kernel_samsung_a34x-permissive/drivers/media/i2c/adv7604.c

3584 lines
104 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* adv7604 - Analog Devices ADV7604 video decoder driver
*
* Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*
*/
/*
* References (c = chapter, p = page):
* REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
* Revision 2.5, June 2010
* REF_02 - Analog devices, Register map documentation, Documentation of
* the register maps, Software manual, Rev. F, June 2010
* REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/hdmi.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/slab.h>
#include <linux/v4l2-dv-timings.h>
#include <linux/videodev2.h>
#include <linux/workqueue.h>
#include <linux/regmap.h>
#include <media/i2c/adv7604.h>
#include <media/cec.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-dv-timings.h>
#include <media/v4l2-fwnode.h>
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");
MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");
/* ADV7604 system clock frequency */
#define ADV76XX_FSC (28636360)
#define ADV76XX_RGB_OUT (1 << 1)
#define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
#define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
#define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
#define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
#define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
#define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
#define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
#define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
#define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
#define ADV76XX_OP_CH_SEL_GBR (0 << 5)
#define ADV76XX_OP_CH_SEL_GRB (1 << 5)
#define ADV76XX_OP_CH_SEL_BGR (2 << 5)
#define ADV76XX_OP_CH_SEL_RGB (3 << 5)
#define ADV76XX_OP_CH_SEL_BRG (4 << 5)
#define ADV76XX_OP_CH_SEL_RBG (5 << 5)
#define ADV76XX_OP_SWAP_CB_CR (1 << 0)
#define ADV76XX_MAX_ADDRS (3)
enum adv76xx_type {
ADV7604,
ADV7611,
ADV7612,
};
struct adv76xx_reg_seq {
unsigned int reg;
u8 val;
};
struct adv76xx_format_info {
u32 code;
u8 op_ch_sel;
bool rgb_out;
bool swap_cb_cr;
u8 op_format_sel;
};
struct adv76xx_cfg_read_infoframe {
const char *desc;
u8 present_mask;
u8 head_addr;
u8 payload_addr;
};
struct adv76xx_chip_info {
enum adv76xx_type type;
bool has_afe;
unsigned int max_port;
unsigned int num_dv_ports;
unsigned int edid_enable_reg;
unsigned int edid_status_reg;
unsigned int lcf_reg;
unsigned int cable_det_mask;
unsigned int tdms_lock_mask;
unsigned int fmt_change_digital_mask;
unsigned int cp_csc;
const struct adv76xx_format_info *formats;
unsigned int nformats;
void (*set_termination)(struct v4l2_subdev *sd, bool enable);
void (*setup_irqs)(struct v4l2_subdev *sd);
unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
/* 0 = AFE, 1 = HDMI */
const struct adv76xx_reg_seq *recommended_settings[2];
unsigned int num_recommended_settings[2];
unsigned long page_mask;
/* Masks for timings */
unsigned int linewidth_mask;
unsigned int field0_height_mask;
unsigned int field1_height_mask;
unsigned int hfrontporch_mask;
unsigned int hsync_mask;
unsigned int hbackporch_mask;
unsigned int field0_vfrontporch_mask;
unsigned int field1_vfrontporch_mask;
unsigned int field0_vsync_mask;
unsigned int field1_vsync_mask;
unsigned int field0_vbackporch_mask;
unsigned int field1_vbackporch_mask;
};
/*
**********************************************************************
*
* Arrays with configuration parameters for the ADV7604
*
**********************************************************************
*/
struct adv76xx_state {
const struct adv76xx_chip_info *info;
struct adv76xx_platform_data pdata;
struct gpio_desc *hpd_gpio[4];
struct gpio_desc *reset_gpio;
struct v4l2_subdev sd;
struct media_pad pads[ADV76XX_PAD_MAX];
unsigned int source_pad;
struct v4l2_ctrl_handler hdl;
enum adv76xx_pad selected_input;
struct v4l2_dv_timings timings;
const struct adv76xx_format_info *format;
struct {
u8 edid[256];
u32 present;
unsigned blocks;
} edid;
u16 spa_port_a[2];
struct v4l2_fract aspect_ratio;
u32 rgb_quantization_range;
struct delayed_work delayed_work_enable_hotplug;
bool restart_stdi_once;
/* CEC */
struct cec_adapter *cec_adap;
u8 cec_addr[ADV76XX_MAX_ADDRS];
u8 cec_valid_addrs;
bool cec_enabled_adap;
/* i2c clients */
struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
/* Regmaps */
struct regmap *regmap[ADV76XX_PAGE_MAX];
/* controls */
struct v4l2_ctrl *detect_tx_5v_ctrl;
struct v4l2_ctrl *analog_sampling_phase_ctrl;
struct v4l2_ctrl *free_run_color_manual_ctrl;
struct v4l2_ctrl *free_run_color_ctrl;
struct v4l2_ctrl *rgb_quantization_range_ctrl;
};
static bool adv76xx_has_afe(struct adv76xx_state *state)
{
return state->info->has_afe;
}
/* Unsupported timings. This device cannot support 720p30. */
static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
V4L2_DV_BT_CEA_1280X720P30,
{ }
};
static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
{
int i;
for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
return false;
return true;
}
struct adv76xx_video_standards {
struct v4l2_dv_timings timings;
u8 vid_std;
u8 v_freq;
};
/* sorted by number of lines */
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
/* TODO add 1920x1080P60_RB (CVT timing) */
{ },
};
/* sorted by number of lines */
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
/* TODO add 1600X1200P60_RB (not a DMT timing) */
{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
{ },
};
/* sorted by number of lines */
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
{ },
};
/* sorted by number of lines */
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
{ },
};
static const struct v4l2_event adv76xx_ev_fmt = {
.type = V4L2_EVENT_SOURCE_CHANGE,
.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};
/* ----------------------------------------------------------------------- */
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct adv76xx_state, sd);
}
static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
return V4L2_DV_BT_FRAME_WIDTH(t);
}
static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
return V4L2_DV_BT_FRAME_HEIGHT(t);
}
/* ----------------------------------------------------------------------- */
static int adv76xx_read_check(struct adv76xx_state *state,
int client_page, u8 reg)
{
struct i2c_client *client = state->i2c_clients[client_page];
int err;
unsigned int val;
err = regmap_read(state->regmap[client_page], reg, &val);
if (err) {
v4l_err(client, "error reading %02x, %02x\n",
client->addr, reg);
return err;
}
return val;
}
/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
* size to one or more registers.
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
unsigned int init_reg, const void *val,
size_t val_len)
{
struct regmap *regmap = state->regmap[client_page];
if (val_len > I2C_SMBUS_BLOCK_MAX)
val_len = I2C_SMBUS_BLOCK_MAX;
return regmap_raw_write(regmap, init_reg, val, val_len);
}
/* ----------------------------------------------------------------------- */
static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
}
static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
}
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
u8 val)
{
return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
}
static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
}
static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
}
static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
}
static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
}
static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
u8 val)
{
return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
}
static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
}
static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
}
static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
}
static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
}
static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
}
static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
}
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
}
static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
}
static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
}
static inline int edid_write_block(struct v4l2_subdev *sd,
unsigned int total_len, const u8 *val)
{
struct adv76xx_state *state = to_state(sd);
int err = 0;
int i = 0;
int len = 0;
v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
__func__, total_len);
while (!err && i < total_len) {
len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
I2C_SMBUS_BLOCK_MAX :
(total_len - i);
err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
i, val + i, len);
i += len;
}
return err;
}
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
{
unsigned int i;
for (i = 0; i < state->info->num_dv_ports; ++i)
gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
}
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
delayed_work_enable_hotplug);
struct v4l2_subdev *sd = &state->sd;
v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
adv76xx_set_hpd(state, state->edid.present);
}
static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
}
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
}
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
}
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
}
static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
}
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
}
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
{
return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
}
static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
struct adv76xx_state *state = to_state(sd);
return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
}
static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
}
#define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM 0xffff
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
{
struct adv76xx_state *state = to_state(sd);
unsigned int page = reg >> 8;
unsigned int val;
int err;
if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
return -EINVAL;
reg &= 0xff;
err = regmap_read(state->regmap[page], reg, &val);
return err ? err : val;
}
#endif
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
{
struct adv76xx_state *state = to_state(sd);
unsigned int page = reg >> 8;
if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
return -EINVAL;
reg &= 0xff;
return regmap_write(state->regmap[page], reg, val);
}
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
const struct adv76xx_reg_seq *reg_seq)
{
unsigned int i;
for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
}
/* -----------------------------------------------------------------------------
* Format helpers
*/
static const struct adv76xx_format_info adv7604_formats[] = {
{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
};
static const struct adv76xx_format_info adv7611_formats[] = {
{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
};
static const struct adv76xx_format_info adv7612_formats[] = {
{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
};
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
{
unsigned int i;
for (i = 0; i < state->info->nformats; ++i) {
if (state->info->formats[i].code == code)
return &state->info->formats[i];
}
return NULL;
}
/* ----------------------------------------------------------------------- */
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
return state->selected_input == ADV7604_PAD_VGA_RGB ||
state->selected_input == ADV7604_PAD_VGA_COMP;
}
static inline bool is_digital_input(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
state->selected_input == ADV7604_PAD_HDMI_PORT_D;
}
static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
.type = V4L2_DV_BT_656_1120,
/* keep this initialization for compatibility with GCC < 4.4.6 */
.reserved = { 0 },
V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
V4L2_DV_BT_CAP_CUSTOM)
};
static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
.type = V4L2_DV_BT_656_1120,
/* keep this initialization for compatibility with GCC < 4.4.6 */
.reserved = { 0 },
V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
V4L2_DV_BT_CAP_CUSTOM)
};
/*
* Return the DV timings capabilities for the requested sink pad. As a special
* case, pad value -1 returns the capabilities for the currently selected input.
*/
static const struct v4l2_dv_timings_cap *
adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
{
if (pad == -1) {
struct adv76xx_state *state = to_state(sd);
pad = state->selected_input;
}
switch (pad) {
case ADV76XX_PAD_HDMI_PORT_A:
case ADV7604_PAD_HDMI_PORT_B:
case ADV7604_PAD_HDMI_PORT_C:
case ADV7604_PAD_HDMI_PORT_D:
return &adv76xx_timings_cap_digital;
case ADV7604_PAD_VGA_RGB:
case ADV7604_PAD_VGA_COMP:
default:
return &adv7604_timings_cap_analog;
}
}
/* ----------------------------------------------------------------------- */
#ifdef CONFIG_VIDEO_ADV_DEBUG
static void adv76xx_inv_register(struct v4l2_subdev *sd)
{
v4l2_info(sd, "0x000-0x0ff: IO Map\n");
v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
v4l2_info(sd, "0xa00-0xaff: Test Map\n");
v4l2_info(sd, "0xb00-0xbff: CP Map\n");
v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}
static int adv76xx_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
int ret;
ret = adv76xx_read_reg(sd, reg->reg);
if (ret < 0) {
v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
adv76xx_inv_register(sd);
return ret;
}
reg->size = 1;
reg->val = ret;
return 0;
}
static int adv76xx_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
int ret;
ret = adv76xx_write_reg(sd, reg->reg, reg->val);
if (ret < 0) {
v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
adv76xx_inv_register(sd);
return ret;
}
return 0;
}
#endif
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
u8 value = io_read(sd, 0x6f);
return ((value & 0x10) >> 4)
| ((value & 0x08) >> 2)
| ((value & 0x04) << 0)
| ((value & 0x02) << 2);
}
static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
u8 value = io_read(sd, 0x6f);
return value & 1;
}
static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
{
/* Reads CABLE_DET_A_RAW. For input B support, need to
* account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
*/
u8 value = io_read(sd, 0x6f);
return value & 1;
}
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
u16 cable_det = info->read_cable_det(sd);
return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
}
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
u8 prim_mode,
const struct adv76xx_video_standards *predef_vid_timings,
const struct v4l2_dv_timings *timings)
{
int i;
for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
is_digital_input(sd) ? 250000 : 1000000, false))
continue;
io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
prim_mode); /* v_freq and prim mode */
return 0;
}
return -1;
}
static int configure_predefined_video_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv76xx_state *state = to_state(sd);
int err;
v4l2_dbg(1, debug, sd, "%s", __func__);
if (adv76xx_has_afe(state)) {
/* reset to default values */
io_write(sd, 0x16, 0x43);
io_write(sd, 0x17, 0x5a);
}
/* disable embedded syncs for auto graphics mode */
cp_write_clr_set(sd, 0x81, 0x10, 0x00);
cp_write(sd, 0x8f, 0x00);
cp_write(sd, 0x90, 0x00);
cp_write(sd, 0xa2, 0x00);
cp_write(sd, 0xa3, 0x00);
cp_write(sd, 0xa4, 0x00);
cp_write(sd, 0xa5, 0x00);
cp_write(sd, 0xa6, 0x00);
cp_write(sd, 0xa7, 0x00);
cp_write(sd, 0xab, 0x00);
cp_write(sd, 0xac, 0x00);
if (is_analog_input(sd)) {
err = find_and_set_predefined_video_timings(sd,
0x01, adv7604_prim_mode_comp, timings);
if (err)
err = find_and_set_predefined_video_timings(sd,
0x02, adv7604_prim_mode_gr, timings);
} else if (is_digital_input(sd)) {
err = find_and_set_predefined_video_timings(sd,
0x05, adv76xx_prim_mode_hdmi_comp, timings);
if (err)
err = find_and_set_predefined_video_timings(sd,
0x06, adv76xx_prim_mode_hdmi_gr, timings);
} else {
v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
__func__, state->selected_input);
err = -1;
}
return err;
}
static void configure_custom_video_timings(struct v4l2_subdev *sd,
const struct v4l2_bt_timings *bt)
{
struct adv76xx_state *state = to_state(sd);
u32 width = htotal(bt);
u32 height = vtotal(bt);
u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
u16 cp_start_eav = width - bt->hfrontporch;
u16 cp_start_vbi = height - bt->vfrontporch;
u16 cp_end_vbi = bt->vsync + bt->vbackporch;
u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
const u8 pll[2] = {
0xc0 | ((width >> 8) & 0x1f),
width & 0xff
};
v4l2_dbg(2, debug, sd, "%s\n", __func__);
if (is_analog_input(sd)) {
/* auto graphics */
io_write(sd, 0x00, 0x07); /* video std */
io_write(sd, 0x01, 0x02); /* prim mode */
/* enable embedded syncs for auto graphics mode */
cp_write_clr_set(sd, 0x81, 0x10, 0x10);
/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
/* IO-map reg. 0x16 and 0x17 should be written in sequence */
if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
0x16, pll, 2))
v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
/* active video - horizontal timing */
cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
((cp_start_eav >> 8) & 0x0f));
cp_write(sd, 0xa4, cp_start_eav & 0xff);
/* active video - vertical timing */
cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
((cp_end_vbi >> 8) & 0xf));
cp_write(sd, 0xa7, cp_end_vbi & 0xff);
} else if (is_digital_input(sd)) {
/* set default prim_mode/vid_std for HDMI
according to [REF_03, c. 4.2] */
io_write(sd, 0x00, 0x02); /* video std */
io_write(sd, 0x01, 0x06); /* prim mode */
} else {
v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
__func__, state->selected_input);
}
cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
cp_write(sd, 0x90, ch1_fr_ll & 0xff);
cp_write(sd, 0xab, (height >> 4) & 0xff);
cp_write(sd, 0xac, (height & 0x0f) << 4);
}
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
{
struct adv76xx_state *state = to_state(sd);
u8 offset_buf[4];
if (auto_offset) {
offset_a = 0x3ff;
offset_b = 0x3ff;
offset_c = 0x3ff;
}
v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
__func__, auto_offset ? "Auto" : "Manual",
offset_a, offset_b, offset_c);
offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
offset_buf[3] = offset_c & 0x0ff;
/* Registers must be written in this order with no i2c access in between */
if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
0x77, offset_buf, 4))
v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
{
struct adv76xx_state *state = to_state(sd);
u8 gain_buf[4];
u8 gain_man = 1;
u8 agc_mode_man = 1;
if (auto_gain) {
gain_man = 0;
agc_mode_man = 0;
gain_a = 0x100;
gain_b = 0x100;
gain_c = 0x100;
}
v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
__func__, auto_gain ? "Auto" : "Manual",
gain_a, gain_b, gain_c);
gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
gain_buf[3] = ((gain_c & 0x0ff));
/* Registers must be written in this order with no i2c access in between */
if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
0x73, gain_buf, 4))
v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
bool rgb_output = io_read(sd, 0x02) & 0x02;
bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
u8 y = HDMI_COLORSPACE_RGB;
if (hdmi_signal && (io_read(sd, 0x60) & 1))
y = infoframe_read(sd, 0x01) >> 5;
v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
__func__, state->rgb_quantization_range,
rgb_output, hdmi_signal);
adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
switch (state->rgb_quantization_range) {
case V4L2_DV_RGB_RANGE_AUTO:
if (state->selected_input == ADV7604_PAD_VGA_RGB) {
/* Receiving analog RGB signal
* Set RGB full range (0-255) */
io_write_clr_set(sd, 0x02, 0xf0, 0x10);
break;
}
if (state->selected_input == ADV7604_PAD_VGA_COMP) {
/* Receiving analog YPbPr signal
* Set automode */
io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
break;
}
if (hdmi_signal) {
/* Receiving HDMI signal
* Set automode */
io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
break;
}
/* Receiving DVI-D signal
* ADV7604 selects RGB limited range regardless of
* input format (CE/IT) in automatic mode */
if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
/* RGB limited range (16-235) */
io_write_clr_set(sd, 0x02, 0xf0, 0x00);
} else {
/* RGB full range (0-255) */
io_write_clr_set(sd, 0x02, 0xf0, 0x10);
if (is_digital_input(sd) && rgb_output) {
adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
} else {
adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
}
}
break;
case V4L2_DV_RGB_RANGE_LIMITED:
if (state->selected_input == ADV7604_PAD_VGA_COMP) {
/* YCrCb limited range (16-235) */
io_write_clr_set(sd, 0x02, 0xf0, 0x20);
break;
}
if (y != HDMI_COLORSPACE_RGB)
break;
/* RGB limited range (16-235) */
io_write_clr_set(sd, 0x02, 0xf0, 0x00);
break;
case V4L2_DV_RGB_RANGE_FULL:
if (state->selected_input == ADV7604_PAD_VGA_COMP) {
/* YCrCb full range (0-255) */
io_write_clr_set(sd, 0x02, 0xf0, 0x60);
break;
}
if (y != HDMI_COLORSPACE_RGB)
break;
/* RGB full range (0-255) */
io_write_clr_set(sd, 0x02, 0xf0, 0x10);
if (is_analog_input(sd) || hdmi_signal)
break;
/* Adjust gain/offset for DVI-D signals only */
if (rgb_output) {
adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
} else {
adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
}
break;
}
}
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd =
&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
struct adv76xx_state *state = to_state(sd);
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
cp_write(sd, 0x3c, ctrl->val);
return 0;
case V4L2_CID_CONTRAST:
cp_write(sd, 0x3a, ctrl->val);
return 0;
case V4L2_CID_SATURATION:
cp_write(sd, 0x3b, ctrl->val);
return 0;
case V4L2_CID_HUE:
cp_write(sd, 0x3d, ctrl->val);
return 0;
case V4L2_CID_DV_RX_RGB_RANGE:
state->rgb_quantization_range = ctrl->val;
set_rgb_quantization_range(sd);
return 0;
case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
if (!adv76xx_has_afe(state))
return -EINVAL;
/* Set the analog sampling phase. This is needed to find the
best sampling phase for analog video: an application or
driver has to try a number of phases and analyze the picture
quality before settling on the best performing phase. */
afe_write(sd, 0xc8, ctrl->val);
return 0;
case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
/* Use the default blue color for free running mode,
or supply your own. */
cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
return 0;
case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
return 0;
}
return -EINVAL;
}
static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd =
&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
return 0;
}
return -EINVAL;
}
/* ----------------------------------------------------------------------- */
static inline bool no_power(struct v4l2_subdev *sd)
{
/* Entire chip or CP powered off */
return io_read(sd, 0x0c) & 0x24;
}
static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
}
static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
}
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
return hdmi_read(sd, 0x05) & 0x80;
}
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
/*
* Chips without a AFE don't expose registers for the SSPD, so just assume
* that we have a lock.
*/
if (adv76xx_has_afe(state))
return false;
/* TODO channel 2 */
return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}
static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
/* TODO channel 2 */
return !(cp_read(sd, 0xb1) & 0x80);
}
static inline bool no_signal(struct v4l2_subdev *sd)
{
bool ret;
ret = no_power(sd);
ret |= no_lock_stdi(sd);
ret |= no_lock_sspd(sd);
if (is_digital_input(sd)) {
ret |= no_lock_tmds(sd);
ret |= no_signal_tmds(sd);
}
return ret;
}
static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
if (!adv76xx_has_afe(state))
return false;
/* CP has detected a non standard number of lines on the incoming
video compared to what it is configured to receive by s_dv_timings */
return io_read(sd, 0x12) & 0x01;
}
static inline bool in_free_run(struct v4l2_subdev *sd)
{
return cp_read(sd, 0xff) & 0x10;
}
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
*status = 0;
*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
if (!in_free_run(sd) && no_lock_cp(sd))
*status |= is_digital_input(sd) ?
V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
return 0;
}
/* ----------------------------------------------------------------------- */
struct stdi_readback {
u16 bl, lcf, lcvs;
u8 hs_pol, vs_pol;
bool interlaced;
};
static int stdi2dv_timings(struct v4l2_subdev *sd,
struct stdi_readback *stdi,
struct v4l2_dv_timings *timings)
{
struct adv76xx_state *state = to_state(sd);
u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
u32 pix_clk;
int i;
for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
adv76xx_get_dv_timings_cap(sd, -1),
adv76xx_check_dv_timings, NULL))
continue;
if (vtotal(bt) != stdi->lcf + 1)
continue;
if (bt->vsync != stdi->lcvs)
continue;
pix_clk = hfreq * htotal(bt);
if ((pix_clk < bt->pixelclock + 1000000) &&
(pix_clk > bt->pixelclock - 1000000)) {
*timings = v4l2_dv_timings_presets[i];
return 0;
}
}
if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
false, timings))
return 0;
if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
false, state->aspect_ratio, timings))
return 0;
v4l2_dbg(2, debug, sd,
"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
__func__, stdi->lcvs, stdi->lcf, stdi->bl,
stdi->hs_pol, stdi->vs_pol);
return -1;
}
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
u8 polarity;
if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
return -1;
}
/* read STDI */
stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
stdi->lcvs = cp_read(sd, 0xb3) >> 3;
stdi->interlaced = io_read(sd, 0x12) & 0x10;
if (adv76xx_has_afe(state)) {
/* read SSPD */
polarity = cp_read(sd, 0xb5);
if ((polarity & 0x03) == 0x01) {
stdi->hs_pol = polarity & 0x10
? (polarity & 0x08 ? '+' : '-') : 'x';
stdi->vs_pol = polarity & 0x40
? (polarity & 0x20 ? '+' : '-') : 'x';
} else {
stdi->hs_pol = 'x';
stdi->vs_pol = 'x';
}
} else {
polarity = hdmi_read(sd, 0x05);
stdi->hs_pol = polarity & 0x20 ? '+' : '-';
stdi->vs_pol = polarity & 0x10 ? '+' : '-';
}
if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
v4l2_dbg(2, debug, sd,
"%s: signal lost during readout of STDI/SSPD\n", __func__);
return -1;
}
if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
memset(stdi, 0, sizeof(struct stdi_readback));
return -1;
}
v4l2_dbg(2, debug, sd,
"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
__func__, stdi->lcf, stdi->bl, stdi->lcvs,
stdi->hs_pol, stdi->vs_pol,
stdi->interlaced ? "interlaced" : "progressive");
return 0;
}
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
struct v4l2_enum_dv_timings *timings)
{
struct adv76xx_state *state = to_state(sd);
if (timings->pad >= state->source_pad)
return -EINVAL;
return v4l2_enum_dv_timings_cap(timings,
adv76xx_get_dv_timings_cap(sd, timings->pad),
adv76xx_check_dv_timings, NULL);
}
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
struct v4l2_dv_timings_cap *cap)
{
struct adv76xx_state *state = to_state(sd);
unsigned int pad = cap->pad;
if (cap->pad >= state->source_pad)
return -EINVAL;
*cap = *adv76xx_get_dv_timings_cap(sd, pad);
cap->pad = pad;
return 0;
}
/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
is_digital_input(sd) ? 250000 : 1000000,
adv76xx_check_dv_timings, NULL);
}
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
unsigned int freq;
int a, b;
a = hdmi_read(sd, 0x06);
b = hdmi_read(sd, 0x3b);
if (a < 0 || b < 0)
return 0;
freq = a * 1000000 + ((b & 0x30) >> 4) * 250000;
if (is_hdmi(sd)) {
/* adjust for deep color mode */
unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
freq = freq * 8 / bits_per_channel;
}
return freq;
}
static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
int a, b;
a = hdmi_read(sd, 0x51);
b = hdmi_read(sd, 0x52);
if (a < 0 || b < 0)
return 0;
return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
struct v4l2_bt_timings *bt = &timings->bt;
struct stdi_readback stdi;
if (!timings)
return -EINVAL;
memset(timings, 0, sizeof(struct v4l2_dv_timings));
if (no_signal(sd)) {
state->restart_stdi_once = true;
v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
return -ENOLINK;
}
/* read STDI */
if (read_stdi(sd, &stdi)) {
v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
return -ENOLINK;
}
bt->interlaced = stdi.interlaced ?
V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
if (is_digital_input(sd)) {
bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
u8 vic = 0;
u32 w, h;
w = hdmi_read16(sd, 0x07, info->linewidth_mask);
h = hdmi_read16(sd, 0x09, info->field0_height_mask);
if (hdmi_signal && (io_read(sd, 0x60) & 1))
vic = infoframe_read(sd, 0x04);
if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
bt->width == w && bt->height == h)
goto found;
timings->type = V4L2_DV_BT_656_1120;
bt->width = w;
bt->height = h;
bt->pixelclock = info->read_hdmi_pixelclock(sd);
bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
bt->vfrontporch = hdmi_read16(sd, 0x2a,
info->field0_vfrontporch_mask) / 2;
bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
bt->vbackporch = hdmi_read16(sd, 0x32,
info->field0_vbackporch_mask) / 2;
bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
if (bt->interlaced == V4L2_DV_INTERLACED) {
bt->height += hdmi_read16(sd, 0x0b,
info->field1_height_mask);
bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
info->field1_vfrontporch_mask) / 2;
bt->il_vsync = hdmi_read16(sd, 0x30,
info->field1_vsync_mask) / 2;
bt->il_vbackporch = hdmi_read16(sd, 0x34,
info->field1_vbackporch_mask) / 2;
}
adv76xx_fill_optional_dv_timings_fields(sd, timings);
} else {
/* find format
* Since LCVS values are inaccurate [REF_03, p. 275-276],
* stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
*/
if (!stdi2dv_timings(sd, &stdi, timings))
goto found;
stdi.lcvs += 1;
v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
if (!stdi2dv_timings(sd, &stdi, timings))
goto found;
stdi.lcvs -= 2;
v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
if (stdi2dv_timings(sd, &stdi, timings)) {
/*
* The STDI block may measure wrong values, especially
* for lcvs and lcf. If the driver can not find any
* valid timing, the STDI block is restarted to measure
* the video timings again. The function will return an
* error, but the restart of STDI will generate a new
* STDI interrupt and the format detection process will
* restart.
*/
if (state->restart_stdi_once) {
v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
/* TODO restart STDI for Sync Channel 2 */
/* enter one-shot mode */
cp_write_clr_set(sd, 0x86, 0x06, 0x00);
/* trigger STDI restart */
cp_write_clr_set(sd, 0x86, 0x06, 0x04);
/* reset to continuous mode */
cp_write_clr_set(sd, 0x86, 0x06, 0x02);
state->restart_stdi_once = false;
return -ENOLINK;
}
v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
return -ERANGE;
}
state->restart_stdi_once = true;
}
found:
if (no_signal(sd)) {
v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
memset(timings, 0, sizeof(struct v4l2_dv_timings));
return -ENOLINK;
}
if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
(is_digital_input(sd) && bt->pixelclock > 225000000)) {
v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
__func__, (u32)bt->pixelclock);
return -ERANGE;
}
if (debug > 1)
v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
timings, true);
return 0;
}
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv76xx_state *state = to_state(sd);
struct v4l2_bt_timings *bt;
int err;
if (!timings)
return -EINVAL;
if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
return 0;
}
bt = &timings->bt;
if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
adv76xx_check_dv_timings, NULL))
return -ERANGE;
adv76xx_fill_optional_dv_timings_fields(sd, timings);
state->timings = *timings;
cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
/* Use prim_mode and vid_std when available */
err = configure_predefined_video_timings(sd, timings);
if (err) {
/* custom settings when the video format
does not have prim_mode/vid_std */
configure_custom_video_timings(sd, bt);
}
set_rgb_quantization_range(sd);
if (debug > 1)
v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
timings, true);
return 0;
}
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct adv76xx_state *state = to_state(sd);
*timings = state->timings;
return 0;
}
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}
static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}
static void enable_input(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
if (is_analog_input(sd)) {
io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
} else if (is_digital_input(sd)) {
hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
state->info->set_termination(sd, true);
io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
} else {
v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
__func__, state->selected_input);
}
}
static void disable_input(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
state->info->set_termination(sd, false);
}
static void select_input(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
if (is_analog_input(sd)) {
adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
afe_write(sd, 0x00, 0x08); /* power up ADC */
afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
afe_write(sd, 0xc8, 0x00); /* phase control */
} else if (is_digital_input(sd)) {
hdmi_write(sd, 0x00, state->selected_input & 0x03);
adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
if (adv76xx_has_afe(state)) {
afe_write(sd, 0x00, 0xff); /* power down ADC */
afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
afe_write(sd, 0xc8, 0x40); /* phase control */
}
cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
} else {
v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
__func__, state->selected_input);
}
}
static int adv76xx_s_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct adv76xx_state *state = to_state(sd);
v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
__func__, input, state->selected_input);
if (input == state->selected_input)
return 0;
if (input > state->info->max_port)
return -EINVAL;
state->selected_input = input;
disable_input(sd);
select_input(sd);
enable_input(sd);
v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
return 0;
}
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct adv76xx_state *state = to_state(sd);
if (code->index >= state->info->nformats)
return -EINVAL;
code->code = state->info->formats[code->index].code;
return 0;
}
static void adv76xx_fill_format(struct adv76xx_state *state,
struct v4l2_mbus_framefmt *format)
{
memset(format, 0, sizeof(*format));
format->width = state->timings.bt.width;
format->height = state->timings.bt.height;
format->field = V4L2_FIELD_NONE;
format->colorspace = V4L2_COLORSPACE_SRGB;
if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
format->colorspace = (state->timings.bt.height <= 576) ?
V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
}
/*
* Compute the op_ch_sel value required to obtain on the bus the component order
* corresponding to the selected format taking into account bus reordering
* applied by the board at the output of the device.
*
* The following table gives the op_ch_value from the format component order
* (expressed as op_ch_sel value in column) and the bus reordering (expressed as
* adv76xx_bus_order value in row).
*
* | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
* ----------+-------------------------------------------------
* RGB (NOP) | GBR GRB BGR RGB BRG RBG
* GRB (1-2) | BGR RGB GBR GRB RBG BRG
* RBG (2-3) | GRB GBR BRG RBG BGR RGB
* BGR (1-3) | RBG BRG RGB BGR GRB GBR
* BRG (ROR) | BRG RBG GRB GBR RGB BGR
* GBR (ROL) | RGB BGR RBG BRG GBR GRB
*/
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
{
#define _SEL(a,b,c,d,e,f) { \
ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
#define _BUS(x) [ADV7604_BUS_ORDER_##x]
static const unsigned int op_ch_sel[6][6] = {
_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
};
return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}
static void adv76xx_setup_format(struct adv76xx_state *state)
{
struct v4l2_subdev *sd = &state->sd;
io_write_clr_set(sd, 0x02, 0x02,
state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
io_write(sd, 0x03, state->format->op_format_sel |
state->pdata.op_format_mode_sel);
io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
io_write_clr_set(sd, 0x05, 0x01,
state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
set_rgb_quantization_range(sd);
}
static int adv76xx_get_format(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct adv76xx_state *state = to_state(sd);
if (format->pad != state->source_pad)
return -EINVAL;
adv76xx_fill_format(state, &format->format);
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
format->format.code = fmt->code;
} else {
format->format.code = state->format->code;
}
return 0;
}
static int adv76xx_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct adv76xx_state *state = to_state(sd);
if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return -EINVAL;
/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
return -EINVAL;
sel->r.left = 0;
sel->r.top = 0;
sel->r.width = state->timings.bt.width;
sel->r.height = state->timings.bt.height;
return 0;
}
static int adv76xx_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_format_info *info;
if (format->pad != state->source_pad)
return -EINVAL;
info = adv76xx_format_info(state, format->format.code);
if (!info)
info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
adv76xx_fill_format(state, &format->format);
format->format.code = info->code;
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
fmt->code = format->format.code;
} else {
state->format = info;
adv76xx_setup_format(state);
}
return 0;
}
#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
{
struct adv76xx_state *state = to_state(sd);
if ((cec_read(sd, 0x11) & 0x01) == 0) {
v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
return;
}
if (tx_raw_status & 0x02) {
v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
__func__);
cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1, 0, 0, 0);
return;
}
if (tx_raw_status & 0x04) {
u8 status;
u8 nack_cnt;
u8 low_drive_cnt;
v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
/*
* We set this status bit since this hardware performs
* retransmissions.
*/
status = CEC_TX_STATUS_MAX_RETRIES;
nack_cnt = cec_read(sd, 0x14) & 0xf;
if (nack_cnt)
status |= CEC_TX_STATUS_NACK;
low_drive_cnt = cec_read(sd, 0x14) >> 4;
if (low_drive_cnt)
status |= CEC_TX_STATUS_LOW_DRIVE;
cec_transmit_done(state->cec_adap, status,
0, nack_cnt, low_drive_cnt, 0);
return;
}
if (tx_raw_status & 0x01) {
v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
return;
}
}
static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
{
struct adv76xx_state *state = to_state(sd);
u8 cec_irq;
/* cec controller */
cec_irq = io_read(sd, 0x4d) & 0x0f;
if (!cec_irq)
return;
v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
adv76xx_cec_tx_raw_status(sd, cec_irq);
if (cec_irq & 0x08) {
struct cec_msg msg;
msg.len = cec_read(sd, 0x25) & 0x1f;
if (msg.len > 16)
msg.len = 16;
if (msg.len) {
u8 i;
for (i = 0; i < msg.len; i++)
msg.msg[i] = cec_read(sd, i + 0x15);
cec_write(sd, 0x26, 0x01); /* re-enable rx */
cec_received_msg(state->cec_adap, &msg);
}
}
/* note: the bit order is swapped between 0x4d and 0x4e */
cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
io_write(sd, 0x4e, cec_irq);
if (handled)
*handled = true;
}
static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
struct adv76xx_state *state = cec_get_drvdata(adap);
struct v4l2_subdev *sd = &state->sd;
if (!state->cec_enabled_adap && enable) {
cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
cec_write(sd, 0x2c, 0x01); /* cec soft reset */
cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
/* enabled irqs: */
/* tx: ready */
/* tx: arbitration lost */
/* tx: retry timeout */
/* rx: ready */
io_write_clr_set(sd, 0x50, 0x0f, 0x0f);
cec_write(sd, 0x26, 0x01); /* enable rx */
} else if (state->cec_enabled_adap && !enable) {
/* disable cec interrupts */
io_write_clr_set(sd, 0x50, 0x0f, 0x00);
/* disable address mask 1-3 */
cec_write_clr_set(sd, 0x27, 0x70, 0x00);
/* power down cec section */
cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
state->cec_valid_addrs = 0;
}
state->cec_enabled_adap = enable;
adv76xx_s_detect_tx_5v_ctrl(sd);
return 0;
}
static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
{
struct adv76xx_state *state = cec_get_drvdata(adap);
struct v4l2_subdev *sd = &state->sd;
unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
if (!state->cec_enabled_adap)
return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
if (addr == CEC_LOG_ADDR_INVALID) {
cec_write_clr_set(sd, 0x27, 0x70, 0);
state->cec_valid_addrs = 0;
return 0;
}
for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
bool is_valid = state->cec_valid_addrs & (1 << i);
if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
free_idx = i;
if (is_valid && state->cec_addr[i] == addr)
return 0;
}
if (i == ADV76XX_MAX_ADDRS) {
i = free_idx;
if (i == ADV76XX_MAX_ADDRS)
return -ENXIO;
}
state->cec_addr[i] = addr;
state->cec_valid_addrs |= 1 << i;
switch (i) {
case 0:
/* enable address mask 0 */
cec_write_clr_set(sd, 0x27, 0x10, 0x10);
/* set address for mask 0 */
cec_write_clr_set(sd, 0x28, 0x0f, addr);
break;
case 1:
/* enable address mask 1 */
cec_write_clr_set(sd, 0x27, 0x20, 0x20);
/* set address for mask 1 */
cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
break;
case 2:
/* enable address mask 2 */
cec_write_clr_set(sd, 0x27, 0x40, 0x40);
/* set address for mask 1 */
cec_write_clr_set(sd, 0x29, 0x0f, addr);
break;
}
return 0;
}
static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct adv76xx_state *state = cec_get_drvdata(adap);
struct v4l2_subdev *sd = &state->sd;
u8 len = msg->len;
unsigned int i;
/*
* The number of retries is the number of attempts - 1, but retry
* at least once. It's not clear if a value of 0 is allowed, so
* let's do at least one retry.
*/
cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
if (len > 16) {
v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
return -EINVAL;
}
/* write data */
for (i = 0; i < len; i++)
cec_write(sd, i, msg->msg[i]);
/* set length (data + header) */
cec_write(sd, 0x10, len);
/* start transmit, enable tx */
cec_write(sd, 0x11, 0x01);
return 0;
}
static const struct cec_adap_ops adv76xx_cec_adap_ops = {
.adap_enable = adv76xx_cec_adap_enable,
.adap_log_addr = adv76xx_cec_adap_log_addr,
.adap_transmit = adv76xx_cec_adap_transmit,
};
#endif
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
const u8 irq_reg_0x43 = io_read(sd, 0x43);
const u8 irq_reg_0x6b = io_read(sd, 0x6b);
const u8 irq_reg_0x70 = io_read(sd, 0x70);
u8 fmt_change_digital;
u8 fmt_change;
u8 tx_5v;
if (irq_reg_0x43)
io_write(sd, 0x44, irq_reg_0x43);
if (irq_reg_0x70)
io_write(sd, 0x71, irq_reg_0x70);
if (irq_reg_0x6b)
io_write(sd, 0x6c, irq_reg_0x6b);
v4l2_dbg(2, debug, sd, "%s: ", __func__);
/* format change */
fmt_change = irq_reg_0x43 & 0x98;
fmt_change_digital = is_digital_input(sd)
? irq_reg_0x6b & info->fmt_change_digital_mask
: 0;
if (fmt_change || fmt_change_digital) {
v4l2_dbg(1, debug, sd,
"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
__func__, fmt_change, fmt_change_digital);
v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
if (handled)
*handled = true;
}
/* HDMI/DVI mode */
if (irq_reg_0x6b & 0x01) {
v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
set_rgb_quantization_range(sd);
if (handled)
*handled = true;
}
#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
/* cec */
adv76xx_cec_isr(sd, handled);
#endif
/* tx 5v detect */
tx_5v = irq_reg_0x70 & info->cable_det_mask;
if (tx_5v) {
v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
adv76xx_s_detect_tx_5v_ctrl(sd);
if (handled)
*handled = true;
}
return 0;
}
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
{
struct adv76xx_state *state = to_state(sd);
u8 *data = NULL;
memset(edid->reserved, 0, sizeof(edid->reserved));
switch (edid->pad) {
case ADV76XX_PAD_HDMI_PORT_A:
case ADV7604_PAD_HDMI_PORT_B:
case ADV7604_PAD_HDMI_PORT_C:
case ADV7604_PAD_HDMI_PORT_D:
if (state->edid.present & (1 << edid->pad))
data = state->edid.edid;
break;
default:
return -EINVAL;
}
if (edid->start_block == 0 && edid->blocks == 0) {
edid->blocks = data ? state->edid.blocks : 0;
return 0;
}
if (!data)
return -ENODATA;
if (edid->start_block >= state->edid.blocks)
return -EINVAL;
if (edid->start_block + edid->blocks > state->edid.blocks)
edid->blocks = state->edid.blocks - edid->start_block;
memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
return 0;
}
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
unsigned int spa_loc;
u16 pa;
int err;
int i;
memset(edid->reserved, 0, sizeof(edid->reserved));
if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
return -EINVAL;
if (edid->start_block != 0)
return -EINVAL;
if (edid->blocks == 0) {
/* Disable hotplug and I2C access to EDID RAM from DDC port */
state->edid.present &= ~(1 << edid->pad);
adv76xx_set_hpd(state, state->edid.present);
rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
/* Fall back to a 16:9 aspect ratio */
state->aspect_ratio.numerator = 16;
state->aspect_ratio.denominator = 9;
if (!state->edid.present) {
state->edid.blocks = 0;
cec_phys_addr_invalidate(state->cec_adap);
}
v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
__func__, edid->pad, state->edid.present);
return 0;
}
if (edid->blocks > 2) {
edid->blocks = 2;
return -E2BIG;
}
pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
err = v4l2_phys_addr_validate(pa, &pa, NULL);
if (err)
return err;
v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
__func__, edid->pad, state->edid.present);
/* Disable hotplug and I2C access to EDID RAM from DDC port */
cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
adv76xx_set_hpd(state, 0);
rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
/*
* Return an error if no location of the source physical address
* was found.
*/
if (spa_loc == 0)
return -EINVAL;
switch (edid->pad) {
case ADV76XX_PAD_HDMI_PORT_A:
state->spa_port_a[0] = edid->edid[spa_loc];
state->spa_port_a[1] = edid->edid[spa_loc + 1];
break;
case ADV7604_PAD_HDMI_PORT_B:
rep_write(sd, 0x70, edid->edid[spa_loc]);
rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
break;
case ADV7604_PAD_HDMI_PORT_C:
rep_write(sd, 0x72, edid->edid[spa_loc]);
rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
break;
case ADV7604_PAD_HDMI_PORT_D:
rep_write(sd, 0x74, edid->edid[spa_loc]);
rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
break;
default:
return -EINVAL;
}
if (info->type == ADV7604) {
rep_write(sd, 0x76, spa_loc & 0xff);
rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
} else {
/* ADV7612 Software Manual Rev. A, p. 15 */
rep_write(sd, 0x70, spa_loc & 0xff);
rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
}
edid->edid[spa_loc] = state->spa_port_a[0];
edid->edid[spa_loc + 1] = state->spa_port_a[1];
memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
state->edid.blocks = edid->blocks;
state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
edid->edid[0x16]);
state->edid.present |= 1 << edid->pad;
err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
if (err < 0) {
v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
return err;
}
/* adv76xx calculates the checksums and enables I2C access to internal
EDID RAM from DDC port. */
rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
for (i = 0; i < 1000; i++) {
if (rep_read(sd, info->edid_status_reg) & state->edid.present)
break;
mdelay(1);
}
if (i == 1000) {
v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
return -EIO;
}
cec_s_phys_addr(state->cec_adap, pa, false);
/* enable hotplug after 100 ms */
schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
return 0;
}
/*********** avi info frame CEA-861-E **************/
static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
{ "AVI", 0x01, 0xe0, 0x00 },
{ "Audio", 0x02, 0xe3, 0x1c },
{ "SDP", 0x04, 0xe6, 0x2a },
{ "Vendor", 0x10, 0xec, 0x54 }
};
static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
union hdmi_infoframe *frame)
{
uint8_t buffer[32];
u8 len;
int i;
if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
v4l2_info(sd, "%s infoframe not received\n",
adv76xx_cri[index].desc);
return -ENOENT;
}
for (i = 0; i < 3; i++)
buffer[i] = infoframe_read(sd,
adv76xx_cri[index].head_addr + i);
len = buffer[2] + 1;
if (len + 3 > sizeof(buffer)) {
v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
adv76xx_cri[index].desc, len);
return -ENOENT;
}
for (i = 0; i < len; i++)
buffer[i + 3] = infoframe_read(sd,
adv76xx_cri[index].payload_addr + i);
if (hdmi_infoframe_unpack(frame, buffer) < 0) {
v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
adv76xx_cri[index].desc);
return -ENOENT;
}
return 0;
}
static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
{
int i;
if (!is_hdmi(sd)) {
v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
return;
}
for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
union hdmi_infoframe frame;
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (adv76xx_read_infoframe(sd, i, &frame))
return;
hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
}
}
static int adv76xx_log_status(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
struct v4l2_dv_timings timings;
struct stdi_readback stdi;
u8 reg_io_0x02 = io_read(sd, 0x02);
u8 edid_enabled;
u8 cable_det;
static const char * const csc_coeff_sel_rb[16] = {
"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
"reserved", "reserved", "reserved", "reserved", "manual"
};
static const char * const input_color_space_txt[16] = {
"RGB limited range (16-235)", "RGB full range (0-255)",
"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
"xvYCC Bt.601", "xvYCC Bt.709",
"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
"invalid", "invalid", "invalid", "invalid", "invalid",
"invalid", "invalid", "automatic"
};
static const char * const hdmi_color_space_txt[16] = {
"RGB limited range (16-235)", "RGB full range (0-255)",
"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
"xvYCC Bt.601", "xvYCC Bt.709",
"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
"invalid", "invalid", "invalid"
};
static const char * const rgb_quantization_range_txt[] = {
"Automatic",
"RGB limited range (16-235)",
"RGB full range (0-255)",
};
static const char * const deep_color_mode_txt[4] = {
"8-bits per channel",
"10-bits per channel",
"12-bits per channel",
"16-bits per channel (not supported)"
};
v4l2_info(sd, "-----Chip status-----\n");
v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
edid_enabled = rep_read(sd, info->edid_status_reg);
v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
((edid_enabled & 0x01) ? "Yes" : "No"),
((edid_enabled & 0x02) ? "Yes" : "No"),
((edid_enabled & 0x04) ? "Yes" : "No"),
((edid_enabled & 0x08) ? "Yes" : "No"));
v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
"enabled" : "disabled");
if (state->cec_enabled_adap) {
int i;
for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
bool is_valid = state->cec_valid_addrs & (1 << i);
if (is_valid)
v4l2_info(sd, "CEC Logical Address: 0x%x\n",
state->cec_addr[i]);
}
}
v4l2_info(sd, "-----Signal status-----\n");
cable_det = info->read_cable_det(sd);
v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
((cable_det & 0x01) ? "Yes" : "No"),
((cable_det & 0x02) ? "Yes" : "No"),
((cable_det & 0x04) ? "Yes" : "No"),
((cable_det & 0x08) ? "Yes" : "No"));
v4l2_info(sd, "TMDS signal detected: %s\n",
no_signal_tmds(sd) ? "false" : "true");
v4l2_info(sd, "TMDS signal locked: %s\n",
no_lock_tmds(sd) ? "false" : "true");
v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
v4l2_info(sd, "CP free run: %s\n",
(in_free_run(sd)) ? "on" : "off");
v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
(io_read(sd, 0x01) & 0x70) >> 4);
v4l2_info(sd, "-----Video Timings-----\n");
if (read_stdi(sd, &stdi))
v4l2_info(sd, "STDI: not locked\n");
else
v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
stdi.lcf, stdi.bl, stdi.lcvs,
stdi.interlaced ? "interlaced" : "progressive",
stdi.hs_pol, stdi.vs_pol);
if (adv76xx_query_dv_timings(sd, &timings))
v4l2_info(sd, "No video detected\n");
else
v4l2_print_dv_timings(sd->name, "Detected format: ",
&timings, true);
v4l2_print_dv_timings(sd->name, "Configured format: ",
&state->timings, true);
if (no_signal(sd))
return 0;
v4l2_info(sd, "-----Color space-----\n");
v4l2_info(sd, "RGB quantization range ctrl: %s\n",
rgb_quantization_range_txt[state->rgb_quantization_range]);
v4l2_info(sd, "Input color space: %s\n",
input_color_space_txt[reg_io_0x02 >> 4]);
v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
"(16-235)" : "(0-255)",
(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
v4l2_info(sd, "Color space conversion: %s\n",
csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
if (!is_digital_input(sd))
return 0;
v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
v4l2_info(sd, "Digital video port selected: %c\n",
(hdmi_read(sd, 0x00) & 0x03) + 'A');
v4l2_info(sd, "HDCP encrypted content: %s\n",
(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
v4l2_info(sd, "HDCP keys read: %s%s\n",
(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
if (is_hdmi(sd)) {
bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
bool audio_mute = io_read(sd, 0x65) & 0x40;
v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
audio_pll_locked ? "locked" : "not locked",
audio_sample_packet_detect ? "detected" : "not detected",
audio_mute ? "muted" : "enabled");
if (audio_pll_locked && audio_sample_packet_detect) {
v4l2_info(sd, "Audio format: %s\n",
(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
}
v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
(hdmi_read(sd, 0x5c) << 8) +
(hdmi_read(sd, 0x5d) & 0xf0));
v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
(hdmi_read(sd, 0x5e) << 8) +
hdmi_read(sd, 0x5f));
v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
adv76xx_log_infoframes(sd);
}
return 0;
}
static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_SOURCE_CHANGE:
return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
case V4L2_EVENT_CTRL:
return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
default:
return -EINVAL;
}
}
static int adv76xx_registered(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int err;
err = cec_register_adapter(state->cec_adap, &client->dev);
if (err)
cec_delete_adapter(state->cec_adap);
return err;
}
static void adv76xx_unregistered(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
cec_unregister_adapter(state->cec_adap);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
.s_ctrl = adv76xx_s_ctrl,
.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
};
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
.log_status = adv76xx_log_status,
.interrupt_service_routine = adv76xx_isr,
.subscribe_event = adv76xx_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = adv76xx_g_register,
.s_register = adv76xx_s_register,
#endif
};
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
.s_routing = adv76xx_s_routing,
.g_input_status = adv76xx_g_input_status,
.s_dv_timings = adv76xx_s_dv_timings,
.g_dv_timings = adv76xx_g_dv_timings,
.query_dv_timings = adv76xx_query_dv_timings,
};
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
.enum_mbus_code = adv76xx_enum_mbus_code,
.get_selection = adv76xx_get_selection,
.get_fmt = adv76xx_get_format,
.set_fmt = adv76xx_set_format,
.get_edid = adv76xx_get_edid,
.set_edid = adv76xx_set_edid,
.dv_timings_cap = adv76xx_dv_timings_cap,
.enum_dv_timings = adv76xx_enum_dv_timings,
};
static const struct v4l2_subdev_ops adv76xx_ops = {
.core = &adv76xx_core_ops,
.video = &adv76xx_video_ops,
.pad = &adv76xx_pad_ops,
};
static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
.registered = adv76xx_registered,
.unregistered = adv76xx_unregistered,
};
/* -------------------------- custom ctrls ---------------------------------- */
static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
.ops = &adv76xx_ctrl_ops,
.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
.name = "Analog Sampling Phase",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 0x1f,
.step = 1,
.def = 0,
};
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
.ops = &adv76xx_ctrl_ops,
.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
.name = "Free Running Color, Manual",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.min = false,
.max = true,
.step = 1,
.def = false,
};
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
.ops = &adv76xx_ctrl_ops,
.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
.name = "Free Running Color",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0x0,
.max = 0xffffff,
.step = 0x1,
.def = 0x0,
};
/* ----------------------------------------------------------------------- */
struct adv76xx_register_map {
const char *name;
u8 default_addr;
};
static const struct adv76xx_register_map adv76xx_default_addresses[] = {
[ADV76XX_PAGE_IO] = { "main", 0x4c },
[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
[ADV76XX_PAGE_REP] = { "rep", 0x32 },
[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
[ADV76XX_PAGE_TEST] = { "test", 0x30 },
[ADV76XX_PAGE_CP] = { "cp", 0x22 },
[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
};
static int adv76xx_core_init(struct v4l2_subdev *sd)
{
struct adv76xx_state *state = to_state(sd);
const struct adv76xx_chip_info *info = state->info;
struct adv76xx_platform_data *pdata = &state->pdata;
hdmi_write(sd, 0x48,
(pdata->disable_pwrdnb ? 0x80 : 0) |
(pdata->disable_cable_det_rst ? 0x40 : 0));
disable_input(sd);
if (pdata->default_input >= 0 &&
pdata->default_input < state->source_pad) {
state->selected_input = pdata->default_input;
select_input(sd);
enable_input(sd);
}
/* power */
io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
/* video format */
io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
pdata->insert_av_codes << 2 |
pdata->replicate_av_codes << 1);
adv76xx_setup_format(state);
cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
/* VS, HS polarities */
io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
/* Adjust drive strength */
io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
pdata->dr_str_clk << 2 |
pdata->dr_str_sync);
cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
ADI recommended setting [REF_01, c. 2.3.3] */
cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
ADI recommended setting [REF_01, c. 2.3.3] */
cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
for digital formats */
/* HDMI audio */
hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
/* TODO from platform data */
afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
if (adv76xx_has_afe(state)) {
afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
}
/* interrupts */
io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
info->setup_irqs(sd);
return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}
static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}
static void adv7612_setup_irqs(struct v4l2_subdev *sd)
{
io_write(sd, 0x41, 0xd0); /* disable INT2 */
}
static void adv76xx_unregister_clients(struct adv76xx_state *state)
{
unsigned int i;
for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
if (state->i2c_clients[i])
i2c_unregister_device(state->i2c_clients[i]);
}
}
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
unsigned int page)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct adv76xx_state *state = to_state(sd);
struct adv76xx_platform_data *pdata = &state->pdata;
unsigned int io_reg = 0xf2 + page;
struct i2c_client *new_client;
if (pdata && pdata->i2c_addresses[page])
new_client = i2c_new_dummy(client->adapter,
pdata->i2c_addresses[page]);
else
new_client = i2c_new_secondary_device(client,
adv76xx_default_addresses[page].name,
adv76xx_default_addresses[page].default_addr);
if (new_client)
io_write(sd, io_reg, new_client->addr << 1);
return new_client;
}
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
/* reset ADI recommended settings for HDMI: */
/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
/* set ADI recommended settings for digitizer */
/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
{ ADV76XX_REG_SEQ_TERM, 0 },
};
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
/* set ADI recommended settings for HDMI: */
/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
/* reset ADI recommended settings for digitizer */
/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
{ ADV76XX_REG_SEQ_TERM, 0 },
};
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
{ ADV76XX_REG_SEQ_TERM, 0 },
};
static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
{ ADV76XX_REG_SEQ_TERM, 0 },
};
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
[ADV7604] = {
.type = ADV7604,
.has_afe = true,
.max_port = ADV7604_PAD_VGA_COMP,
.num_dv_ports = 4,
.edid_enable_reg = 0x77,
.edid_status_reg = 0x7d,
.lcf_reg = 0xb3,
.tdms_lock_mask = 0xe0,
.cable_det_mask = 0x1e,
.fmt_change_digital_mask = 0xc1,
.cp_csc = 0xfc,
.formats = adv7604_formats,
.nformats = ARRAY_SIZE(adv7604_formats),
.set_termination = adv7604_set_termination,
.setup_irqs = adv7604_setup_irqs,
.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
.read_cable_det = adv7604_read_cable_det,
.recommended_settings = {
[0] = adv7604_recommended_settings_afe,
[1] = adv7604_recommended_settings_hdmi,
},
.num_recommended_settings = {
[0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
[1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
},
.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
BIT(ADV7604_PAGE_VDP),
.linewidth_mask = 0xfff,
.field0_height_mask = 0xfff,
.field1_height_mask = 0xfff,
.hfrontporch_mask = 0x3ff,
.hsync_mask = 0x3ff,
.hbackporch_mask = 0x3ff,
.field0_vfrontporch_mask = 0x1fff,
.field0_vsync_mask = 0x1fff,
.field0_vbackporch_mask = 0x1fff,
.field1_vfrontporch_mask = 0x1fff,
.field1_vsync_mask = 0x1fff,
.field1_vbackporch_mask = 0x1fff,
},
[ADV7611] = {
.type = ADV7611,
.has_afe = false,
.max_port = ADV76XX_PAD_HDMI_PORT_A,
.num_dv_ports = 1,
.edid_enable_reg = 0x74,
.edid_status_reg = 0x76,
.lcf_reg = 0xa3,
.tdms_lock_mask = 0x43,
.cable_det_mask = 0x01,
.fmt_change_digital_mask = 0x03,
.cp_csc = 0xf4,
.formats = adv7611_formats,
.nformats = ARRAY_SIZE(adv7611_formats),
.set_termination = adv7611_set_termination,
.setup_irqs = adv7611_setup_irqs,
.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
.read_cable_det = adv7611_read_cable_det,
.recommended_settings = {
[1] = adv7611_recommended_settings_hdmi,
},
.num_recommended_settings = {
[1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
},
.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
.linewidth_mask = 0x1fff,
.field0_height_mask = 0x1fff,
.field1_height_mask = 0x1fff,
.hfrontporch_mask = 0x1fff,
.hsync_mask = 0x1fff,
.hbackporch_mask = 0x1fff,
.field0_vfrontporch_mask = 0x3fff,
.field0_vsync_mask = 0x3fff,
.field0_vbackporch_mask = 0x3fff,
.field1_vfrontporch_mask = 0x3fff,
.field1_vsync_mask = 0x3fff,
.field1_vbackporch_mask = 0x3fff,
},
[ADV7612] = {
.type = ADV7612,
.has_afe = false,
.max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */
.num_dv_ports = 1, /* normally 2 */
.edid_enable_reg = 0x74,
.edid_status_reg = 0x76,
.lcf_reg = 0xa3,
.tdms_lock_mask = 0x43,
.cable_det_mask = 0x01,
.fmt_change_digital_mask = 0x03,
.cp_csc = 0xf4,
.formats = adv7612_formats,
.nformats = ARRAY_SIZE(adv7612_formats),
.set_termination = adv7611_set_termination,
.setup_irqs = adv7612_setup_irqs,
.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
.read_cable_det = adv7612_read_cable_det,
.recommended_settings = {
[1] = adv7612_recommended_settings_hdmi,
},
.num_recommended_settings = {
[1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
},
.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
.linewidth_mask = 0x1fff,
.field0_height_mask = 0x1fff,
.field1_height_mask = 0x1fff,
.hfrontporch_mask = 0x1fff,
.hsync_mask = 0x1fff,
.hbackporch_mask = 0x1fff,
.field0_vfrontporch_mask = 0x3fff,
.field0_vsync_mask = 0x3fff,
.field0_vbackporch_mask = 0x3fff,
.field1_vfrontporch_mask = 0x3fff,
.field1_vsync_mask = 0x3fff,
.field1_vbackporch_mask = 0x3fff,
},
};
static const struct i2c_device_id adv76xx_i2c_id[] = {
{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
{ }
};
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
{ }
};
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
static int adv76xx_parse_dt(struct adv76xx_state *state)
{
struct v4l2_fwnode_endpoint bus_cfg;
struct device_node *endpoint;
struct device_node *np;
unsigned int flags;
int ret;
u32 v;
np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
/* Parse the endpoint. */
endpoint = of_graph_get_next_endpoint(np, NULL);
if (!endpoint)
return -EINVAL;
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
of_node_put(endpoint);
if (ret)
return ret;
if (!of_property_read_u32(np, "default-input", &v))
state->pdata.default_input = v;
else
state->pdata.default_input = -1;
flags = bus_cfg.bus.parallel.flags;
if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
state->pdata.inv_hs_pol = 1;
if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
state->pdata.inv_vs_pol = 1;
if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
state->pdata.inv_llc_pol = 1;
if (bus_cfg.bus_type == V4L2_MBUS_BT656)
state->pdata.insert_av_codes = 1;
/* Disable the interrupt for now as no DT-based board uses it. */
state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
/* Hardcode the remaining platform data fields. */
state->pdata.disable_pwrdnb = 0;
state->pdata.disable_cable_det_rst = 0;
state->pdata.blank_data = 1;
state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
return 0;
}
static const struct regmap_config adv76xx_regmap_cnf[] = {
{
.name = "io",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "avlink",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "cec",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "infoframe",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "esdp",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "epp",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "afe",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "rep",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "edid",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "hdmi",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "test",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "cp",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
{
.name = "vdp",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
},
};
static int configure_regmap(struct adv76xx_state *state, int region)
{
int err;
if (!state->i2c_clients[region])
return -ENODEV;
state->regmap[region] =
devm_regmap_init_i2c(state->i2c_clients[region],
&adv76xx_regmap_cnf[region]);
if (IS_ERR(state->regmap[region])) {
err = PTR_ERR(state->regmap[region]);
v4l_err(state->i2c_clients[region],
"Error initializing regmap %d with error %d\n",
region, err);
return -EINVAL;
}
return 0;
}
static int configure_regmaps(struct adv76xx_state *state)
{
int i, err;
for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
err = configure_regmap(state, i);
if (err && (err != -ENODEV))
return err;
}
return 0;
}
static void adv76xx_reset(struct adv76xx_state *state)
{
if (state->reset_gpio) {
/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
gpiod_set_value_cansleep(state->reset_gpio, 0);
usleep_range(5000, 10000);
gpiod_set_value_cansleep(state->reset_gpio, 1);
/* It is recommended to wait 5 ms after the low pulse before */
/* an I2C write is performed to the ADV76XX. */
usleep_range(5000, 10000);
}
}
static int adv76xx_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
static const struct v4l2_dv_timings cea640x480 =
V4L2_DV_BT_CEA_640X480P59_94;
struct adv76xx_state *state;
struct v4l2_ctrl_handler *hdl;
struct v4l2_ctrl *ctrl;
struct v4l2_subdev *sd;
unsigned int i;
unsigned int val, val2;
int err;
/* Check if the adapter supports the needed features */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
client->addr << 1);
state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->i2c_clients[ADV76XX_PAGE_IO] = client;
/* initialize variables */
state->restart_stdi_once = true;
state->selected_input = ~0;
if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
const struct of_device_id *oid;
oid = of_match_node(adv76xx_of_id, client->dev.of_node);
state->info = oid->data;
err = adv76xx_parse_dt(state);
if (err < 0) {
v4l_err(client, "DT parsing error\n");
return err;
}
} else if (client->dev.platform_data) {
struct adv76xx_platform_data *pdata = client->dev.platform_data;
state->info = (const struct adv76xx_chip_info *)id->driver_data;
state->pdata = *pdata;
} else {
v4l_err(client, "No platform data!\n");
return -ENODEV;
}
/* Request GPIOs. */
for (i = 0; i < state->info->num_dv_ports; ++i) {
state->hpd_gpio[i] =
devm_gpiod_get_index_optional(&client->dev, "hpd", i,
GPIOD_OUT_LOW);
if (IS_ERR(state->hpd_gpio[i]))
return PTR_ERR(state->hpd_gpio[i]);
if (state->hpd_gpio[i])
v4l_info(client, "Handling HPD %u GPIO\n", i);
}
state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(state->reset_gpio))
return PTR_ERR(state->reset_gpio);
adv76xx_reset(state);
state->timings = cea640x480;
state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
sd = &state->sd;
v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
id->name, i2c_adapter_id(client->adapter),
client->addr);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
sd->internal_ops = &adv76xx_int_ops;
/* Configure IO Regmap region */
err = configure_regmap(state, ADV76XX_PAGE_IO);
if (err) {
v4l2_err(sd, "Error configuring IO regmap region\n");
return -ENODEV;
}
/*
* Verify that the chip is present. On ADV7604 the RD_INFO register only
* identifies the revision, while on ADV7611 it identifies the model as
* well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
*/
switch (state->info->type) {
case ADV7604:
err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
if (err) {
v4l2_err(sd, "Error %d reading IO Regmap\n", err);
return -ENODEV;
}
if (val != 0x68) {
v4l2_err(sd, "not an adv7604 on address 0x%x\n",
client->addr << 1);
return -ENODEV;
}
break;
case ADV7611:
case ADV7612:
err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
0xea,
&val);
if (err) {
v4l2_err(sd, "Error %d reading IO Regmap\n", err);
return -ENODEV;
}
val2 = val << 8;
err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
0xeb,
&val);
if (err) {
v4l2_err(sd, "Error %d reading IO Regmap\n", err);
return -ENODEV;
}
val |= val2;
if ((state->info->type == ADV7611 && val != 0x2051) ||
(state->info->type == ADV7612 && val != 0x2041)) {
v4l2_err(sd, "not an adv761x on address 0x%x\n",
client->addr << 1);
return -ENODEV;
}
break;
}
/* control handlers */
hdl = &state->hdl;
v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
V4L2_CID_CONTRAST, 0, 255, 1, 128);
v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
V4L2_CID_SATURATION, 0, 255, 1, 128);
v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
V4L2_CID_HUE, 0, 128, 1, 0);
ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
V4L2_CID_DV_RX_POWER_PRESENT, 0,
(1 << state->info->num_dv_ports) - 1, 0, 0);
state->rgb_quantization_range_ctrl =
v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
0, V4L2_DV_RGB_RANGE_AUTO);
/* custom controls */
if (adv76xx_has_afe(state))
state->analog_sampling_phase_ctrl =
v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
state->free_run_color_manual_ctrl =
v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
state->free_run_color_ctrl =
v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
sd->ctrl_handler = hdl;
if (hdl->error) {
err = hdl->error;
goto err_hdl;
}
if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
err = -ENODEV;
goto err_hdl;
}
for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
if (!(BIT(i) & state->info->page_mask))
continue;
state->i2c_clients[i] = adv76xx_dummy_client(sd, i);
if (!state->i2c_clients[i]) {
err = -EINVAL;
v4l2_err(sd, "failed to create i2c client %u\n", i);
goto err_i2c;
}
}
INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
adv76xx_delayed_work_enable_hotplug);
state->source_pad = state->info->num_dv_ports
+ (state->info->has_afe ? 2 : 0);
for (i = 0; i < state->source_pad; ++i)
state->pads[i].flags = MEDIA_PAD_FL_SINK;
state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_DV_DECODER;
err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
state->pads);
if (err)
goto err_work_queues;
/* Configure regmaps */
err = configure_regmaps(state);
if (err)
goto err_entity;
err = adv76xx_core_init(sd);
if (err)
goto err_entity;
#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
state, dev_name(&client->dev),
CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
err = PTR_ERR_OR_ZERO(state->cec_adap);
if (err)
goto err_entity;
#endif
v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
client->addr << 1, client->adapter->name);
err = v4l2_async_register_subdev(sd);
if (err)
goto err_entity;
return 0;
err_entity:
media_entity_cleanup(&sd->entity);
err_work_queues:
cancel_delayed_work(&state->delayed_work_enable_hotplug);
err_i2c:
adv76xx_unregister_clients(state);
err_hdl:
v4l2_ctrl_handler_free(hdl);
return err;
}
/* ----------------------------------------------------------------------- */
static int adv76xx_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct adv76xx_state *state = to_state(sd);
/* disable interrupts */
io_write(sd, 0x40, 0);
io_write(sd, 0x41, 0);
io_write(sd, 0x46, 0);
io_write(sd, 0x6e, 0);
io_write(sd, 0x73, 0);
cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
v4l2_async_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
adv76xx_unregister_clients(to_state(sd));
v4l2_ctrl_handler_free(sd->ctrl_handler);
return 0;
}
/* ----------------------------------------------------------------------- */
static struct i2c_driver adv76xx_driver = {
.driver = {
.name = "adv7604",
.of_match_table = of_match_ptr(adv76xx_of_id),
},
.probe = adv76xx_probe,
.remove = adv76xx_remove,
.id_table = adv76xx_i2c_id,
};
module_i2c_driver(adv76xx_driver);