kernel_samsung_a34x-permissive/drivers/net/wireless/ath/wil6210/interrupt.c

923 lines
25 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/interrupt.h>
#include "wil6210.h"
#include "trace.h"
/**
* Theory of operation:
*
* There is ISR pseudo-cause register,
* dma_rgf->DMA_RGF.PSEUDO_CAUSE.PSEUDO_CAUSE
* Its bits represents OR'ed bits from 3 real ISR registers:
* TX, RX, and MISC.
*
* Registers may be configured to either "write 1 to clear" or
* "clear on read" mode
*
* When handling interrupt, one have to mask/unmask interrupts for the
* real ISR registers, or hardware may malfunction.
*
*/
#define WIL6210_IRQ_DISABLE (0xFFFFFFFFUL)
#define WIL6210_IRQ_DISABLE_NO_HALP (0xF7FFFFFFUL)
#define WIL6210_IMC_RX (BIT_DMA_EP_RX_ICR_RX_DONE | \
BIT_DMA_EP_RX_ICR_RX_HTRSH)
#define WIL6210_IMC_RX_NO_RX_HTRSH (WIL6210_IMC_RX & \
(~(BIT_DMA_EP_RX_ICR_RX_HTRSH)))
#define WIL6210_IMC_TX (BIT_DMA_EP_TX_ICR_TX_DONE | \
BIT_DMA_EP_TX_ICR_TX_DONE_N(0))
#define WIL6210_IMC_TX_EDMA BIT_TX_STATUS_IRQ
#define WIL6210_IMC_RX_EDMA BIT_RX_STATUS_IRQ
#define WIL6210_IMC_MISC_NO_HALP (ISR_MISC_FW_READY | \
ISR_MISC_MBOX_EVT | \
ISR_MISC_FW_ERROR)
#define WIL6210_IMC_MISC (WIL6210_IMC_MISC_NO_HALP | \
BIT_DMA_EP_MISC_ICR_HALP)
#define WIL6210_IRQ_PSEUDO_MASK (u32)(~(BIT_DMA_PSEUDO_CAUSE_RX | \
BIT_DMA_PSEUDO_CAUSE_TX | \
BIT_DMA_PSEUDO_CAUSE_MISC))
#if defined(CONFIG_WIL6210_ISR_COR)
/* configure to Clear-On-Read mode */
#define WIL_ICR_ICC_VALUE (0xFFFFFFFFUL)
#define WIL_ICR_ICC_MISC_VALUE (0xF7FFFFFFUL)
static inline void wil_icr_clear(u32 x, void __iomem *addr)
{
}
#else /* defined(CONFIG_WIL6210_ISR_COR) */
/* configure to Write-1-to-Clear mode */
#define WIL_ICR_ICC_VALUE (0UL)
#define WIL_ICR_ICC_MISC_VALUE (0UL)
static inline void wil_icr_clear(u32 x, void __iomem *addr)
{
writel(x, addr);
}
#endif /* defined(CONFIG_WIL6210_ISR_COR) */
static inline u32 wil_ioread32_and_clear(void __iomem *addr)
{
u32 x = readl(addr);
wil_icr_clear(x, addr);
return x;
}
static void wil6210_mask_irq_tx(struct wil6210_priv *wil)
{
wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMS),
WIL6210_IRQ_DISABLE);
}
static void wil6210_mask_irq_tx_edma(struct wil6210_priv *wil)
{
wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, IMS),
WIL6210_IRQ_DISABLE);
}
static void wil6210_mask_irq_rx(struct wil6210_priv *wil)
{
wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMS),
WIL6210_IRQ_DISABLE);
}
static void wil6210_mask_irq_rx_edma(struct wil6210_priv *wil)
{
wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, IMS),
WIL6210_IRQ_DISABLE);
}
static void wil6210_mask_irq_misc(struct wil6210_priv *wil, bool mask_halp)
{
wil_dbg_irq(wil, "mask_irq_misc: mask_halp(%s)\n",
mask_halp ? "true" : "false");
wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMS),
mask_halp ? WIL6210_IRQ_DISABLE : WIL6210_IRQ_DISABLE_NO_HALP);
}
void wil6210_mask_halp(struct wil6210_priv *wil)
{
wil_dbg_irq(wil, "mask_halp\n");
wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMS),
BIT_DMA_EP_MISC_ICR_HALP);
}
static void wil6210_mask_irq_pseudo(struct wil6210_priv *wil)
{
wil_dbg_irq(wil, "mask_irq_pseudo\n");
wil_w(wil, RGF_DMA_PSEUDO_CAUSE_MASK_SW, WIL6210_IRQ_DISABLE);
clear_bit(wil_status_irqen, wil->status);
}
void wil6210_unmask_irq_tx(struct wil6210_priv *wil)
{
wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMC),
WIL6210_IMC_TX);
}
void wil6210_unmask_irq_tx_edma(struct wil6210_priv *wil)
{
wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, IMC),
WIL6210_IMC_TX_EDMA);
}
void wil6210_unmask_irq_rx(struct wil6210_priv *wil)
{
bool unmask_rx_htrsh = atomic_read(&wil->connected_vifs) > 0;
wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMC),
unmask_rx_htrsh ? WIL6210_IMC_RX : WIL6210_IMC_RX_NO_RX_HTRSH);
}
void wil6210_unmask_irq_rx_edma(struct wil6210_priv *wil)
{
wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, IMC),
WIL6210_IMC_RX_EDMA);
}
static void wil6210_unmask_irq_misc(struct wil6210_priv *wil, bool unmask_halp)
{
wil_dbg_irq(wil, "unmask_irq_misc: unmask_halp(%s)\n",
unmask_halp ? "true" : "false");
wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMC),
unmask_halp ? WIL6210_IMC_MISC : WIL6210_IMC_MISC_NO_HALP);
}
static void wil6210_unmask_halp(struct wil6210_priv *wil)
{
wil_dbg_irq(wil, "unmask_halp\n");
wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMC),
BIT_DMA_EP_MISC_ICR_HALP);
}
static void wil6210_unmask_irq_pseudo(struct wil6210_priv *wil)
{
wil_dbg_irq(wil, "unmask_irq_pseudo\n");
set_bit(wil_status_irqen, wil->status);
wil_w(wil, RGF_DMA_PSEUDO_CAUSE_MASK_SW, WIL6210_IRQ_PSEUDO_MASK);
}
void wil_mask_irq(struct wil6210_priv *wil)
{
wil_dbg_irq(wil, "mask_irq\n");
wil6210_mask_irq_tx(wil);
wil6210_mask_irq_tx_edma(wil);
wil6210_mask_irq_rx(wil);
wil6210_mask_irq_rx_edma(wil);
wil6210_mask_irq_misc(wil, true);
wil6210_mask_irq_pseudo(wil);
}
void wil_unmask_irq(struct wil6210_priv *wil)
{
wil_dbg_irq(wil, "unmask_irq\n");
wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, ICC),
WIL_ICR_ICC_VALUE);
wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, ICC),
WIL_ICR_ICC_VALUE);
wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICC),
WIL_ICR_ICC_MISC_VALUE);
wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, ICC),
WIL_ICR_ICC_VALUE);
wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, ICC),
WIL_ICR_ICC_VALUE);
wil6210_unmask_irq_pseudo(wil);
if (wil->use_enhanced_dma_hw) {
wil6210_unmask_irq_tx_edma(wil);
wil6210_unmask_irq_rx_edma(wil);
} else {
wil6210_unmask_irq_tx(wil);
wil6210_unmask_irq_rx(wil);
}
wil6210_unmask_irq_misc(wil, true);
}
void wil_configure_interrupt_moderation_edma(struct wil6210_priv *wil)
{
u32 moderation;
wil_s(wil, RGF_INT_GEN_IDLE_TIME_LIMIT, WIL_EDMA_IDLE_TIME_LIMIT_USEC);
wil_s(wil, RGF_INT_GEN_TIME_UNIT_LIMIT, WIL_EDMA_TIME_UNIT_CLK_CYCLES);
/* Update RX and TX moderation */
moderation = wil->rx_max_burst_duration |
(WIL_EDMA_AGG_WATERMARK << WIL_EDMA_AGG_WATERMARK_POS);
wil_w(wil, RGF_INT_CTRL_INT_GEN_CFG_0, moderation);
wil_w(wil, RGF_INT_CTRL_INT_GEN_CFG_1, moderation);
/* Treat special events as regular
* (set bit 0 to 0x1 and clear bits 1-8)
*/
wil_c(wil, RGF_INT_COUNT_ON_SPECIAL_EVT, 0x1FE);
wil_s(wil, RGF_INT_COUNT_ON_SPECIAL_EVT, 0x1);
}
void wil_configure_interrupt_moderation(struct wil6210_priv *wil)
{
struct wireless_dev *wdev = wil->main_ndev->ieee80211_ptr;
wil_dbg_irq(wil, "configure_interrupt_moderation\n");
/* disable interrupt moderation for monitor
* to get better timestamp precision
*/
if (wdev->iftype == NL80211_IFTYPE_MONITOR)
return;
/* Disable and clear tx counter before (re)configuration */
wil_w(wil, RGF_DMA_ITR_TX_CNT_CTL, BIT_DMA_ITR_TX_CNT_CTL_CLR);
wil_w(wil, RGF_DMA_ITR_TX_CNT_TRSH, wil->tx_max_burst_duration);
wil_info(wil, "set ITR_TX_CNT_TRSH = %d usec\n",
wil->tx_max_burst_duration);
/* Configure TX max burst duration timer to use usec units */
wil_w(wil, RGF_DMA_ITR_TX_CNT_CTL,
BIT_DMA_ITR_TX_CNT_CTL_EN | BIT_DMA_ITR_TX_CNT_CTL_EXT_TIC_SEL);
/* Disable and clear tx idle counter before (re)configuration */
wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_CTL, BIT_DMA_ITR_TX_IDL_CNT_CTL_CLR);
wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_TRSH, wil->tx_interframe_timeout);
wil_info(wil, "set ITR_TX_IDL_CNT_TRSH = %d usec\n",
wil->tx_interframe_timeout);
/* Configure TX max burst duration timer to use usec units */
wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_CTL, BIT_DMA_ITR_TX_IDL_CNT_CTL_EN |
BIT_DMA_ITR_TX_IDL_CNT_CTL_EXT_TIC_SEL);
/* Disable and clear rx counter before (re)configuration */
wil_w(wil, RGF_DMA_ITR_RX_CNT_CTL, BIT_DMA_ITR_RX_CNT_CTL_CLR);
wil_w(wil, RGF_DMA_ITR_RX_CNT_TRSH, wil->rx_max_burst_duration);
wil_info(wil, "set ITR_RX_CNT_TRSH = %d usec\n",
wil->rx_max_burst_duration);
/* Configure TX max burst duration timer to use usec units */
wil_w(wil, RGF_DMA_ITR_RX_CNT_CTL,
BIT_DMA_ITR_RX_CNT_CTL_EN | BIT_DMA_ITR_RX_CNT_CTL_EXT_TIC_SEL);
/* Disable and clear rx idle counter before (re)configuration */
wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_CTL, BIT_DMA_ITR_RX_IDL_CNT_CTL_CLR);
wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_TRSH, wil->rx_interframe_timeout);
wil_info(wil, "set ITR_RX_IDL_CNT_TRSH = %d usec\n",
wil->rx_interframe_timeout);
/* Configure TX max burst duration timer to use usec units */
wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_CTL, BIT_DMA_ITR_RX_IDL_CNT_CTL_EN |
BIT_DMA_ITR_RX_IDL_CNT_CTL_EXT_TIC_SEL);
}
static irqreturn_t wil6210_irq_rx(int irq, void *cookie)
{
struct wil6210_priv *wil = cookie;
u32 isr;
bool need_unmask = true;
wil6210_mask_irq_rx(wil);
isr = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_RX_ICR) +
offsetof(struct RGF_ICR, ICR));
trace_wil6210_irq_rx(isr);
wil_dbg_irq(wil, "ISR RX 0x%08x\n", isr);
if (unlikely(!isr)) {
wil_err_ratelimited(wil, "spurious IRQ: RX\n");
wil6210_unmask_irq_rx(wil);
return IRQ_NONE;
}
/* RX_DONE and RX_HTRSH interrupts are the same if interrupt
* moderation is not used. Interrupt moderation may cause RX
* buffer overflow while RX_DONE is delayed. The required
* action is always the same - should empty the accumulated
* packets from the RX ring.
*/
if (likely(isr & (BIT_DMA_EP_RX_ICR_RX_DONE |
BIT_DMA_EP_RX_ICR_RX_HTRSH))) {
wil_dbg_irq(wil, "RX done / RX_HTRSH received, ISR (0x%x)\n",
isr);
isr &= ~(BIT_DMA_EP_RX_ICR_RX_DONE |
BIT_DMA_EP_RX_ICR_RX_HTRSH);
if (likely(test_bit(wil_status_fwready, wil->status))) {
if (likely(test_bit(wil_status_napi_en, wil->status))) {
wil_dbg_txrx(wil, "NAPI(Rx) schedule\n");
need_unmask = false;
napi_schedule(&wil->napi_rx);
} else {
wil_err_ratelimited(
wil,
"Got Rx interrupt while stopping interface\n");
}
} else {
wil_err_ratelimited(wil, "Got Rx interrupt while in reset\n");
}
}
if (unlikely(isr))
wil_err(wil, "un-handled RX ISR bits 0x%08x\n", isr);
/* Rx IRQ will be enabled when NAPI processing finished */
atomic_inc(&wil->isr_count_rx);
if (unlikely(need_unmask))
wil6210_unmask_irq_rx(wil);
return IRQ_HANDLED;
}
static irqreturn_t wil6210_irq_rx_edma(int irq, void *cookie)
{
struct wil6210_priv *wil = cookie;
u32 isr;
bool need_unmask = true;
wil6210_mask_irq_rx_edma(wil);
isr = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_INT_GEN_RX_ICR) +
offsetof(struct RGF_ICR, ICR));
trace_wil6210_irq_rx(isr);
wil_dbg_irq(wil, "ISR RX 0x%08x\n", isr);
if (unlikely(!isr)) {
wil_err(wil, "spurious IRQ: RX\n");
wil6210_unmask_irq_rx_edma(wil);
return IRQ_NONE;
}
if (likely(isr & BIT_RX_STATUS_IRQ)) {
wil_dbg_irq(wil, "RX status ring\n");
isr &= ~BIT_RX_STATUS_IRQ;
if (likely(test_bit(wil_status_fwready, wil->status))) {
if (likely(test_bit(wil_status_napi_en, wil->status))) {
wil_dbg_txrx(wil, "NAPI(Rx) schedule\n");
need_unmask = false;
napi_schedule(&wil->napi_rx);
} else {
wil_err(wil,
"Got Rx interrupt while stopping interface\n");
}
} else {
wil_err(wil, "Got Rx interrupt while in reset\n");
}
}
if (unlikely(isr))
wil_err(wil, "un-handled RX ISR bits 0x%08x\n", isr);
/* Rx IRQ will be enabled when NAPI processing finished */
atomic_inc(&wil->isr_count_rx);
if (unlikely(need_unmask))
wil6210_unmask_irq_rx_edma(wil);
return IRQ_HANDLED;
}
static irqreturn_t wil6210_irq_tx_edma(int irq, void *cookie)
{
struct wil6210_priv *wil = cookie;
u32 isr;
bool need_unmask = true;
wil6210_mask_irq_tx_edma(wil);
isr = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_INT_GEN_TX_ICR) +
offsetof(struct RGF_ICR, ICR));
trace_wil6210_irq_tx(isr);
wil_dbg_irq(wil, "ISR TX 0x%08x\n", isr);
if (unlikely(!isr)) {
wil_err(wil, "spurious IRQ: TX\n");
wil6210_unmask_irq_tx_edma(wil);
return IRQ_NONE;
}
if (likely(isr & BIT_TX_STATUS_IRQ)) {
wil_dbg_irq(wil, "TX status ring\n");
isr &= ~BIT_TX_STATUS_IRQ;
if (likely(test_bit(wil_status_fwready, wil->status))) {
wil_dbg_txrx(wil, "NAPI(Tx) schedule\n");
need_unmask = false;
napi_schedule(&wil->napi_tx);
} else {
wil_err(wil, "Got Tx status ring IRQ while in reset\n");
}
}
if (unlikely(isr))
wil_err(wil, "un-handled TX ISR bits 0x%08x\n", isr);
/* Tx IRQ will be enabled when NAPI processing finished */
atomic_inc(&wil->isr_count_tx);
if (unlikely(need_unmask))
wil6210_unmask_irq_tx_edma(wil);
return IRQ_HANDLED;
}
static irqreturn_t wil6210_irq_tx(int irq, void *cookie)
{
struct wil6210_priv *wil = cookie;
u32 isr;
bool need_unmask = true;
wil6210_mask_irq_tx(wil);
isr = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_TX_ICR) +
offsetof(struct RGF_ICR, ICR));
trace_wil6210_irq_tx(isr);
wil_dbg_irq(wil, "ISR TX 0x%08x\n", isr);
if (unlikely(!isr)) {
wil_err_ratelimited(wil, "spurious IRQ: TX\n");
wil6210_unmask_irq_tx(wil);
return IRQ_NONE;
}
if (likely(isr & BIT_DMA_EP_TX_ICR_TX_DONE)) {
wil_dbg_irq(wil, "TX done\n");
isr &= ~BIT_DMA_EP_TX_ICR_TX_DONE;
/* clear also all VRING interrupts */
isr &= ~(BIT(25) - 1UL);
if (likely(test_bit(wil_status_fwready, wil->status))) {
wil_dbg_txrx(wil, "NAPI(Tx) schedule\n");
need_unmask = false;
napi_schedule(&wil->napi_tx);
} else {
wil_err_ratelimited(wil, "Got Tx interrupt while in reset\n");
}
}
if (unlikely(isr))
wil_err_ratelimited(wil, "un-handled TX ISR bits 0x%08x\n",
isr);
/* Tx IRQ will be enabled when NAPI processing finished */
atomic_inc(&wil->isr_count_tx);
if (unlikely(need_unmask))
wil6210_unmask_irq_tx(wil);
return IRQ_HANDLED;
}
static void wil_notify_fw_error(struct wil6210_priv *wil)
{
struct device *dev = &wil->main_ndev->dev;
char *envp[3] = {
[0] = "SOURCE=wil6210",
[1] = "EVENT=FW_ERROR",
[2] = NULL,
};
wil_err(wil, "Notify about firmware error\n");
kobject_uevent_env(&dev->kobj, KOBJ_CHANGE, envp);
}
static void wil_cache_mbox_regs(struct wil6210_priv *wil)
{
/* make shadow copy of registers that should not change on run time */
wil_memcpy_fromio_32(&wil->mbox_ctl, wil->csr + HOST_MBOX,
sizeof(struct wil6210_mbox_ctl));
wil_mbox_ring_le2cpus(&wil->mbox_ctl.rx);
wil_mbox_ring_le2cpus(&wil->mbox_ctl.tx);
}
static bool wil_validate_mbox_regs(struct wil6210_priv *wil)
{
size_t min_size = sizeof(struct wil6210_mbox_hdr) +
sizeof(struct wmi_cmd_hdr);
if (wil->mbox_ctl.rx.entry_size < min_size) {
wil_err(wil, "rx mbox entry too small (%d)\n",
wil->mbox_ctl.rx.entry_size);
return false;
}
if (wil->mbox_ctl.tx.entry_size < min_size) {
wil_err(wil, "tx mbox entry too small (%d)\n",
wil->mbox_ctl.tx.entry_size);
return false;
}
return true;
}
static irqreturn_t wil6210_irq_misc(int irq, void *cookie)
{
struct wil6210_priv *wil = cookie;
u32 isr;
wil6210_mask_irq_misc(wil, false);
isr = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_MISC_ICR) +
offsetof(struct RGF_ICR, ICR));
trace_wil6210_irq_misc(isr);
wil_dbg_irq(wil, "ISR MISC 0x%08x\n", isr);
if (!isr) {
wil_err(wil, "spurious IRQ: MISC\n");
wil6210_unmask_irq_misc(wil, false);
return IRQ_NONE;
}
if (isr & ISR_MISC_FW_ERROR) {
u32 fw_assert_code = wil_r(wil, wil->rgf_fw_assert_code_addr);
u32 ucode_assert_code =
wil_r(wil, wil->rgf_ucode_assert_code_addr);
wil_err(wil,
"Firmware error detected, assert codes FW 0x%08x, UCODE 0x%08x\n",
fw_assert_code, ucode_assert_code);
clear_bit(wil_status_fwready, wil->status);
/*
* do not clear @isr here - we do 2-nd part in thread
* there, user space get notified, and it should be done
* in non-atomic context
*/
}
if (isr & ISR_MISC_FW_READY) {
wil_dbg_irq(wil, "IRQ: FW ready\n");
wil_cache_mbox_regs(wil);
if (wil_validate_mbox_regs(wil))
set_bit(wil_status_mbox_ready, wil->status);
/**
* Actual FW ready indicated by the
* WMI_FW_READY_EVENTID
*/
isr &= ~ISR_MISC_FW_READY;
}
if (isr & BIT_DMA_EP_MISC_ICR_HALP) {
isr &= ~BIT_DMA_EP_MISC_ICR_HALP;
if (wil->halp.handle_icr) {
/* no need to handle HALP ICRs until next vote */
wil->halp.handle_icr = false;
wil_dbg_irq(wil, "irq_misc: HALP IRQ invoked\n");
wil6210_mask_halp(wil);
complete(&wil->halp.comp);
}
}
wil->isr_misc = isr;
if (isr) {
return IRQ_WAKE_THREAD;
} else {
wil6210_unmask_irq_misc(wil, false);
return IRQ_HANDLED;
}
}
static irqreturn_t wil6210_irq_misc_thread(int irq, void *cookie)
{
struct wil6210_priv *wil = cookie;
u32 isr = wil->isr_misc;
trace_wil6210_irq_misc_thread(isr);
wil_dbg_irq(wil, "Thread ISR MISC 0x%08x\n", isr);
if (isr & ISR_MISC_FW_ERROR) {
wil->recovery_state = fw_recovery_pending;
wil_fw_core_dump(wil);
wil_notify_fw_error(wil);
isr &= ~ISR_MISC_FW_ERROR;
if (wil->platform_ops.notify) {
wil_err(wil, "notify platform driver about FW crash");
wil->platform_ops.notify(wil->platform_handle,
WIL_PLATFORM_EVT_FW_CRASH);
} else {
wil_fw_error_recovery(wil);
}
}
if (isr & ISR_MISC_MBOX_EVT) {
wil_dbg_irq(wil, "MBOX event\n");
wmi_recv_cmd(wil);
isr &= ~ISR_MISC_MBOX_EVT;
}
if (isr)
wil_dbg_irq(wil, "un-handled MISC ISR bits 0x%08x\n", isr);
wil->isr_misc = 0;
wil6210_unmask_irq_misc(wil, false);
/* in non-triple MSI case, this is done inside wil6210_thread_irq
* because it has to be done after unmasking the pseudo.
*/
if (wil->n_msi == 3 && wil->suspend_resp_rcvd) {
wil_dbg_irq(wil, "set suspend_resp_comp to true\n");
wil->suspend_resp_comp = true;
wake_up_interruptible(&wil->wq);
}
return IRQ_HANDLED;
}
/**
* thread IRQ handler
*/
static irqreturn_t wil6210_thread_irq(int irq, void *cookie)
{
struct wil6210_priv *wil = cookie;
wil_dbg_irq(wil, "Thread IRQ\n");
/* Discover real IRQ cause */
if (wil->isr_misc)
wil6210_irq_misc_thread(irq, cookie);
wil6210_unmask_irq_pseudo(wil);
if (wil->suspend_resp_rcvd) {
wil_dbg_irq(wil, "set suspend_resp_comp to true\n");
wil->suspend_resp_comp = true;
wake_up_interruptible(&wil->wq);
}
return IRQ_HANDLED;
}
/* DEBUG
* There is subtle bug in hardware that causes IRQ to raise when it should be
* masked. It is quite rare and hard to debug.
*
* Catch irq issue if it happens and print all I can.
*/
static int wil6210_debug_irq_mask(struct wil6210_priv *wil, u32 pseudo_cause)
{
u32 icm_rx, icr_rx, imv_rx;
u32 icm_tx, icr_tx, imv_tx;
u32 icm_misc, icr_misc, imv_misc;
if (!test_bit(wil_status_irqen, wil->status)) {
if (wil->use_enhanced_dma_hw) {
icm_rx = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_INT_GEN_RX_ICR) +
offsetof(struct RGF_ICR, ICM));
icr_rx = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_INT_GEN_RX_ICR) +
offsetof(struct RGF_ICR, ICR));
imv_rx = wil_r(wil, RGF_INT_GEN_RX_ICR +
offsetof(struct RGF_ICR, IMV));
icm_tx = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_INT_GEN_TX_ICR) +
offsetof(struct RGF_ICR, ICM));
icr_tx = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_INT_GEN_TX_ICR) +
offsetof(struct RGF_ICR, ICR));
imv_tx = wil_r(wil, RGF_INT_GEN_TX_ICR +
offsetof(struct RGF_ICR, IMV));
} else {
icm_rx = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_RX_ICR) +
offsetof(struct RGF_ICR, ICM));
icr_rx = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_RX_ICR) +
offsetof(struct RGF_ICR, ICR));
imv_rx = wil_r(wil, RGF_DMA_EP_RX_ICR +
offsetof(struct RGF_ICR, IMV));
icm_tx = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_TX_ICR) +
offsetof(struct RGF_ICR, ICM));
icr_tx = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_TX_ICR) +
offsetof(struct RGF_ICR, ICR));
imv_tx = wil_r(wil, RGF_DMA_EP_TX_ICR +
offsetof(struct RGF_ICR, IMV));
}
icm_misc = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_MISC_ICR) +
offsetof(struct RGF_ICR, ICM));
icr_misc = wil_ioread32_and_clear(wil->csr +
HOSTADDR(RGF_DMA_EP_MISC_ICR) +
offsetof(struct RGF_ICR, ICR));
imv_misc = wil_r(wil, RGF_DMA_EP_MISC_ICR +
offsetof(struct RGF_ICR, IMV));
/* HALP interrupt can be unmasked when misc interrupts are
* masked
*/
if (icr_misc & BIT_DMA_EP_MISC_ICR_HALP)
return 0;
wil_err(wil, "IRQ when it should be masked: pseudo 0x%08x\n"
"Rx icm:icr:imv 0x%08x 0x%08x 0x%08x\n"
"Tx icm:icr:imv 0x%08x 0x%08x 0x%08x\n"
"Misc icm:icr:imv 0x%08x 0x%08x 0x%08x\n",
pseudo_cause,
icm_rx, icr_rx, imv_rx,
icm_tx, icr_tx, imv_tx,
icm_misc, icr_misc, imv_misc);
return -EINVAL;
}
return 0;
}
static irqreturn_t wil6210_hardirq(int irq, void *cookie)
{
irqreturn_t rc = IRQ_HANDLED;
struct wil6210_priv *wil = cookie;
u32 pseudo_cause = wil_r(wil, RGF_DMA_PSEUDO_CAUSE);
/**
* pseudo_cause is Clear-On-Read, no need to ACK
*/
if (unlikely((pseudo_cause == 0) || ((pseudo_cause & 0xff) == 0xff)))
return IRQ_NONE;
/* IRQ mask debug */
if (unlikely(wil6210_debug_irq_mask(wil, pseudo_cause)))
return IRQ_NONE;
trace_wil6210_irq_pseudo(pseudo_cause);
wil_dbg_irq(wil, "Pseudo IRQ 0x%08x\n", pseudo_cause);
wil6210_mask_irq_pseudo(wil);
/* Discover real IRQ cause
* There are 2 possible phases for every IRQ:
* - hard IRQ handler called right here
* - threaded handler called later
*
* Hard IRQ handler reads and clears ISR.
*
* If threaded handler requested, hard IRQ handler
* returns IRQ_WAKE_THREAD and saves ISR register value
* for the threaded handler use.
*
* voting for wake thread - need at least 1 vote
*/
if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_RX) &&
(wil->txrx_ops.irq_rx(irq, cookie) == IRQ_WAKE_THREAD))
rc = IRQ_WAKE_THREAD;
if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_TX) &&
(wil->txrx_ops.irq_tx(irq, cookie) == IRQ_WAKE_THREAD))
rc = IRQ_WAKE_THREAD;
if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_MISC) &&
(wil6210_irq_misc(irq, cookie) == IRQ_WAKE_THREAD))
rc = IRQ_WAKE_THREAD;
/* if thread is requested, it will unmask IRQ */
if (rc != IRQ_WAKE_THREAD)
wil6210_unmask_irq_pseudo(wil);
return rc;
}
static int wil6210_request_3msi(struct wil6210_priv *wil, int irq)
{
int rc;
/* IRQ's are in the following order:
* - Tx
* - Rx
* - Misc
*/
rc = request_irq(irq, wil->txrx_ops.irq_tx, IRQF_SHARED,
WIL_NAME "_tx", wil);
if (rc)
return rc;
rc = request_irq(irq + 1, wil->txrx_ops.irq_rx, IRQF_SHARED,
WIL_NAME "_rx", wil);
if (rc)
goto free0;
rc = request_threaded_irq(irq + 2, wil6210_irq_misc,
wil6210_irq_misc_thread,
IRQF_SHARED, WIL_NAME "_misc", wil);
if (rc)
goto free1;
return 0;
free1:
free_irq(irq + 1, wil);
free0:
free_irq(irq, wil);
return rc;
}
/* can't use wil_ioread32_and_clear because ICC value is not set yet */
static inline void wil_clear32(void __iomem *addr)
{
u32 x = readl(addr);
writel(x, addr);
}
void wil6210_clear_irq(struct wil6210_priv *wil)
{
wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_RX_ICR) +
offsetof(struct RGF_ICR, ICR));
wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_TX_ICR) +
offsetof(struct RGF_ICR, ICR));
wil_clear32(wil->csr + HOSTADDR(RGF_INT_GEN_RX_ICR) +
offsetof(struct RGF_ICR, ICR));
wil_clear32(wil->csr + HOSTADDR(RGF_INT_GEN_TX_ICR) +
offsetof(struct RGF_ICR, ICR));
wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_MISC_ICR) +
offsetof(struct RGF_ICR, ICR));
wmb(); /* make sure write completed */
}
void wil6210_set_halp(struct wil6210_priv *wil)
{
wil_dbg_irq(wil, "set_halp\n");
wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICS),
BIT_DMA_EP_MISC_ICR_HALP);
}
void wil6210_clear_halp(struct wil6210_priv *wil)
{
wil_dbg_irq(wil, "clear_halp\n");
wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICR),
BIT_DMA_EP_MISC_ICR_HALP);
wil6210_unmask_halp(wil);
}
int wil6210_init_irq(struct wil6210_priv *wil, int irq)
{
int rc;
wil_dbg_misc(wil, "init_irq: %s, n_msi=%d\n",
wil->n_msi ? "MSI" : "INTx", wil->n_msi);
if (wil->use_enhanced_dma_hw) {
wil->txrx_ops.irq_tx = wil6210_irq_tx_edma;
wil->txrx_ops.irq_rx = wil6210_irq_rx_edma;
} else {
wil->txrx_ops.irq_tx = wil6210_irq_tx;
wil->txrx_ops.irq_rx = wil6210_irq_rx;
}
if (wil->n_msi == 3)
rc = wil6210_request_3msi(wil, irq);
else
rc = request_threaded_irq(irq, wil6210_hardirq,
wil6210_thread_irq,
wil->n_msi ? 0 : IRQF_SHARED,
WIL_NAME, wil);
return rc;
}
void wil6210_fini_irq(struct wil6210_priv *wil, int irq)
{
wil_dbg_misc(wil, "fini_irq:\n");
wil_mask_irq(wil);
free_irq(irq, wil);
if (wil->n_msi == 3) {
free_irq(irq + 1, wil);
free_irq(irq + 2, wil);
}
}