1208 lines
30 KiB
C
1208 lines
30 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
||
|
* All Rights Reserved.
|
||
|
*/
|
||
|
#include "xfs.h"
|
||
|
#include "xfs_fs.h"
|
||
|
#include "xfs_shared.h"
|
||
|
#include "xfs_format.h"
|
||
|
#include "xfs_log_format.h"
|
||
|
#include "xfs_trans_resv.h"
|
||
|
#include "xfs_mount.h"
|
||
|
#include "xfs_da_format.h"
|
||
|
#include "xfs_da_btree.h"
|
||
|
#include "xfs_inode.h"
|
||
|
#include "xfs_trans.h"
|
||
|
#include "xfs_inode_item.h"
|
||
|
#include "xfs_bmap.h"
|
||
|
#include "xfs_bmap_util.h"
|
||
|
#include "xfs_error.h"
|
||
|
#include "xfs_dir2.h"
|
||
|
#include "xfs_dir2_priv.h"
|
||
|
#include "xfs_ioctl.h"
|
||
|
#include "xfs_trace.h"
|
||
|
#include "xfs_log.h"
|
||
|
#include "xfs_icache.h"
|
||
|
#include "xfs_pnfs.h"
|
||
|
#include "xfs_iomap.h"
|
||
|
#include "xfs_reflink.h"
|
||
|
|
||
|
#include <linux/dcache.h>
|
||
|
#include <linux/falloc.h>
|
||
|
#include <linux/pagevec.h>
|
||
|
#include <linux/backing-dev.h>
|
||
|
#include <linux/mman.h>
|
||
|
|
||
|
static const struct vm_operations_struct xfs_file_vm_ops;
|
||
|
|
||
|
int
|
||
|
xfs_update_prealloc_flags(
|
||
|
struct xfs_inode *ip,
|
||
|
enum xfs_prealloc_flags flags)
|
||
|
{
|
||
|
struct xfs_trans *tp;
|
||
|
int error;
|
||
|
|
||
|
error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
|
||
|
0, 0, 0, &tp);
|
||
|
if (error)
|
||
|
return error;
|
||
|
|
||
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
||
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
||
|
|
||
|
if (!(flags & XFS_PREALLOC_INVISIBLE)) {
|
||
|
VFS_I(ip)->i_mode &= ~S_ISUID;
|
||
|
if (VFS_I(ip)->i_mode & S_IXGRP)
|
||
|
VFS_I(ip)->i_mode &= ~S_ISGID;
|
||
|
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
||
|
}
|
||
|
|
||
|
if (flags & XFS_PREALLOC_SET)
|
||
|
ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
|
||
|
if (flags & XFS_PREALLOC_CLEAR)
|
||
|
ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
|
||
|
|
||
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
||
|
if (flags & XFS_PREALLOC_SYNC)
|
||
|
xfs_trans_set_sync(tp);
|
||
|
return xfs_trans_commit(tp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fsync operations on directories are much simpler than on regular files,
|
||
|
* as there is no file data to flush, and thus also no need for explicit
|
||
|
* cache flush operations, and there are no non-transaction metadata updates
|
||
|
* on directories either.
|
||
|
*/
|
||
|
STATIC int
|
||
|
xfs_dir_fsync(
|
||
|
struct file *file,
|
||
|
loff_t start,
|
||
|
loff_t end,
|
||
|
int datasync)
|
||
|
{
|
||
|
struct xfs_inode *ip = XFS_I(file->f_mapping->host);
|
||
|
struct xfs_mount *mp = ip->i_mount;
|
||
|
xfs_lsn_t lsn = 0;
|
||
|
|
||
|
trace_xfs_dir_fsync(ip);
|
||
|
|
||
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
||
|
if (xfs_ipincount(ip))
|
||
|
lsn = ip->i_itemp->ili_last_lsn;
|
||
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
||
|
|
||
|
if (!lsn)
|
||
|
return 0;
|
||
|
return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
|
||
|
}
|
||
|
|
||
|
STATIC int
|
||
|
xfs_file_fsync(
|
||
|
struct file *file,
|
||
|
loff_t start,
|
||
|
loff_t end,
|
||
|
int datasync)
|
||
|
{
|
||
|
struct inode *inode = file->f_mapping->host;
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
struct xfs_mount *mp = ip->i_mount;
|
||
|
int error = 0;
|
||
|
int log_flushed = 0;
|
||
|
xfs_lsn_t lsn = 0;
|
||
|
|
||
|
trace_xfs_file_fsync(ip);
|
||
|
|
||
|
error = file_write_and_wait_range(file, start, end);
|
||
|
if (error)
|
||
|
return error;
|
||
|
|
||
|
if (XFS_FORCED_SHUTDOWN(mp))
|
||
|
return -EIO;
|
||
|
|
||
|
xfs_iflags_clear(ip, XFS_ITRUNCATED);
|
||
|
|
||
|
/*
|
||
|
* If we have an RT and/or log subvolume we need to make sure to flush
|
||
|
* the write cache the device used for file data first. This is to
|
||
|
* ensure newly written file data make it to disk before logging the new
|
||
|
* inode size in case of an extending write.
|
||
|
*/
|
||
|
if (XFS_IS_REALTIME_INODE(ip))
|
||
|
xfs_blkdev_issue_flush(mp->m_rtdev_targp);
|
||
|
else if (mp->m_logdev_targp != mp->m_ddev_targp)
|
||
|
xfs_blkdev_issue_flush(mp->m_ddev_targp);
|
||
|
|
||
|
/*
|
||
|
* All metadata updates are logged, which means that we just have to
|
||
|
* flush the log up to the latest LSN that touched the inode. If we have
|
||
|
* concurrent fsync/fdatasync() calls, we need them to all block on the
|
||
|
* log force before we clear the ili_fsync_fields field. This ensures
|
||
|
* that we don't get a racing sync operation that does not wait for the
|
||
|
* metadata to hit the journal before returning. If we race with
|
||
|
* clearing the ili_fsync_fields, then all that will happen is the log
|
||
|
* force will do nothing as the lsn will already be on disk. We can't
|
||
|
* race with setting ili_fsync_fields because that is done under
|
||
|
* XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
|
||
|
* until after the ili_fsync_fields is cleared.
|
||
|
*/
|
||
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
||
|
if (xfs_ipincount(ip)) {
|
||
|
if (!datasync ||
|
||
|
(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
|
||
|
lsn = ip->i_itemp->ili_last_lsn;
|
||
|
}
|
||
|
|
||
|
if (lsn) {
|
||
|
error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
|
||
|
ip->i_itemp->ili_fsync_fields = 0;
|
||
|
}
|
||
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
||
|
|
||
|
/*
|
||
|
* If we only have a single device, and the log force about was
|
||
|
* a no-op we might have to flush the data device cache here.
|
||
|
* This can only happen for fdatasync/O_DSYNC if we were overwriting
|
||
|
* an already allocated file and thus do not have any metadata to
|
||
|
* commit.
|
||
|
*/
|
||
|
if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
|
||
|
mp->m_logdev_targp == mp->m_ddev_targp)
|
||
|
xfs_blkdev_issue_flush(mp->m_ddev_targp);
|
||
|
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
STATIC ssize_t
|
||
|
xfs_file_dio_aio_read(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *to)
|
||
|
{
|
||
|
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
|
||
|
size_t count = iov_iter_count(to);
|
||
|
ssize_t ret;
|
||
|
|
||
|
trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
|
||
|
|
||
|
if (!count)
|
||
|
return 0; /* skip atime */
|
||
|
|
||
|
file_accessed(iocb->ki_filp);
|
||
|
|
||
|
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
||
|
ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
|
||
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static noinline ssize_t
|
||
|
xfs_file_dax_read(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *to)
|
||
|
{
|
||
|
struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
|
||
|
size_t count = iov_iter_count(to);
|
||
|
ssize_t ret = 0;
|
||
|
|
||
|
trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
|
||
|
|
||
|
if (!count)
|
||
|
return 0; /* skip atime */
|
||
|
|
||
|
if (iocb->ki_flags & IOCB_NOWAIT) {
|
||
|
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
|
||
|
return -EAGAIN;
|
||
|
} else {
|
||
|
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
||
|
}
|
||
|
|
||
|
ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
|
||
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
||
|
|
||
|
file_accessed(iocb->ki_filp);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
STATIC ssize_t
|
||
|
xfs_file_buffered_aio_read(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *to)
|
||
|
{
|
||
|
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
|
||
|
ssize_t ret;
|
||
|
|
||
|
trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
|
||
|
|
||
|
if (iocb->ki_flags & IOCB_NOWAIT) {
|
||
|
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
|
||
|
return -EAGAIN;
|
||
|
} else {
|
||
|
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
||
|
}
|
||
|
ret = generic_file_read_iter(iocb, to);
|
||
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
STATIC ssize_t
|
||
|
xfs_file_read_iter(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *to)
|
||
|
{
|
||
|
struct inode *inode = file_inode(iocb->ki_filp);
|
||
|
struct xfs_mount *mp = XFS_I(inode)->i_mount;
|
||
|
ssize_t ret = 0;
|
||
|
|
||
|
XFS_STATS_INC(mp, xs_read_calls);
|
||
|
|
||
|
if (XFS_FORCED_SHUTDOWN(mp))
|
||
|
return -EIO;
|
||
|
|
||
|
if (IS_DAX(inode))
|
||
|
ret = xfs_file_dax_read(iocb, to);
|
||
|
else if (iocb->ki_flags & IOCB_DIRECT)
|
||
|
ret = xfs_file_dio_aio_read(iocb, to);
|
||
|
else
|
||
|
ret = xfs_file_buffered_aio_read(iocb, to);
|
||
|
|
||
|
if (ret > 0)
|
||
|
XFS_STATS_ADD(mp, xs_read_bytes, ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Common pre-write limit and setup checks.
|
||
|
*
|
||
|
* Called with the iolocked held either shared and exclusive according to
|
||
|
* @iolock, and returns with it held. Might upgrade the iolock to exclusive
|
||
|
* if called for a direct write beyond i_size.
|
||
|
*/
|
||
|
STATIC ssize_t
|
||
|
xfs_file_aio_write_checks(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *from,
|
||
|
int *iolock)
|
||
|
{
|
||
|
struct file *file = iocb->ki_filp;
|
||
|
struct inode *inode = file->f_mapping->host;
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
ssize_t error = 0;
|
||
|
size_t count = iov_iter_count(from);
|
||
|
bool drained_dio = false;
|
||
|
loff_t isize;
|
||
|
|
||
|
restart:
|
||
|
error = generic_write_checks(iocb, from);
|
||
|
if (error <= 0)
|
||
|
return error;
|
||
|
|
||
|
error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
|
||
|
if (error)
|
||
|
return error;
|
||
|
|
||
|
/*
|
||
|
* For changing security info in file_remove_privs() we need i_rwsem
|
||
|
* exclusively.
|
||
|
*/
|
||
|
if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
|
||
|
xfs_iunlock(ip, *iolock);
|
||
|
*iolock = XFS_IOLOCK_EXCL;
|
||
|
xfs_ilock(ip, *iolock);
|
||
|
goto restart;
|
||
|
}
|
||
|
/*
|
||
|
* If the offset is beyond the size of the file, we need to zero any
|
||
|
* blocks that fall between the existing EOF and the start of this
|
||
|
* write. If zeroing is needed and we are currently holding the
|
||
|
* iolock shared, we need to update it to exclusive which implies
|
||
|
* having to redo all checks before.
|
||
|
*
|
||
|
* We need to serialise against EOF updates that occur in IO
|
||
|
* completions here. We want to make sure that nobody is changing the
|
||
|
* size while we do this check until we have placed an IO barrier (i.e.
|
||
|
* hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
|
||
|
* The spinlock effectively forms a memory barrier once we have the
|
||
|
* XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
|
||
|
* and hence be able to correctly determine if we need to run zeroing.
|
||
|
*/
|
||
|
spin_lock(&ip->i_flags_lock);
|
||
|
isize = i_size_read(inode);
|
||
|
if (iocb->ki_pos > isize) {
|
||
|
spin_unlock(&ip->i_flags_lock);
|
||
|
if (!drained_dio) {
|
||
|
if (*iolock == XFS_IOLOCK_SHARED) {
|
||
|
xfs_iunlock(ip, *iolock);
|
||
|
*iolock = XFS_IOLOCK_EXCL;
|
||
|
xfs_ilock(ip, *iolock);
|
||
|
iov_iter_reexpand(from, count);
|
||
|
}
|
||
|
/*
|
||
|
* We now have an IO submission barrier in place, but
|
||
|
* AIO can do EOF updates during IO completion and hence
|
||
|
* we now need to wait for all of them to drain. Non-AIO
|
||
|
* DIO will have drained before we are given the
|
||
|
* XFS_IOLOCK_EXCL, and so for most cases this wait is a
|
||
|
* no-op.
|
||
|
*/
|
||
|
inode_dio_wait(inode);
|
||
|
drained_dio = true;
|
||
|
goto restart;
|
||
|
}
|
||
|
|
||
|
trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
|
||
|
error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
|
||
|
NULL, &xfs_iomap_ops);
|
||
|
if (error)
|
||
|
return error;
|
||
|
} else
|
||
|
spin_unlock(&ip->i_flags_lock);
|
||
|
|
||
|
/*
|
||
|
* Updating the timestamps will grab the ilock again from
|
||
|
* xfs_fs_dirty_inode, so we have to call it after dropping the
|
||
|
* lock above. Eventually we should look into a way to avoid
|
||
|
* the pointless lock roundtrip.
|
||
|
*/
|
||
|
if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
|
||
|
error = file_update_time(file);
|
||
|
if (error)
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we're writing the file then make sure to clear the setuid and
|
||
|
* setgid bits if the process is not being run by root. This keeps
|
||
|
* people from modifying setuid and setgid binaries.
|
||
|
*/
|
||
|
if (!IS_NOSEC(inode))
|
||
|
return file_remove_privs(file);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xfs_dio_write_end_io(
|
||
|
struct kiocb *iocb,
|
||
|
ssize_t size,
|
||
|
unsigned flags)
|
||
|
{
|
||
|
struct inode *inode = file_inode(iocb->ki_filp);
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
loff_t offset = iocb->ki_pos;
|
||
|
int error = 0;
|
||
|
|
||
|
trace_xfs_end_io_direct_write(ip, offset, size);
|
||
|
|
||
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
||
|
return -EIO;
|
||
|
|
||
|
if (size <= 0)
|
||
|
return size;
|
||
|
|
||
|
/*
|
||
|
* Capture amount written on completion as we can't reliably account
|
||
|
* for it on submission.
|
||
|
*/
|
||
|
XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
|
||
|
|
||
|
if (flags & IOMAP_DIO_COW) {
|
||
|
error = xfs_reflink_end_cow(ip, offset, size);
|
||
|
if (error)
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Unwritten conversion updates the in-core isize after extent
|
||
|
* conversion but before updating the on-disk size. Updating isize any
|
||
|
* earlier allows a racing dio read to find unwritten extents before
|
||
|
* they are converted.
|
||
|
*/
|
||
|
if (flags & IOMAP_DIO_UNWRITTEN)
|
||
|
return xfs_iomap_write_unwritten(ip, offset, size, true);
|
||
|
|
||
|
/*
|
||
|
* We need to update the in-core inode size here so that we don't end up
|
||
|
* with the on-disk inode size being outside the in-core inode size. We
|
||
|
* have no other method of updating EOF for AIO, so always do it here
|
||
|
* if necessary.
|
||
|
*
|
||
|
* We need to lock the test/set EOF update as we can be racing with
|
||
|
* other IO completions here to update the EOF. Failing to serialise
|
||
|
* here can result in EOF moving backwards and Bad Things Happen when
|
||
|
* that occurs.
|
||
|
*/
|
||
|
spin_lock(&ip->i_flags_lock);
|
||
|
if (offset + size > i_size_read(inode)) {
|
||
|
i_size_write(inode, offset + size);
|
||
|
spin_unlock(&ip->i_flags_lock);
|
||
|
error = xfs_setfilesize(ip, offset, size);
|
||
|
} else {
|
||
|
spin_unlock(&ip->i_flags_lock);
|
||
|
}
|
||
|
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* xfs_file_dio_aio_write - handle direct IO writes
|
||
|
*
|
||
|
* Lock the inode appropriately to prepare for and issue a direct IO write.
|
||
|
* By separating it from the buffered write path we remove all the tricky to
|
||
|
* follow locking changes and looping.
|
||
|
*
|
||
|
* If there are cached pages or we're extending the file, we need IOLOCK_EXCL
|
||
|
* until we're sure the bytes at the new EOF have been zeroed and/or the cached
|
||
|
* pages are flushed out.
|
||
|
*
|
||
|
* In most cases the direct IO writes will be done holding IOLOCK_SHARED
|
||
|
* allowing them to be done in parallel with reads and other direct IO writes.
|
||
|
* However, if the IO is not aligned to filesystem blocks, the direct IO layer
|
||
|
* needs to do sub-block zeroing and that requires serialisation against other
|
||
|
* direct IOs to the same block. In this case we need to serialise the
|
||
|
* submission of the unaligned IOs so that we don't get racing block zeroing in
|
||
|
* the dio layer. To avoid the problem with aio, we also need to wait for
|
||
|
* outstanding IOs to complete so that unwritten extent conversion is completed
|
||
|
* before we try to map the overlapping block. This is currently implemented by
|
||
|
* hitting it with a big hammer (i.e. inode_dio_wait()).
|
||
|
*
|
||
|
* Returns with locks held indicated by @iolock and errors indicated by
|
||
|
* negative return values.
|
||
|
*/
|
||
|
STATIC ssize_t
|
||
|
xfs_file_dio_aio_write(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *from)
|
||
|
{
|
||
|
struct file *file = iocb->ki_filp;
|
||
|
struct address_space *mapping = file->f_mapping;
|
||
|
struct inode *inode = mapping->host;
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
struct xfs_mount *mp = ip->i_mount;
|
||
|
ssize_t ret = 0;
|
||
|
int unaligned_io = 0;
|
||
|
int iolock;
|
||
|
size_t count = iov_iter_count(from);
|
||
|
struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
|
||
|
mp->m_rtdev_targp : mp->m_ddev_targp;
|
||
|
|
||
|
/* DIO must be aligned to device logical sector size */
|
||
|
if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* Don't take the exclusive iolock here unless the I/O is unaligned to
|
||
|
* the file system block size. We don't need to consider the EOF
|
||
|
* extension case here because xfs_file_aio_write_checks() will relock
|
||
|
* the inode as necessary for EOF zeroing cases and fill out the new
|
||
|
* inode size as appropriate.
|
||
|
*/
|
||
|
if ((iocb->ki_pos & mp->m_blockmask) ||
|
||
|
((iocb->ki_pos + count) & mp->m_blockmask)) {
|
||
|
unaligned_io = 1;
|
||
|
|
||
|
/*
|
||
|
* We can't properly handle unaligned direct I/O to reflink
|
||
|
* files yet, as we can't unshare a partial block.
|
||
|
*/
|
||
|
if (xfs_is_reflink_inode(ip)) {
|
||
|
trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
|
||
|
return -EREMCHG;
|
||
|
}
|
||
|
iolock = XFS_IOLOCK_EXCL;
|
||
|
} else {
|
||
|
iolock = XFS_IOLOCK_SHARED;
|
||
|
}
|
||
|
|
||
|
if (iocb->ki_flags & IOCB_NOWAIT) {
|
||
|
/* unaligned dio always waits, bail */
|
||
|
if (unaligned_io)
|
||
|
return -EAGAIN;
|
||
|
if (!xfs_ilock_nowait(ip, iolock))
|
||
|
return -EAGAIN;
|
||
|
} else {
|
||
|
xfs_ilock(ip, iolock);
|
||
|
}
|
||
|
|
||
|
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
count = iov_iter_count(from);
|
||
|
|
||
|
/*
|
||
|
* If we are doing unaligned IO, we can't allow any other overlapping IO
|
||
|
* in-flight at the same time or we risk data corruption. Wait for all
|
||
|
* other IO to drain before we submit. If the IO is aligned, demote the
|
||
|
* iolock if we had to take the exclusive lock in
|
||
|
* xfs_file_aio_write_checks() for other reasons.
|
||
|
*/
|
||
|
if (unaligned_io) {
|
||
|
inode_dio_wait(inode);
|
||
|
} else if (iolock == XFS_IOLOCK_EXCL) {
|
||
|
xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
|
||
|
iolock = XFS_IOLOCK_SHARED;
|
||
|
}
|
||
|
|
||
|
trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
|
||
|
ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
|
||
|
|
||
|
/*
|
||
|
* If unaligned, this is the only IO in-flight. If it has not yet
|
||
|
* completed, wait on it before we release the iolock to prevent
|
||
|
* subsequent overlapping IO.
|
||
|
*/
|
||
|
if (ret == -EIOCBQUEUED && unaligned_io)
|
||
|
inode_dio_wait(inode);
|
||
|
out:
|
||
|
xfs_iunlock(ip, iolock);
|
||
|
|
||
|
/*
|
||
|
* No fallback to buffered IO on errors for XFS, direct IO will either
|
||
|
* complete fully or fail.
|
||
|
*/
|
||
|
ASSERT(ret < 0 || ret == count);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static noinline ssize_t
|
||
|
xfs_file_dax_write(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *from)
|
||
|
{
|
||
|
struct inode *inode = iocb->ki_filp->f_mapping->host;
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
int iolock = XFS_IOLOCK_EXCL;
|
||
|
ssize_t ret, error = 0;
|
||
|
size_t count;
|
||
|
loff_t pos;
|
||
|
|
||
|
if (iocb->ki_flags & IOCB_NOWAIT) {
|
||
|
if (!xfs_ilock_nowait(ip, iolock))
|
||
|
return -EAGAIN;
|
||
|
} else {
|
||
|
xfs_ilock(ip, iolock);
|
||
|
}
|
||
|
|
||
|
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
pos = iocb->ki_pos;
|
||
|
count = iov_iter_count(from);
|
||
|
|
||
|
trace_xfs_file_dax_write(ip, count, pos);
|
||
|
ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
|
||
|
if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
|
||
|
i_size_write(inode, iocb->ki_pos);
|
||
|
error = xfs_setfilesize(ip, pos, ret);
|
||
|
}
|
||
|
out:
|
||
|
xfs_iunlock(ip, iolock);
|
||
|
if (error)
|
||
|
return error;
|
||
|
|
||
|
if (ret > 0) {
|
||
|
XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
|
||
|
|
||
|
/* Handle various SYNC-type writes */
|
||
|
ret = generic_write_sync(iocb, ret);
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
STATIC ssize_t
|
||
|
xfs_file_buffered_aio_write(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *from)
|
||
|
{
|
||
|
struct file *file = iocb->ki_filp;
|
||
|
struct address_space *mapping = file->f_mapping;
|
||
|
struct inode *inode = mapping->host;
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
ssize_t ret;
|
||
|
int enospc = 0;
|
||
|
int iolock;
|
||
|
|
||
|
if (iocb->ki_flags & IOCB_NOWAIT)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
write_retry:
|
||
|
iolock = XFS_IOLOCK_EXCL;
|
||
|
xfs_ilock(ip, iolock);
|
||
|
|
||
|
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
/* We can write back this queue in page reclaim */
|
||
|
current->backing_dev_info = inode_to_bdi(inode);
|
||
|
|
||
|
trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
|
||
|
ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
|
||
|
if (likely(ret >= 0))
|
||
|
iocb->ki_pos += ret;
|
||
|
|
||
|
/*
|
||
|
* If we hit a space limit, try to free up some lingering preallocated
|
||
|
* space before returning an error. In the case of ENOSPC, first try to
|
||
|
* write back all dirty inodes to free up some of the excess reserved
|
||
|
* metadata space. This reduces the chances that the eofblocks scan
|
||
|
* waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
|
||
|
* also behaves as a filter to prevent too many eofblocks scans from
|
||
|
* running at the same time.
|
||
|
*/
|
||
|
if (ret == -EDQUOT && !enospc) {
|
||
|
xfs_iunlock(ip, iolock);
|
||
|
enospc = xfs_inode_free_quota_eofblocks(ip);
|
||
|
if (enospc)
|
||
|
goto write_retry;
|
||
|
enospc = xfs_inode_free_quota_cowblocks(ip);
|
||
|
if (enospc)
|
||
|
goto write_retry;
|
||
|
iolock = 0;
|
||
|
} else if (ret == -ENOSPC && !enospc) {
|
||
|
struct xfs_eofblocks eofb = {0};
|
||
|
|
||
|
enospc = 1;
|
||
|
xfs_flush_inodes(ip->i_mount);
|
||
|
|
||
|
xfs_iunlock(ip, iolock);
|
||
|
eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
|
||
|
xfs_icache_free_eofblocks(ip->i_mount, &eofb);
|
||
|
xfs_icache_free_cowblocks(ip->i_mount, &eofb);
|
||
|
goto write_retry;
|
||
|
}
|
||
|
|
||
|
current->backing_dev_info = NULL;
|
||
|
out:
|
||
|
if (iolock)
|
||
|
xfs_iunlock(ip, iolock);
|
||
|
|
||
|
if (ret > 0) {
|
||
|
XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
|
||
|
/* Handle various SYNC-type writes */
|
||
|
ret = generic_write_sync(iocb, ret);
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
STATIC ssize_t
|
||
|
xfs_file_write_iter(
|
||
|
struct kiocb *iocb,
|
||
|
struct iov_iter *from)
|
||
|
{
|
||
|
struct file *file = iocb->ki_filp;
|
||
|
struct address_space *mapping = file->f_mapping;
|
||
|
struct inode *inode = mapping->host;
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
ssize_t ret;
|
||
|
size_t ocount = iov_iter_count(from);
|
||
|
|
||
|
XFS_STATS_INC(ip->i_mount, xs_write_calls);
|
||
|
|
||
|
if (ocount == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
||
|
return -EIO;
|
||
|
|
||
|
if (IS_DAX(inode))
|
||
|
return xfs_file_dax_write(iocb, from);
|
||
|
|
||
|
if (iocb->ki_flags & IOCB_DIRECT) {
|
||
|
/*
|
||
|
* Allow a directio write to fall back to a buffered
|
||
|
* write *only* in the case that we're doing a reflink
|
||
|
* CoW. In all other directio scenarios we do not
|
||
|
* allow an operation to fall back to buffered mode.
|
||
|
*/
|
||
|
ret = xfs_file_dio_aio_write(iocb, from);
|
||
|
if (ret != -EREMCHG)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return xfs_file_buffered_aio_write(iocb, from);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
xfs_wait_dax_page(
|
||
|
struct inode *inode)
|
||
|
{
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
|
||
|
xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
|
||
|
schedule();
|
||
|
xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xfs_break_dax_layouts(
|
||
|
struct inode *inode,
|
||
|
bool *retry)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
|
||
|
|
||
|
page = dax_layout_busy_page(inode->i_mapping);
|
||
|
if (!page)
|
||
|
return 0;
|
||
|
|
||
|
*retry = true;
|
||
|
return ___wait_var_event(&page->_refcount,
|
||
|
atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
|
||
|
0, 0, xfs_wait_dax_page(inode));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
xfs_break_layouts(
|
||
|
struct inode *inode,
|
||
|
uint *iolock,
|
||
|
enum layout_break_reason reason)
|
||
|
{
|
||
|
bool retry;
|
||
|
int error;
|
||
|
|
||
|
ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
|
||
|
|
||
|
do {
|
||
|
retry = false;
|
||
|
switch (reason) {
|
||
|
case BREAK_UNMAP:
|
||
|
error = xfs_break_dax_layouts(inode, &retry);
|
||
|
if (error || retry)
|
||
|
break;
|
||
|
/* fall through */
|
||
|
case BREAK_WRITE:
|
||
|
error = xfs_break_leased_layouts(inode, iolock, &retry);
|
||
|
break;
|
||
|
default:
|
||
|
WARN_ON_ONCE(1);
|
||
|
error = -EINVAL;
|
||
|
}
|
||
|
} while (error == 0 && retry);
|
||
|
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
#define XFS_FALLOC_FL_SUPPORTED \
|
||
|
(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
|
||
|
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
|
||
|
FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
|
||
|
|
||
|
STATIC long
|
||
|
xfs_file_fallocate(
|
||
|
struct file *file,
|
||
|
int mode,
|
||
|
loff_t offset,
|
||
|
loff_t len)
|
||
|
{
|
||
|
struct inode *inode = file_inode(file);
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
long error;
|
||
|
enum xfs_prealloc_flags flags = 0;
|
||
|
uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
|
||
|
loff_t new_size = 0;
|
||
|
bool do_file_insert = false;
|
||
|
|
||
|
if (!S_ISREG(inode->i_mode))
|
||
|
return -EINVAL;
|
||
|
if (mode & ~XFS_FALLOC_FL_SUPPORTED)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
xfs_ilock(ip, iolock);
|
||
|
error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
|
||
|
if (error)
|
||
|
goto out_unlock;
|
||
|
|
||
|
if (mode & FALLOC_FL_PUNCH_HOLE) {
|
||
|
error = xfs_free_file_space(ip, offset, len);
|
||
|
if (error)
|
||
|
goto out_unlock;
|
||
|
} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
|
||
|
unsigned int blksize_mask = i_blocksize(inode) - 1;
|
||
|
|
||
|
if (offset & blksize_mask || len & blksize_mask) {
|
||
|
error = -EINVAL;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* There is no need to overlap collapse range with EOF,
|
||
|
* in which case it is effectively a truncate operation
|
||
|
*/
|
||
|
if (offset + len >= i_size_read(inode)) {
|
||
|
error = -EINVAL;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
new_size = i_size_read(inode) - len;
|
||
|
|
||
|
error = xfs_collapse_file_space(ip, offset, len);
|
||
|
if (error)
|
||
|
goto out_unlock;
|
||
|
} else if (mode & FALLOC_FL_INSERT_RANGE) {
|
||
|
unsigned int blksize_mask = i_blocksize(inode) - 1;
|
||
|
loff_t isize = i_size_read(inode);
|
||
|
|
||
|
if (offset & blksize_mask || len & blksize_mask) {
|
||
|
error = -EINVAL;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* New inode size must not exceed ->s_maxbytes, accounting for
|
||
|
* possible signed overflow.
|
||
|
*/
|
||
|
if (inode->i_sb->s_maxbytes - isize < len) {
|
||
|
error = -EFBIG;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
new_size = isize + len;
|
||
|
|
||
|
/* Offset should be less than i_size */
|
||
|
if (offset >= isize) {
|
||
|
error = -EINVAL;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
do_file_insert = true;
|
||
|
} else {
|
||
|
flags |= XFS_PREALLOC_SET;
|
||
|
|
||
|
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
||
|
offset + len > i_size_read(inode)) {
|
||
|
new_size = offset + len;
|
||
|
error = inode_newsize_ok(inode, new_size);
|
||
|
if (error)
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
if (mode & FALLOC_FL_ZERO_RANGE)
|
||
|
error = xfs_zero_file_space(ip, offset, len);
|
||
|
else {
|
||
|
if (mode & FALLOC_FL_UNSHARE_RANGE) {
|
||
|
error = xfs_reflink_unshare(ip, offset, len);
|
||
|
if (error)
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
error = xfs_alloc_file_space(ip, offset, len,
|
||
|
XFS_BMAPI_PREALLOC);
|
||
|
}
|
||
|
if (error)
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
if (file->f_flags & O_DSYNC)
|
||
|
flags |= XFS_PREALLOC_SYNC;
|
||
|
|
||
|
error = xfs_update_prealloc_flags(ip, flags);
|
||
|
if (error)
|
||
|
goto out_unlock;
|
||
|
|
||
|
/* Change file size if needed */
|
||
|
if (new_size) {
|
||
|
struct iattr iattr;
|
||
|
|
||
|
iattr.ia_valid = ATTR_SIZE;
|
||
|
iattr.ia_size = new_size;
|
||
|
error = xfs_vn_setattr_size(file_dentry(file), &iattr);
|
||
|
if (error)
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Perform hole insertion now that the file size has been
|
||
|
* updated so that if we crash during the operation we don't
|
||
|
* leave shifted extents past EOF and hence losing access to
|
||
|
* the data that is contained within them.
|
||
|
*/
|
||
|
if (do_file_insert)
|
||
|
error = xfs_insert_file_space(ip, offset, len);
|
||
|
|
||
|
out_unlock:
|
||
|
xfs_iunlock(ip, iolock);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
STATIC int
|
||
|
xfs_file_clone_range(
|
||
|
struct file *file_in,
|
||
|
loff_t pos_in,
|
||
|
struct file *file_out,
|
||
|
loff_t pos_out,
|
||
|
u64 len)
|
||
|
{
|
||
|
return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
|
||
|
len, false);
|
||
|
}
|
||
|
|
||
|
STATIC int
|
||
|
xfs_file_dedupe_range(
|
||
|
struct file *file_in,
|
||
|
loff_t pos_in,
|
||
|
struct file *file_out,
|
||
|
loff_t pos_out,
|
||
|
u64 len)
|
||
|
{
|
||
|
return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
|
||
|
len, true);
|
||
|
}
|
||
|
|
||
|
STATIC int
|
||
|
xfs_file_open(
|
||
|
struct inode *inode,
|
||
|
struct file *file)
|
||
|
{
|
||
|
if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
|
||
|
return -EFBIG;
|
||
|
if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
|
||
|
return -EIO;
|
||
|
file->f_mode |= FMODE_NOWAIT;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
STATIC int
|
||
|
xfs_dir_open(
|
||
|
struct inode *inode,
|
||
|
struct file *file)
|
||
|
{
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
int mode;
|
||
|
int error;
|
||
|
|
||
|
error = xfs_file_open(inode, file);
|
||
|
if (error)
|
||
|
return error;
|
||
|
|
||
|
/*
|
||
|
* If there are any blocks, read-ahead block 0 as we're almost
|
||
|
* certain to have the next operation be a read there.
|
||
|
*/
|
||
|
mode = xfs_ilock_data_map_shared(ip);
|
||
|
if (ip->i_d.di_nextents > 0)
|
||
|
error = xfs_dir3_data_readahead(ip, 0, -1);
|
||
|
xfs_iunlock(ip, mode);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
STATIC int
|
||
|
xfs_file_release(
|
||
|
struct inode *inode,
|
||
|
struct file *filp)
|
||
|
{
|
||
|
return xfs_release(XFS_I(inode));
|
||
|
}
|
||
|
|
||
|
STATIC int
|
||
|
xfs_file_readdir(
|
||
|
struct file *file,
|
||
|
struct dir_context *ctx)
|
||
|
{
|
||
|
struct inode *inode = file_inode(file);
|
||
|
xfs_inode_t *ip = XFS_I(inode);
|
||
|
size_t bufsize;
|
||
|
|
||
|
/*
|
||
|
* The Linux API doesn't pass down the total size of the buffer
|
||
|
* we read into down to the filesystem. With the filldir concept
|
||
|
* it's not needed for correct information, but the XFS dir2 leaf
|
||
|
* code wants an estimate of the buffer size to calculate it's
|
||
|
* readahead window and size the buffers used for mapping to
|
||
|
* physical blocks.
|
||
|
*
|
||
|
* Try to give it an estimate that's good enough, maybe at some
|
||
|
* point we can change the ->readdir prototype to include the
|
||
|
* buffer size. For now we use the current glibc buffer size.
|
||
|
*/
|
||
|
bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
|
||
|
|
||
|
return xfs_readdir(NULL, ip, ctx, bufsize);
|
||
|
}
|
||
|
|
||
|
STATIC loff_t
|
||
|
xfs_file_llseek(
|
||
|
struct file *file,
|
||
|
loff_t offset,
|
||
|
int whence)
|
||
|
{
|
||
|
struct inode *inode = file->f_mapping->host;
|
||
|
|
||
|
if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
|
||
|
return -EIO;
|
||
|
|
||
|
switch (whence) {
|
||
|
default:
|
||
|
return generic_file_llseek(file, offset, whence);
|
||
|
case SEEK_HOLE:
|
||
|
offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
|
||
|
break;
|
||
|
case SEEK_DATA:
|
||
|
offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (offset < 0)
|
||
|
return offset;
|
||
|
return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Locking for serialisation of IO during page faults. This results in a lock
|
||
|
* ordering of:
|
||
|
*
|
||
|
* mmap_sem (MM)
|
||
|
* sb_start_pagefault(vfs, freeze)
|
||
|
* i_mmaplock (XFS - truncate serialisation)
|
||
|
* page_lock (MM)
|
||
|
* i_lock (XFS - extent map serialisation)
|
||
|
*/
|
||
|
static vm_fault_t
|
||
|
__xfs_filemap_fault(
|
||
|
struct vm_fault *vmf,
|
||
|
enum page_entry_size pe_size,
|
||
|
bool write_fault)
|
||
|
{
|
||
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
||
|
struct xfs_inode *ip = XFS_I(inode);
|
||
|
vm_fault_t ret;
|
||
|
|
||
|
trace_xfs_filemap_fault(ip, pe_size, write_fault);
|
||
|
|
||
|
if (write_fault) {
|
||
|
sb_start_pagefault(inode->i_sb);
|
||
|
file_update_time(vmf->vma->vm_file);
|
||
|
}
|
||
|
|
||
|
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
|
||
|
if (IS_DAX(inode)) {
|
||
|
pfn_t pfn;
|
||
|
|
||
|
ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
|
||
|
if (ret & VM_FAULT_NEEDDSYNC)
|
||
|
ret = dax_finish_sync_fault(vmf, pe_size, pfn);
|
||
|
} else {
|
||
|
if (write_fault)
|
||
|
ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
|
||
|
else
|
||
|
ret = filemap_fault(vmf);
|
||
|
}
|
||
|
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
|
||
|
|
||
|
if (write_fault)
|
||
|
sb_end_pagefault(inode->i_sb);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static inline bool
|
||
|
xfs_is_write_fault(
|
||
|
struct vm_fault *vmf)
|
||
|
{
|
||
|
return (vmf->flags & FAULT_FLAG_WRITE) &&
|
||
|
(vmf->vma->vm_flags & VM_SHARED);
|
||
|
}
|
||
|
|
||
|
static vm_fault_t
|
||
|
xfs_filemap_fault(
|
||
|
struct vm_fault *vmf)
|
||
|
{
|
||
|
/* DAX can shortcut the normal fault path on write faults! */
|
||
|
return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
|
||
|
IS_DAX(file_inode(vmf->vma->vm_file)) &&
|
||
|
xfs_is_write_fault(vmf));
|
||
|
}
|
||
|
|
||
|
static vm_fault_t
|
||
|
xfs_filemap_huge_fault(
|
||
|
struct vm_fault *vmf,
|
||
|
enum page_entry_size pe_size)
|
||
|
{
|
||
|
if (!IS_DAX(file_inode(vmf->vma->vm_file)))
|
||
|
return VM_FAULT_FALLBACK;
|
||
|
|
||
|
/* DAX can shortcut the normal fault path on write faults! */
|
||
|
return __xfs_filemap_fault(vmf, pe_size,
|
||
|
xfs_is_write_fault(vmf));
|
||
|
}
|
||
|
|
||
|
static vm_fault_t
|
||
|
xfs_filemap_page_mkwrite(
|
||
|
struct vm_fault *vmf)
|
||
|
{
|
||
|
return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* pfn_mkwrite was originally intended to ensure we capture time stamp updates
|
||
|
* on write faults. In reality, it needs to serialise against truncate and
|
||
|
* prepare memory for writing so handle is as standard write fault.
|
||
|
*/
|
||
|
static vm_fault_t
|
||
|
xfs_filemap_pfn_mkwrite(
|
||
|
struct vm_fault *vmf)
|
||
|
{
|
||
|
|
||
|
return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
|
||
|
}
|
||
|
|
||
|
static const struct vm_operations_struct xfs_file_vm_ops = {
|
||
|
.fault = xfs_filemap_fault,
|
||
|
.huge_fault = xfs_filemap_huge_fault,
|
||
|
.map_pages = filemap_map_pages,
|
||
|
.page_mkwrite = xfs_filemap_page_mkwrite,
|
||
|
.pfn_mkwrite = xfs_filemap_pfn_mkwrite,
|
||
|
};
|
||
|
|
||
|
STATIC int
|
||
|
xfs_file_mmap(
|
||
|
struct file *filp,
|
||
|
struct vm_area_struct *vma)
|
||
|
{
|
||
|
/*
|
||
|
* We don't support synchronous mappings for non-DAX files. At least
|
||
|
* until someone comes with a sensible use case.
|
||
|
*/
|
||
|
if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
file_accessed(filp);
|
||
|
vma->vm_ops = &xfs_file_vm_ops;
|
||
|
if (IS_DAX(file_inode(filp)))
|
||
|
vma->vm_flags |= VM_HUGEPAGE;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
const struct file_operations xfs_file_operations = {
|
||
|
.llseek = xfs_file_llseek,
|
||
|
.read_iter = xfs_file_read_iter,
|
||
|
.write_iter = xfs_file_write_iter,
|
||
|
.splice_read = generic_file_splice_read,
|
||
|
.splice_write = iter_file_splice_write,
|
||
|
.unlocked_ioctl = xfs_file_ioctl,
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
.compat_ioctl = xfs_file_compat_ioctl,
|
||
|
#endif
|
||
|
.mmap = xfs_file_mmap,
|
||
|
.mmap_supported_flags = MAP_SYNC,
|
||
|
.open = xfs_file_open,
|
||
|
.release = xfs_file_release,
|
||
|
.fsync = xfs_file_fsync,
|
||
|
.get_unmapped_area = thp_get_unmapped_area,
|
||
|
.fallocate = xfs_file_fallocate,
|
||
|
.clone_file_range = xfs_file_clone_range,
|
||
|
.dedupe_file_range = xfs_file_dedupe_range,
|
||
|
};
|
||
|
|
||
|
const struct file_operations xfs_dir_file_operations = {
|
||
|
.open = xfs_dir_open,
|
||
|
.read = generic_read_dir,
|
||
|
.iterate_shared = xfs_file_readdir,
|
||
|
.llseek = generic_file_llseek,
|
||
|
.unlocked_ioctl = xfs_file_ioctl,
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
.compat_ioctl = xfs_file_compat_ioctl,
|
||
|
#endif
|
||
|
.fsync = xfs_dir_fsync,
|
||
|
};
|