kernel_samsung_a34x-permissive/drivers/thermal/of-thermal.c

1459 lines
38 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* of-thermal.c - Generic Thermal Management device tree support.
*
* Copyright (C) 2013 Texas Instruments
* Copyright (C) 2013 Eduardo Valentin <eduardo.valentin@ti.com>
*/
#include <linux/thermal.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/list.h>
#define CREATE_TRACE_POINTS
#include <trace/events/thermal_virtual.h>
#include "thermal_core.h"
/*** Private data structures to represent thermal device tree data ***/
/**
* struct __thermal_bind_param - a match between trip and cooling device
* @cooling_device: a pointer to identify the referred cooling device
* @trip_id: the trip point index
* @usage: the percentage (from 0 to 100) of cooling contribution
* @min: minimum cooling state used at this trip point
* @max: maximum cooling state used at this trip point
*/
struct __thermal_bind_params {
struct device_node *cooling_device;
unsigned int trip_id;
unsigned int usage;
unsigned long min;
unsigned long max;
};
/**
* struct __sensor_param - Holds individual sensor data
* @sensor_data: sensor driver private data passed as input argument
* @ops: sensor driver ops
* @trip_high: last trip high value programmed in the sensor driver
* @trip_low: last trip low value programmed in the sensor driver
* @lock: mutex lock acquired before updating the trip temperatures
* @first_tz: list head pointing the first thermal zone
*/
struct __sensor_param {
void *sensor_data;
const struct thermal_zone_of_device_ops *ops;
int trip_high, trip_low;
struct mutex lock;
struct list_head first_tz;
};
/**
* struct __thermal_zone - internal representation of a thermal zone
* @mode: current thermal zone device mode (enabled/disabled)
* @passive_delay: polling interval while passive cooling is activated
* @polling_delay: zone polling interval
* @slope: slope of the temperature adjustment curve
* @offset: offset of the temperature adjustment curve
* @default_disable: Keep the thermal zone disabled by default
* @is_wakeable: Ignore post suspend thermal zone re-evaluation
* @tzd: thermal zone device pointer for this sensor
* @ntrips: number of trip points
* @trips: an array of trip points (0..ntrips - 1)
* @num_tbps: number of thermal bind params
* @tbps: an array of thermal bind params (0..num_tbps - 1)
* @senps: sensor related parameters
* @list: sibling thermal zone
*/
struct __thermal_zone {
enum thermal_device_mode mode;
int passive_delay;
int polling_delay;
int slope;
int offset;
struct thermal_zone_device *tzd;
bool default_disable;
bool is_wakeable;
/* trip data */
int ntrips;
struct thermal_trip *trips;
/* cooling binding data */
int num_tbps;
struct __thermal_bind_params *tbps;
struct list_head list;
/* sensor interface */
struct __sensor_param *senps;
};
/**
* struct virtual_sensor - internal representation of a virtual thermal zone
* @num_sensors - number of sensors this virtual sensor will reference to
* estimate temperature
* @tz - Array of thermal zones of the sensors this virtual sensor will use
* to estimate temperature
* @virt_tz - Virtual thermal zone pointer
* @logic - aggregation logic to be used to estimate the temperature
* @last_reading - last estimated temperature
* @coefficients - array of coefficients to be used for weighted aggregation
* logic
* @avg_offset - offset value to be used for the weighted aggregation logic
* @avg_denominator - denominator value to be used for the weighted aggregation
* logic
*/
struct virtual_sensor {
int num_sensors;
struct thermal_zone_device *tz[THERMAL_MAX_VIRT_SENSORS];
struct thermal_zone_device *virt_tz;
enum aggregation_logic logic;
int last_reading;
int coefficients[THERMAL_MAX_VIRT_SENSORS];
int avg_offset;
int avg_denominator;
};
/*** DT thermal zone device callbacks ***/
static int virt_sensor_read_temp(void *data, int *val)
{
struct virtual_sensor *sens = data;
int idx, temp = 0, ret = 0;
for (idx = 0; idx < sens->num_sensors; idx++) {
int sens_temp = 0;
ret = thermal_zone_get_temp(sens->tz[idx], &sens_temp);
if (ret) {
pr_err("virt zone: sensor[%s] read error:%d\n",
sens->tz[idx]->type, ret);
return ret;
}
switch (sens->logic) {
case VIRT_COUNT_THRESHOLD:
if ((sens->coefficients[idx] < 0 &&
sens_temp < -sens->coefficients[idx]) ||
(sens->coefficients[idx] > 0 &&
sens_temp >= sens->coefficients[idx]))
temp += 1;
break;
case VIRT_WEIGHTED_AVG:
temp += sens_temp * sens->coefficients[idx];
if (idx == (sens->num_sensors - 1))
temp = (temp + sens->avg_offset)
/ sens->avg_denominator;
break;
case VIRT_MAXIMUM:
if (idx == 0)
temp = INT_MIN;
if (sens_temp > temp)
temp = sens_temp;
break;
case VIRT_MINIMUM:
if (idx == 0)
temp = INT_MAX;
if (sens_temp < temp)
temp = sens_temp;
break;
default:
break;
}
trace_virtual_temperature(sens->virt_tz, sens->tz[idx],
sens_temp, temp);
}
sens->last_reading = *val = temp;
return 0;
}
static int of_thermal_get_temp(struct thermal_zone_device *tz,
int *temp)
{
struct __thermal_zone *data = tz->devdata;
if (!data->senps || !data->senps->ops->get_temp)
return -EINVAL;
return data->senps->ops->get_temp(data->senps->sensor_data, temp);
}
static int of_thermal_set_trips(struct thermal_zone_device *tz,
int low, int high)
{
struct __thermal_zone *data = tz->devdata;
if (!data->senps || !data->senps->ops->set_trips)
return -EINVAL;
return data->senps->ops->set_trips(data->senps->sensor_data, low, high);
}
/**
* of_thermal_get_ntrips - function to export number of available trip
* points.
* @tz: pointer to a thermal zone
*
* This function is a globally visible wrapper to get number of trip points
* stored in the local struct __thermal_zone
*
* Return: number of available trip points, -ENODEV when data not available
*/
int of_thermal_get_ntrips(struct thermal_zone_device *tz)
{
struct __thermal_zone *data = tz->devdata;
if (!data || IS_ERR(data))
return -ENODEV;
return data->ntrips;
}
EXPORT_SYMBOL_GPL(of_thermal_get_ntrips);
/**
* of_thermal_is_trip_valid - function to check if trip point is valid
*
* @tz: pointer to a thermal zone
* @trip: trip point to evaluate
*
* This function is responsible for checking if passed trip point is valid
*
* Return: true if trip point is valid, false otherwise
*/
bool of_thermal_is_trip_valid(struct thermal_zone_device *tz, int trip)
{
struct __thermal_zone *data = tz->devdata;
if (!data || trip >= data->ntrips || trip < 0)
return false;
return true;
}
EXPORT_SYMBOL_GPL(of_thermal_is_trip_valid);
/**
* of_thermal_get_trip_points - function to get access to a globally exported
* trip points
*
* @tz: pointer to a thermal zone
*
* This function provides a pointer to trip points table
*
* Return: pointer to trip points table, NULL otherwise
*/
const struct thermal_trip *
of_thermal_get_trip_points(struct thermal_zone_device *tz)
{
struct __thermal_zone *data = tz->devdata;
if (!data)
return NULL;
return data->trips;
}
EXPORT_SYMBOL_GPL(of_thermal_get_trip_points);
/**
* of_thermal_set_emul_temp - function to set emulated temperature
*
* @tz: pointer to a thermal zone
* @temp: temperature to set
*
* This function gives the ability to set emulated value of temperature,
* which is handy for debugging
*
* Return: zero on success, error code otherwise
*/
static int of_thermal_set_emul_temp(struct thermal_zone_device *tz,
int temp)
{
struct __thermal_zone *data = tz->devdata;
if (!data->senps || !data->senps->ops->set_emul_temp)
return -EINVAL;
return data->senps->ops->set_emul_temp(data->senps->sensor_data, temp);
}
static int of_thermal_get_trend(struct thermal_zone_device *tz, int trip,
enum thermal_trend *trend)
{
struct __thermal_zone *data = tz->devdata;
if (!data->senps || !data->senps->ops->get_trend)
return -EINVAL;
return data->senps->ops->get_trend(data->senps->sensor_data,
trip, trend);
}
static int of_thermal_bind(struct thermal_zone_device *thermal,
struct thermal_cooling_device *cdev)
{
struct __thermal_zone *data = thermal->devdata;
int i;
if (!data || IS_ERR(data))
return -ENODEV;
/* find where to bind */
for (i = 0; i < data->num_tbps; i++) {
struct __thermal_bind_params *tbp = data->tbps + i;
if (tbp->cooling_device == cdev->np) {
int ret;
ret = thermal_zone_bind_cooling_device(thermal,
tbp->trip_id, cdev,
tbp->max,
tbp->min,
tbp->usage);
if (ret)
return ret;
}
}
return 0;
}
static int of_thermal_unbind(struct thermal_zone_device *thermal,
struct thermal_cooling_device *cdev)
{
struct __thermal_zone *data = thermal->devdata;
int i;
if (!data || IS_ERR(data))
return -ENODEV;
/* find where to unbind */
for (i = 0; i < data->num_tbps; i++) {
struct __thermal_bind_params *tbp = data->tbps + i;
if (tbp->cooling_device == cdev->np) {
int ret;
ret = thermal_zone_unbind_cooling_device(thermal,
tbp->trip_id, cdev);
if (ret)
return ret;
}
}
return 0;
}
static int of_thermal_get_mode(struct thermal_zone_device *tz,
enum thermal_device_mode *mode)
{
struct __thermal_zone *data = tz->devdata;
*mode = data->mode;
return 0;
}
static int of_thermal_set_mode(struct thermal_zone_device *tz,
enum thermal_device_mode mode)
{
struct __thermal_zone *data = tz->devdata;
mutex_lock(&tz->lock);
if (mode == THERMAL_DEVICE_ENABLED) {
tz->polling_delay = data->polling_delay;
tz->passive_delay = data->passive_delay;
} else {
tz->polling_delay = 0;
tz->passive_delay = 0;
}
mutex_unlock(&tz->lock);
data->mode = mode;
thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
return 0;
}
static int of_thermal_get_trip_type(struct thermal_zone_device *tz, int trip,
enum thermal_trip_type *type)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
*type = data->trips[trip].type;
return 0;
}
static int of_thermal_get_trip_temp(struct thermal_zone_device *tz, int trip,
int *temp)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
if (data->senps && data->senps->ops &&
data->senps->ops->get_trip_temp) {
int ret;
ret = data->senps->ops->get_trip_temp(data->senps->sensor_data,
trip, temp);
if (ret)
return ret;
} else {
*temp = data->trips[trip].temperature;
}
return 0;
}
static bool of_thermal_is_trips_triggered(struct thermal_zone_device *tz,
int temp)
{
int tt, th, trip, last_temp;
struct __thermal_zone *data = tz->devdata;
bool triggered = false;
if (!tz->tzp)
return triggered;
mutex_lock(&tz->lock);
last_temp = tz->temperature;
for (trip = 0; trip < data->ntrips; trip++) {
if (!tz->tzp->tracks_low) {
tt = data->trips[trip].temperature;
if (temp >= tt && last_temp < tt) {
triggered = true;
break;
}
th = tt - data->trips[trip].hysteresis;
if (temp <= th && last_temp > th) {
triggered = true;
break;
}
} else {
tt = data->trips[trip].temperature;
if (temp <= tt && last_temp > tt) {
triggered = true;
break;
}
th = tt + data->trips[trip].hysteresis;
if (temp >= th && last_temp < th) {
triggered = true;
break;
}
}
}
mutex_unlock(&tz->lock);
return triggered;
}
static int of_thermal_set_trip_temp(struct thermal_zone_device *tz, int trip,
int temp)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
if (data->senps && data->senps->ops->set_trip_temp) {
int ret;
ret = data->senps->ops->set_trip_temp(data->senps->sensor_data,
trip, temp);
if (ret)
return ret;
}
/* thermal framework should take care of data->mask & (1 << trip) */
data->trips[trip].temperature = temp;
return 0;
}
static int of_thermal_get_trip_hyst(struct thermal_zone_device *tz, int trip,
int *hyst)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
*hyst = data->trips[trip].hysteresis;
return 0;
}
static int of_thermal_set_trip_hyst(struct thermal_zone_device *tz, int trip,
int hyst)
{
struct __thermal_zone *data = tz->devdata;
if (trip >= data->ntrips || trip < 0)
return -EDOM;
/* thermal framework should take care of data->mask & (1 << trip) */
data->trips[trip].hysteresis = hyst;
return 0;
}
static int of_thermal_get_crit_temp(struct thermal_zone_device *tz,
int *temp)
{
struct __thermal_zone *data = tz->devdata;
int i;
for (i = 0; i < data->ntrips; i++)
if (data->trips[i].type == THERMAL_TRIP_CRITICAL) {
*temp = data->trips[i].temperature;
return 0;
}
return -EINVAL;
}
static bool of_thermal_is_wakeable(struct thermal_zone_device *tz)
{
struct __thermal_zone *data = tz->devdata;
return data->is_wakeable;
}
static void handle_thermal_trip(struct thermal_zone_device *tz,
bool temp_valid, int trip_temp)
{
struct thermal_zone_device *zone;
struct __thermal_zone *data;
struct list_head *head;
if (!tz || !tz->devdata)
return;
data = tz->devdata;
if (!data->senps)
return;
head = &data->senps->first_tz;
list_for_each_entry(data, head, list) {
zone = data->tzd;
if (data->mode == THERMAL_DEVICE_DISABLED)
continue;
if (!temp_valid) {
thermal_zone_device_update(zone,
THERMAL_EVENT_UNSPECIFIED);
} else {
if (!of_thermal_is_trips_triggered(zone, trip_temp))
continue;
thermal_zone_device_update_temp(zone,
THERMAL_EVENT_UNSPECIFIED, trip_temp);
}
}
}
/*
* of_thermal_handle_trip_temp - Handle thermal trip from sensors
*
* @tz: pointer to the primary thermal zone.
* @trip_temp: The temperature
*/
void of_thermal_handle_trip_temp(struct thermal_zone_device *tz,
int trip_temp)
{
return handle_thermal_trip(tz, true, trip_temp);
}
EXPORT_SYMBOL_GPL(of_thermal_handle_trip_temp);
/*
* of_thermal_handle_trip - Handle thermal trip from sensors
*
* @tz: pointer to the primary thermal zone.
*/
void of_thermal_handle_trip(struct thermal_zone_device *tz)
{
return handle_thermal_trip(tz, false, 0);
}
EXPORT_SYMBOL_GPL(of_thermal_handle_trip);
static struct thermal_zone_device_ops of_thermal_ops = {
.get_mode = of_thermal_get_mode,
.set_mode = of_thermal_set_mode,
.get_trip_type = of_thermal_get_trip_type,
.get_trip_temp = of_thermal_get_trip_temp,
.set_trip_temp = of_thermal_set_trip_temp,
.get_trip_hyst = of_thermal_get_trip_hyst,
.set_trip_hyst = of_thermal_set_trip_hyst,
.get_crit_temp = of_thermal_get_crit_temp,
.bind = of_thermal_bind,
.unbind = of_thermal_unbind,
.is_wakeable = of_thermal_is_wakeable,
};
static struct thermal_zone_of_device_ops of_virt_ops = {
.get_temp = virt_sensor_read_temp,
};
/*** sensor API ***/
static struct thermal_zone_device *
thermal_zone_of_add_sensor(struct device_node *zone,
struct device_node *sensor,
struct __sensor_param *sens_param)
{
struct thermal_zone_device *tzd;
struct __thermal_zone *tz;
tzd = thermal_zone_get_zone_by_name(zone->name);
if (IS_ERR(tzd))
return ERR_PTR(-EPROBE_DEFER);
tz = tzd->devdata;
if (!sens_param->ops)
return ERR_PTR(-EINVAL);
mutex_lock(&tzd->lock);
tz->senps = sens_param;
tzd->ops->get_temp = of_thermal_get_temp;
tzd->ops->get_trend = of_thermal_get_trend;
/*
* The thermal zone core will calculate the window if they have set the
* optional set_trips pointer.
*/
if (sens_param->ops->set_trips)
tzd->ops->set_trips = of_thermal_set_trips;
if (sens_param->ops->set_emul_temp)
tzd->ops->set_emul_temp = of_thermal_set_emul_temp;
list_add_tail(&tz->list, &sens_param->first_tz);
mutex_unlock(&tzd->lock);
return tzd;
}
/**
* thermal_zone_of_sensor_register - registers a sensor to a DT thermal zone
* @dev: a valid struct device pointer of a sensor device. Must contain
* a valid .of_node, for the sensor node.
* @sensor_id: a sensor identifier, in case the sensor IP has more
* than one sensors
* @data: a private pointer (owned by the caller) that will be passed
* back, when a temperature reading is needed.
* @ops: struct thermal_zone_of_device_ops *. Must contain at least .get_temp.
*
* This function will search the list of thermal zones described in device
* tree and look for the zone that refer to the sensor device pointed by
* @dev->of_node as temperature providers. For the zone pointing to the
* sensor node, the sensor will be added to the DT thermal zone device.
*
* The thermal zone temperature is provided by the @get_temp function
* pointer. When called, it will have the private pointer @data back.
*
* The thermal zone temperature trend is provided by the @get_trend function
* pointer. When called, it will have the private pointer @data back.
*
* TODO:
* 01 - This function must enqueue the new sensor instead of using
* it as the only source of temperature values.
*
* 02 - There must be a way to match the sensor with all thermal zones
* that refer to it.
*
* Return: On success returns a valid struct thermal_zone_device,
* otherwise, it returns a corresponding ERR_PTR(). Incase there are multiple
* thermal zones referencing the same sensor, the return value will be
* thermal_zone_device pointer of the first thermal zone. Caller must
* check the return value with help of IS_ERR() helper.
*/
struct thermal_zone_device *
thermal_zone_of_sensor_register(struct device *dev, int sensor_id, void *data,
const struct thermal_zone_of_device_ops *ops)
{
struct device_node *np, *child, *sensor_np;
struct thermal_zone_device *tzd = ERR_PTR(-ENODEV);
struct thermal_zone_device *first_tzd = NULL;
struct __sensor_param *sens_param = NULL;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np)
return ERR_PTR(-ENODEV);
if (!dev || !dev->of_node) {
of_node_put(np);
return ERR_PTR(-EINVAL);
}
sens_param = kzalloc(sizeof(*sens_param), GFP_KERNEL);
if (!sens_param) {
of_node_put(np);
return ERR_PTR(-ENOMEM);
}
sens_param->sensor_data = data;
sens_param->ops = ops;
INIT_LIST_HEAD(&sens_param->first_tz);
sens_param->trip_high = INT_MAX;
sens_param->trip_low = INT_MIN;
mutex_init(&sens_param->lock);
sensor_np = of_node_get(dev->of_node);
for_each_available_child_of_node(np, child) {
struct of_phandle_args sensor_specs;
int ret, id;
struct __thermal_zone *tz;
/* For now, thermal framework supports only 1 sensor per zone */
ret = of_parse_phandle_with_args(child, "thermal-sensors",
"#thermal-sensor-cells",
0, &sensor_specs);
if (ret)
continue;
if (sensor_specs.args_count >= 1) {
id = sensor_specs.args[0];
WARN(sensor_specs.args_count > 1,
"%s: too many cells in sensor specifier %d\n",
sensor_specs.np->name, sensor_specs.args_count);
} else {
id = 0;
}
if (sensor_specs.np == sensor_np && id == sensor_id) {
tzd = thermal_zone_of_add_sensor(child, sensor_np,
sens_param);
if (!IS_ERR(tzd)) {
if (!first_tzd)
first_tzd = tzd;
tz = tzd->devdata;
if (!tz->default_disable)
tzd->ops->set_mode(tzd,
THERMAL_DEVICE_ENABLED);
}
}
of_node_put(sensor_specs.np);
}
of_node_put(sensor_np);
of_node_put(np);
if (!first_tzd) {
first_tzd = ERR_PTR(-ENODEV);
kfree(sens_param);
}
return first_tzd;
}
EXPORT_SYMBOL_GPL(thermal_zone_of_sensor_register);
/**
* thermal_zone_of_sensor_unregister - unregisters a sensor from a DT thermal zone
* @dev: a valid struct device pointer of a sensor device. Must contain
* a valid .of_node, for the sensor node.
* @tzd: a pointer to struct thermal_zone_device where the sensor is registered.
*
* This function removes the sensor callbacks and private data from the
* thermal zone device registered with thermal_zone_of_sensor_register()
* API. It will also silent the zone by remove the .get_temp() and .get_trend()
* thermal zone device callbacks.
*
* TODO: When the support to several sensors per zone is added, this
* function must search the sensor list based on @dev parameter.
*
*/
void thermal_zone_of_sensor_unregister(struct device *dev,
struct thermal_zone_device *tzd)
{
struct __thermal_zone *tz, *next;
struct thermal_zone_device *pos;
struct list_head *head;
if (!dev || !tzd || !tzd->devdata)
return;
tz = tzd->devdata;
/* no __thermal_zone, nothing to be done */
if (!tz)
return;
head = &tz->senps->first_tz;
list_for_each_entry_safe(tz, next, head, list) {
pos = tz->tzd;
mutex_lock(&pos->lock);
pos->ops->get_temp = NULL;
pos->ops->get_trend = NULL;
pos->ops->set_emul_temp = NULL;
list_del(&tz->list);
if (list_empty(&tz->senps->first_tz))
kfree(tz->senps);
tz->senps = NULL;
mutex_unlock(&pos->lock);
}
}
EXPORT_SYMBOL_GPL(thermal_zone_of_sensor_unregister);
static void devm_thermal_zone_of_sensor_release(struct device *dev, void *res)
{
thermal_zone_of_sensor_unregister(dev,
*(struct thermal_zone_device **)res);
}
static int devm_thermal_zone_of_sensor_match(struct device *dev, void *res,
void *data)
{
struct thermal_zone_device **r = res;
if (WARN_ON(!r || !*r))
return 0;
return *r == data;
}
/**
* devm_thermal_zone_of_sensor_register - Resource managed version of
* thermal_zone_of_sensor_register()
* @dev: a valid struct device pointer of a sensor device. Must contain
* a valid .of_node, for the sensor node.
* @sensor_id: a sensor identifier, in case the sensor IP has more
* than one sensors
* @data: a private pointer (owned by the caller) that will be passed
* back, when a temperature reading is needed.
* @ops: struct thermal_zone_of_device_ops *. Must contain at least .get_temp.
*
* Refer thermal_zone_of_sensor_register() for more details.
*
* Return: On success returns a valid struct thermal_zone_device,
* otherwise, it returns a corresponding ERR_PTR(). Caller must
* check the return value with help of IS_ERR() helper.
* Registered thermal_zone_device device will automatically be
* released when device is unbounded.
*/
struct thermal_zone_device *devm_thermal_zone_of_sensor_register(
struct device *dev, int sensor_id,
void *data, const struct thermal_zone_of_device_ops *ops)
{
struct thermal_zone_device **ptr, *tzd;
ptr = devres_alloc(devm_thermal_zone_of_sensor_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
tzd = thermal_zone_of_sensor_register(dev, sensor_id, data, ops);
if (IS_ERR(tzd)) {
devres_free(ptr);
return tzd;
}
*ptr = tzd;
devres_add(dev, ptr);
return tzd;
}
EXPORT_SYMBOL_GPL(devm_thermal_zone_of_sensor_register);
/**
* devm_thermal_zone_of_sensor_unregister - Resource managed version of
* thermal_zone_of_sensor_unregister().
* @dev: Device for which which resource was allocated.
* @tzd: a pointer to struct thermal_zone_device where the sensor is registered.
*
* This function removes the sensor callbacks and private data from the
* thermal zone device registered with devm_thermal_zone_of_sensor_register()
* API. It will also silent the zone by remove the .get_temp() and .get_trend()
* thermal zone device callbacks.
* Normally this function will not need to be called and the resource
* management code will ensure that the resource is freed.
*/
void devm_thermal_zone_of_sensor_unregister(struct device *dev,
struct thermal_zone_device *tzd)
{
WARN_ON(devres_release(dev, devm_thermal_zone_of_sensor_release,
devm_thermal_zone_of_sensor_match, tzd));
}
EXPORT_SYMBOL_GPL(devm_thermal_zone_of_sensor_unregister);
/**
* devm_thermal_of_virtual_sensor_register - Register a virtual sensor.
* Three types of virtual sensors are supported.
* 1. Weighted aggregation type:
* Virtual sensor of this type calculates the weighted aggregation
* of sensor temperatures using the below formula,
* temp = (sensor_1_temp * coeff_1 + ... + sensor_n_temp * coeff_n)
* + avg_offset / avg_denominator
* So the sensor drivers has to specify n+2 coefficients.
* 2. Maximum type:
* Virtual sensors of this type will report the maximum of all
* sensor temperatures.
* 3. Minimum type:
* Virtual sensors of this type will report the minimum of all
* sensor temperatures.
*
* @input arguments:
* @dev: Virtual sensor driver device pointer.
* @sensor_data: Virtual sensor data supported for the device.
*
* @return: Returns a virtual thermal zone pointer. Returns error if thermal
* zone is not created. Returns -EAGAIN, if the sensor that is required for
* this virtual sensor temperature estimation is not registered yet. The
* sensor driver can try again later.
*/
struct thermal_zone_device *devm_thermal_of_virtual_sensor_register(
struct device *dev,
const struct virtual_sensor_data *sensor_data)
{
int sens_idx = 0;
struct virtual_sensor *sens;
struct __thermal_zone *tz;
struct thermal_zone_device **ptr;
struct thermal_zone_device *tzd;
struct __sensor_param *sens_param = NULL;
enum thermal_device_mode mode;
if (!dev || !sensor_data)
return ERR_PTR(-EINVAL);
tzd = thermal_zone_get_zone_by_name(
sensor_data->virt_zone_name);
if (IS_ERR(tzd)) {
dev_dbg(dev, "sens:%s not available err: %ld\n",
sensor_data->virt_zone_name,
PTR_ERR(tzd));
return tzd;
}
mutex_lock(&tzd->lock);
/*
* Check if the virtual zone is registered and enabled.
* If so return the registered thermal zone.
*/
tzd->ops->get_mode(tzd, &mode);
mutex_unlock(&tzd->lock);
if (mode == THERMAL_DEVICE_ENABLED)
return tzd;
sens = devm_kzalloc(dev, sizeof(*sens), GFP_KERNEL);
if (!sens)
return ERR_PTR(-ENOMEM);
sens->virt_tz = tzd;
sens->logic = sensor_data->logic;
sens->num_sensors = sensor_data->num_sensors;
if ((sens->logic == VIRT_WEIGHTED_AVG) ||
(sens->logic == VIRT_COUNT_THRESHOLD)) {
int coeff_ct = sensor_data->coefficient_ct;
/*
* For weighted aggregation, sensor drivers has to specify
* n+2 coefficients.
*/
if (coeff_ct != sens->num_sensors) {
dev_err(dev, "sens:%s invalid coefficient\n",
sensor_data->virt_zone_name);
return ERR_PTR(-EINVAL);
}
memcpy(sens->coefficients, sensor_data->coefficients,
coeff_ct * sizeof(*sens->coefficients));
sens->avg_offset = sensor_data->avg_offset;
sens->avg_denominator = sensor_data->avg_denominator;
}
for (sens_idx = 0; sens_idx < sens->num_sensors; sens_idx++) {
sens->tz[sens_idx] = thermal_zone_get_zone_by_name(
sensor_data->sensor_names[sens_idx]);
if (IS_ERR(sens->tz[sens_idx])) {
dev_err(dev, "sens:%s sensor[%s] fetch err:%ld\n",
sensor_data->virt_zone_name,
sensor_data->sensor_names[sens_idx],
PTR_ERR(sens->tz[sens_idx]));
break;
}
}
if (sens->num_sensors != sens_idx)
return ERR_PTR(-EAGAIN);
sens_param = kzalloc(sizeof(*sens_param), GFP_KERNEL);
if (!sens_param)
return ERR_PTR(-ENOMEM);
sens_param->sensor_data = sens;
sens_param->ops = &of_virt_ops;
INIT_LIST_HEAD(&sens_param->first_tz);
sens_param->trip_high = INT_MAX;
sens_param->trip_low = INT_MIN;
mutex_init(&sens_param->lock);
mutex_lock(&tzd->lock);
tz = tzd->devdata;
tz->senps = sens_param;
tzd->ops->get_temp = of_thermal_get_temp;
list_add_tail(&tz->list, &sens_param->first_tz);
mutex_unlock(&tzd->lock);
ptr = devres_alloc(devm_thermal_zone_of_sensor_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
*ptr = tzd;
devres_add(dev, ptr);
if (!tz->default_disable)
tzd->ops->set_mode(tzd, THERMAL_DEVICE_ENABLED);
return tzd;
}
EXPORT_SYMBOL(devm_thermal_of_virtual_sensor_register);
/*** functions parsing device tree nodes ***/
/**
* thermal_of_populate_bind_params - parse and fill cooling map data
* @np: DT node containing a cooling-map node
* @__tbp: data structure to be filled with cooling map info
* @trips: array of thermal zone trip points
* @ntrips: number of trip points inside trips.
*
* This function parses a cooling-map type of node represented by
* @np parameter and fills the read data into @__tbp data structure.
* It needs the already parsed array of trip points of the thermal zone
* in consideration.
*
* Return: 0 on success, proper error code otherwise
*/
static int thermal_of_populate_bind_params(struct device_node *np,
struct __thermal_bind_params *__tbp,
struct thermal_trip *trips,
int ntrips)
{
struct of_phandle_args cooling_spec;
struct device_node *trip;
int ret, i;
u32 prop;
/* Default weight. Usage is optional */
__tbp->usage = THERMAL_WEIGHT_DEFAULT;
ret = of_property_read_u32(np, "contribution", &prop);
if (ret == 0)
__tbp->usage = prop;
trip = of_parse_phandle(np, "trip", 0);
if (!trip) {
pr_err("missing trip property\n");
return -ENODEV;
}
/* match using device_node */
for (i = 0; i < ntrips; i++)
if (trip == trips[i].np) {
__tbp->trip_id = i;
break;
}
if (i == ntrips) {
ret = -ENODEV;
goto end;
}
ret = of_parse_phandle_with_args(np, "cooling-device", "#cooling-cells",
0, &cooling_spec);
if (ret < 0) {
pr_err("missing cooling_device property\n");
goto end;
}
__tbp->cooling_device = cooling_spec.np;
if (cooling_spec.args_count >= 2) { /* at least min and max */
__tbp->min = cooling_spec.args[0];
__tbp->max = cooling_spec.args[1];
} else {
pr_err("wrong reference to cooling device, missing limits\n");
}
end:
of_node_put(trip);
return ret;
}
/**
* It maps 'enum thermal_trip_type' found in include/linux/thermal.h
* into the device tree binding of 'trip', property type.
*/
static const char * const trip_types[] = {
[THERMAL_TRIP_ACTIVE] = "active",
[THERMAL_TRIP_PASSIVE] = "passive",
[THERMAL_TRIP_HOT] = "hot",
[THERMAL_TRIP_CRITICAL] = "critical",
};
/**
* thermal_of_get_trip_type - Get phy mode for given device_node
* @np: Pointer to the given device_node
* @type: Pointer to resulting trip type
*
* The function gets trip type string from property 'type',
* and store its index in trip_types table in @type,
*
* Return: 0 on success, or errno in error case.
*/
static int thermal_of_get_trip_type(struct device_node *np,
enum thermal_trip_type *type)
{
const char *t;
int err, i;
err = of_property_read_string(np, "type", &t);
if (err < 0)
return err;
for (i = 0; i < ARRAY_SIZE(trip_types); i++)
if (!strcasecmp(t, trip_types[i])) {
*type = i;
return 0;
}
return -ENODEV;
}
/**
* thermal_of_populate_trip - parse and fill one trip point data
* @np: DT node containing a trip point node
* @trip: trip point data structure to be filled up
*
* This function parses a trip point type of node represented by
* @np parameter and fills the read data into @trip data structure.
*
* Return: 0 on success, proper error code otherwise
*/
static int thermal_of_populate_trip(struct device_node *np,
struct thermal_trip *trip)
{
int prop;
int ret;
ret = of_property_read_u32(np, "temperature", &prop);
if (ret < 0) {
pr_err("missing temperature property\n");
return ret;
}
trip->temperature = prop;
ret = of_property_read_u32(np, "hysteresis", &prop);
if (ret < 0) {
pr_err("missing hysteresis property\n");
return ret;
}
trip->hysteresis = prop;
ret = thermal_of_get_trip_type(np, &trip->type);
if (ret < 0) {
pr_err("wrong trip type property\n");
return ret;
}
/* Required for cooling map matching */
trip->np = np;
of_node_get(np);
return 0;
}
/**
* thermal_of_build_thermal_zone - parse and fill one thermal zone data
* @np: DT node containing a thermal zone node
*
* This function parses a thermal zone type of node represented by
* @np parameter and fills the read data into a __thermal_zone data structure
* and return this pointer.
*
* TODO: Missing properties to parse: thermal-sensor-names
*
* Return: On success returns a valid struct __thermal_zone,
* otherwise, it returns a corresponding ERR_PTR(). Caller must
* check the return value with help of IS_ERR() helper.
*/
static struct __thermal_zone
__init *thermal_of_build_thermal_zone(struct device_node *np)
{
struct device_node *child = NULL, *gchild;
struct __thermal_zone *tz;
int ret, i;
u32 prop, coef[2];
if (!np) {
pr_err("no thermal zone np\n");
return ERR_PTR(-EINVAL);
}
tz = kzalloc(sizeof(*tz), GFP_KERNEL);
if (!tz)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&tz->list);
ret = of_property_read_u32(np, "polling-delay-passive", &prop);
if (ret < 0) {
pr_err("missing polling-delay-passive property\n");
goto free_tz;
}
tz->passive_delay = prop;
ret = of_property_read_u32(np, "polling-delay", &prop);
if (ret < 0) {
pr_err("missing polling-delay property\n");
goto free_tz;
}
tz->polling_delay = prop;
tz->is_wakeable = of_property_read_bool(np,
"wake-capable-sensor");
tz->default_disable = of_property_read_bool(np,
"disable-thermal-zone");
/*
* REVIST: for now, the thermal framework supports only
* one sensor per thermal zone. Thus, we are considering
* only the first two values as slope and offset.
*/
ret = of_property_read_u32_array(np, "coefficients", coef, 2);
if (ret == 0) {
tz->slope = coef[0];
tz->offset = coef[1];
} else {
tz->slope = 1;
tz->offset = 0;
}
/* trips */
child = of_get_child_by_name(np, "trips");
/* No trips provided */
if (!child)
goto finish;
tz->ntrips = of_get_child_count(child);
if (tz->ntrips == 0) /* must have at least one child */
goto finish;
tz->trips = kcalloc(tz->ntrips, sizeof(*tz->trips), GFP_KERNEL);
if (!tz->trips) {
ret = -ENOMEM;
goto free_tz;
}
i = 0;
for_each_child_of_node(child, gchild) {
ret = thermal_of_populate_trip(gchild, &tz->trips[i++]);
if (ret)
goto free_trips;
}
of_node_put(child);
/* cooling-maps */
child = of_get_child_by_name(np, "cooling-maps");
/* cooling-maps not provided */
if (!child)
goto finish;
tz->num_tbps = of_get_child_count(child);
if (tz->num_tbps == 0)
goto finish;
tz->tbps = kcalloc(tz->num_tbps, sizeof(*tz->tbps), GFP_KERNEL);
if (!tz->tbps) {
ret = -ENOMEM;
goto free_trips;
}
i = 0;
for_each_child_of_node(child, gchild) {
ret = thermal_of_populate_bind_params(gchild, &tz->tbps[i++],
tz->trips, tz->ntrips);
if (ret)
goto free_tbps;
}
finish:
of_node_put(child);
tz->mode = THERMAL_DEVICE_DISABLED;
return tz;
free_tbps:
for (i = i - 1; i >= 0; i--)
of_node_put(tz->tbps[i].cooling_device);
kfree(tz->tbps);
free_trips:
for (i = 0; i < tz->ntrips; i++)
of_node_put(tz->trips[i].np);
kfree(tz->trips);
of_node_put(gchild);
free_tz:
kfree(tz);
of_node_put(child);
return ERR_PTR(ret);
}
static inline void of_thermal_free_zone(struct __thermal_zone *tz)
{
int i;
for (i = 0; i < tz->num_tbps; i++)
of_node_put(tz->tbps[i].cooling_device);
kfree(tz->tbps);
for (i = 0; i < tz->ntrips; i++)
of_node_put(tz->trips[i].np);
kfree(tz->trips);
kfree(tz);
}
/**
* of_parse_thermal_zones - parse device tree thermal data
*
* Initialization function that can be called by machine initialization
* code to parse thermal data and populate the thermal framework
* with hardware thermal zones info. This function only parses thermal zones.
* Cooling devices and sensor devices nodes are supposed to be parsed
* by their respective drivers.
*
* Return: 0 on success, proper error code otherwise
*
*/
int __init of_parse_thermal_zones(void)
{
struct device_node *np, *child;
struct __thermal_zone *tz;
struct thermal_zone_device_ops *ops;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np) {
pr_debug("unable to find thermal zones\n");
return 0; /* Run successfully on systems without thermal DT */
}
for_each_available_child_of_node(np, child) {
struct thermal_zone_device *zone;
struct thermal_zone_params *tzp;
int i, mask = 0;
u32 prop;
tz = thermal_of_build_thermal_zone(child);
if (IS_ERR(tz)) {
pr_err("failed to build thermal zone %s: %ld\n",
child->name,
PTR_ERR(tz));
continue;
}
ops = kmemdup(&of_thermal_ops, sizeof(*ops), GFP_KERNEL);
if (!ops)
goto exit_free;
tzp = kzalloc(sizeof(*tzp), GFP_KERNEL);
if (!tzp) {
kfree(ops);
goto exit_free;
}
/* No hwmon because there might be hwmon drivers registering */
tzp->no_hwmon = true;
if (!of_property_read_u32(child, "sustainable-power", &prop))
tzp->sustainable_power = prop;
for (i = 0; i < tz->ntrips; i++)
mask |= 1 << i;
/* these two are left for temperature drivers to use */
tzp->slope = tz->slope;
tzp->offset = tz->offset;
if (of_property_read_bool(child, "tracks-low"))
tzp->tracks_low = true;
zone = thermal_zone_device_register(child->name, tz->ntrips,
mask, tz,
ops, tzp,
tz->passive_delay,
tz->polling_delay);
if (IS_ERR(zone)) {
pr_err("Failed to build %s zone %ld\n", child->name,
PTR_ERR(zone));
kfree(tzp);
kfree(ops);
of_thermal_free_zone(tz);
/* attempting to build remaining zones still */
continue;
}
tz->tzd = zone;
}
of_node_put(np);
return 0;
exit_free:
of_node_put(child);
of_node_put(np);
of_thermal_free_zone(tz);
/* no memory available, so free what we have built */
of_thermal_destroy_zones();
return -ENOMEM;
}
/**
* of_thermal_destroy_zones - remove all zones parsed and allocated resources
*
* Finds all zones parsed and added to the thermal framework and remove them
* from the system, together with their resources.
*
*/
void of_thermal_destroy_zones(void)
{
struct device_node *np, *child;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np) {
pr_debug("unable to find thermal zones\n");
return;
}
for_each_available_child_of_node(np, child) {
struct thermal_zone_device *zone;
zone = thermal_zone_get_zone_by_name(child->name);
if (IS_ERR(zone))
continue;
thermal_zone_device_unregister(zone);
kfree(zone->tzp);
kfree(zone->ops);
of_thermal_free_zone(zone->devdata);
}
of_node_put(np);
}