 0);
/* QH might be freed after giveback, check again */
if ((is_in && !hw_ep->in_qh)
|| (!is_in && !hw_ep->out_qh)
) {
DBG(0, "QH already freed\n");
goto done;
}
if (ready)
qh->is_ready = ready;
/* If nothing else (usually musb_giveback) is using it
* and its URB list has emptied, recycle this qh.
*/
if (ready && list_empty(&qh->hep->urb_list)) {
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (qh->is_use_qmu && mtk_host_qmu_concurrent) {
DBG(0, "qmu with concurrent, exit\n");
goto done;
} else
DBG(0, "qmu<%d>, concurrent<%d>\n",
qh->is_use_qmu,
mtk_host_qmu_concurrent);
#endif
if (qh->type != USB_ENDPOINT_XFER_CONTROL) {
DBG(0, "why here, this is ring case?\n");
dump_stack();
}
qh->hep->hcpriv = NULL;
list_del(&qh->ring);
kfree(qh);
}
} else {
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
/* qmu non-concurrent case, stop HW */
if (qh->is_use_qmu && !mtk_host_qmu_concurrent)
mtk_disable_q(musb, qh->hw_ep->epnum, is_in);
if (qh->is_use_qmu && mtk_host_qmu_concurrent) {
/* concurrent case, recycle SW part, leave HW part go */
ret = 0;
musb_advance_schedule(musb, urb, qh->hw_ep, is_in);
} else
ret = musb_cleanup_urb(urb, qh);
#else
ret = musb_cleanup_urb(urb, qh);
#endif
}
done:
spin_unlock_irqrestore(&musb->lock, flags);
return ret;
}
/* disable an endpoint */
static void musb_h_disable(struct usb_hcd *hcd, struct usb_host_endpoint *hep)
{
u8 is_in = hep->desc.bEndpointAddress & USB_DIR_IN;
unsigned long flags;
struct musb *musb = hcd_to_musb(hcd);
struct musb_qh *qh;
struct urb *urb;
spin_lock_irqsave(&musb->lock, flags);
if (hep == &pre_hep) {
struct musb_hw_ep *hw_ep;
int epnum = usb_endpoint_num(&hep->desc);
hw_ep = musb->endpoints + epnum;
if (is_in)
qh = hw_ep->in_qh;
else
qh = hw_ep->out_qh;
if (qh == NULL) {
DBG(1, "qh:%p, is_in:%x, epnum:%d, hep<%p>\n",
qh, is_in, epnum, hep);
goto exit;
}
if (is_in)
hep = hw_ep->in_qh->hep;
else
hep = hw_ep->out_qh->hep;
DBG(0, "qh:%p, is_in:%x, epnum:%d, hep<%p>\n",
qh, is_in, epnum, hep);
} else {
qh = hep->hcpriv;
if (qh == NULL) {
DBG(1, "qh:%p, virt-epnum:%d, hep<%p>\n",
qh, hep->desc.bEndpointAddress, hep);
goto exit;
}
DBG(0, "qh:%p, is_in:%x, epnum:%d, hep<%p>\n",
qh, is_in, qh->hw_ep->epnum, hep);
}
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
/* abort HW transaction on this ep */
if (qh->is_use_qmu)
mtk_disable_q(musb, qh->hw_ep->epnum, is_in);
#endif
/* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
/* Kick the first URB off the hardware, if needed */
qh->is_ready = 0;
if (musb_ep_get_qh(qh->hw_ep, is_in) == qh) {
urb = next_urb(qh);
/* make software (then hardware) stop ASAP */
if (urb) {
if (!urb->unlinked)
urb->status = -ESHUTDOWN;
/* cleanup */
DBG(0, "list_empty<%d>, urb<%p,%d,%d>\n",
list_empty(&hep->urb_list),
urb,
urb->unlinked,
urb->status);
musb_cleanup_urb(urb, qh);
} else {
DBG(0, "list_empty<%d>\n"
, list_empty(&hep->urb_list));
musb_advance_schedule(musb,
(struct urb *)QH_FREE_RESCUE_EP_DISABLE,
qh->hw_ep, is_in);
}
/* Then nuke all the others ... and advance the
* queue on hw_ep (e.g. bulk ring) when we're done.
*/
while (!list_empty(&hep->urb_list)) {
urb = next_urb(qh);
urb->status = -ESHUTDOWN;
musb_advance_schedule(musb, urb, qh->hw_ep, is_in);
}
} else {
if (qh->type != USB_ENDPOINT_XFER_CONTROL) {
DBG(0, "why here, this is ring case?\n");
musb_bug();
}
/* Just empty the queue; the hardware is busy with
* other transfers, and since !qh->is_ready nothing
* will activate any of these as it advances.
*/
while (!list_empty(&hep->urb_list))
musb_giveback(musb, next_urb(qh), -ESHUTDOWN);
hep->hcpriv = NULL;
list_del(&qh->ring);
kfree(qh);
}
exit:
spin_unlock_irqrestore(&musb->lock, flags);
}
void musb_h_pre_disable(struct musb *musb)
{
int i = 0;
struct usb_hcd *hcd = musb_to_hcd(musb);
DBG(0, "disable all endpoints\n");
if (hcd == NULL)
return;
for (i = 0; i < musb->nr_endpoints; i++) {
pre_hep.desc.bEndpointAddress = (i | USB_DIR_IN);
musb_h_disable(hcd, &pre_hep);
pre_hep.desc.bEndpointAddress = (i | USB_DIR_OUT);
musb_h_disable(hcd, &pre_hep);
}
}
static int musb_h_get_frame_number(struct usb_hcd *hcd)
{
struct musb *musb = hcd_to_musb(hcd);
return musb_readw(musb->mregs, MUSB_FRAME);
}
static int musb_h_start(struct usb_hcd *hcd)
{
struct musb *musb = hcd_to_musb(hcd);
/* NOTE: musb_start() is called when the hub driver turns
* on port power, or when (OTG) peripheral starts.
*/
hcd->state = HC_STATE_RUNNING;
musb->port1_status = 0;
return 0;
}
static void musb_h_stop(struct usb_hcd *hcd)
{
DBG(0, "musb_stop is called\n");
musb_stop(hcd_to_musb(hcd));
hcd->state = HC_STATE_HALT;
}
static int musb_bus_suspend(struct usb_hcd *hcd)
{
struct musb *musb = hcd_to_musb(hcd);
u8 devctl;
int ret;
ret = musb_port_suspend(musb, true);
if (ret)
return ret;
if (!is_host_active(musb))
return 0;
switch (musb->xceiv->otg->state) {
case OTG_STATE_A_SUSPEND:
usb_hal_dpidle_request(USB_DPIDLE_TIMER);
return 0;
case OTG_STATE_A_WAIT_VRISE:
/* ID could be grounded even if there's no device
* on the other end of the cable. NOTE that the
* A_WAIT_VRISE timers are messy with MUSB...
*/
devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS)
musb->xceiv->otg->state = OTG_STATE_A_WAIT_BCON;
break;
default:
break;
}
if (musb->is_active) {
static DEFINE_RATELIMIT_STATE(ratelimit, HZ, 1);
if (__ratelimit(&ratelimit))
pr_debug("<ratelimit> trying to suspend as %s while active\n"
, otg_state_string(musb->xceiv->otg->state));
return -EBUSY;
}
usb_hal_dpidle_request(USB_DPIDLE_TIMER);
return 0;
}
static int musb_bus_resume(struct usb_hcd *hcd)
{
struct musb *musb = hcd_to_musb(hcd);
if (!is_host_active(musb))
return 0;
usb_hal_dpidle_request(USB_DPIDLE_FORBIDDEN);
/* resuming child port does the work */
return 0;
}
const struct hc_driver musb_hc_driver = {
.description = "musb-hcd",
.product_desc = "MUSB HDRC host driver",
.hcd_priv_size = sizeof(struct musb),
.flags = HCD_USB2 | HCD_MEMORY,
/* not using irq handler or reset hooks from usbcore, since
* those must be shared with peripheral code for OTG configs
*/
.start = musb_h_start,
.stop = musb_h_stop,
.get_frame_number = musb_h_get_frame_number,
.urb_enqueue = musb_urb_enqueue,
.urb_dequeue = musb_urb_dequeue,
.endpoint_disable = musb_h_disable,
.hub_status_data = musb_hub_status_data,
.hub_control = musb_hub_control,
.bus_suspend = musb_bus_suspend,
.bus_resume = musb_bus_resume,
/* .start_port_reset = NULL, */
/* .hub_irq_enable = NULL, */
};