283 lines
7.4 KiB
C
283 lines
7.4 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* linux/arch/parisc/kernel/time.c
|
||
|
*
|
||
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
||
|
* Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
|
||
|
* Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
|
||
|
*
|
||
|
* 1994-07-02 Alan Modra
|
||
|
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
|
||
|
* 1998-12-20 Updated NTP code according to technical memorandum Jan '96
|
||
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
||
|
*/
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/rtc.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/sched/clock.h>
|
||
|
#include <linux/sched_clock.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/param.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/time.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/profile.h>
|
||
|
#include <linux/clocksource.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/ftrace.h>
|
||
|
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/param.h>
|
||
|
#include <asm/pdc.h>
|
||
|
#include <asm/led.h>
|
||
|
|
||
|
#include <linux/timex.h>
|
||
|
|
||
|
static unsigned long clocktick __read_mostly; /* timer cycles per tick */
|
||
|
|
||
|
/*
|
||
|
* We keep time on PA-RISC Linux by using the Interval Timer which is
|
||
|
* a pair of registers; one is read-only and one is write-only; both
|
||
|
* accessed through CR16. The read-only register is 32 or 64 bits wide,
|
||
|
* and increments by 1 every CPU clock tick. The architecture only
|
||
|
* guarantees us a rate between 0.5 and 2, but all implementations use a
|
||
|
* rate of 1. The write-only register is 32-bits wide. When the lowest
|
||
|
* 32 bits of the read-only register compare equal to the write-only
|
||
|
* register, it raises a maskable external interrupt. Each processor has
|
||
|
* an Interval Timer of its own and they are not synchronised.
|
||
|
*
|
||
|
* We want to generate an interrupt every 1/HZ seconds. So we program
|
||
|
* CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
|
||
|
* is programmed with the intended time of the next tick. We can be
|
||
|
* held off for an arbitrarily long period of time by interrupts being
|
||
|
* disabled, so we may miss one or more ticks.
|
||
|
*/
|
||
|
irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
unsigned long now;
|
||
|
unsigned long next_tick;
|
||
|
unsigned long ticks_elapsed = 0;
|
||
|
unsigned int cpu = smp_processor_id();
|
||
|
struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
|
||
|
|
||
|
/* gcc can optimize for "read-only" case with a local clocktick */
|
||
|
unsigned long cpt = clocktick;
|
||
|
|
||
|
profile_tick(CPU_PROFILING);
|
||
|
|
||
|
/* Initialize next_tick to the old expected tick time. */
|
||
|
next_tick = cpuinfo->it_value;
|
||
|
|
||
|
/* Calculate how many ticks have elapsed. */
|
||
|
now = mfctl(16);
|
||
|
do {
|
||
|
++ticks_elapsed;
|
||
|
next_tick += cpt;
|
||
|
} while (next_tick - now > cpt);
|
||
|
|
||
|
/* Store (in CR16 cycles) up to when we are accounting right now. */
|
||
|
cpuinfo->it_value = next_tick;
|
||
|
|
||
|
/* Go do system house keeping. */
|
||
|
if (cpu == 0)
|
||
|
xtime_update(ticks_elapsed);
|
||
|
|
||
|
update_process_times(user_mode(get_irq_regs()));
|
||
|
|
||
|
/* Skip clockticks on purpose if we know we would miss those.
|
||
|
* The new CR16 must be "later" than current CR16 otherwise
|
||
|
* itimer would not fire until CR16 wrapped - e.g 4 seconds
|
||
|
* later on a 1Ghz processor. We'll account for the missed
|
||
|
* ticks on the next timer interrupt.
|
||
|
* We want IT to fire modulo clocktick even if we miss/skip some.
|
||
|
* But those interrupts don't in fact get delivered that regularly.
|
||
|
*
|
||
|
* "next_tick - now" will always give the difference regardless
|
||
|
* if one or the other wrapped. If "now" is "bigger" we'll end up
|
||
|
* with a very large unsigned number.
|
||
|
*/
|
||
|
now = mfctl(16);
|
||
|
while (next_tick - now > cpt)
|
||
|
next_tick += cpt;
|
||
|
|
||
|
/* Program the IT when to deliver the next interrupt.
|
||
|
* Only bottom 32-bits of next_tick are writable in CR16!
|
||
|
* Timer interrupt will be delivered at least a few hundred cycles
|
||
|
* after the IT fires, so if we are too close (<= 8000 cycles) to the
|
||
|
* next cycle, simply skip it.
|
||
|
*/
|
||
|
if (next_tick - now <= 8000)
|
||
|
next_tick += cpt;
|
||
|
mtctl(next_tick, 16);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
|
||
|
unsigned long profile_pc(struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long pc = instruction_pointer(regs);
|
||
|
|
||
|
if (regs->gr[0] & PSW_N)
|
||
|
pc -= 4;
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
if (in_lock_functions(pc))
|
||
|
pc = regs->gr[2];
|
||
|
#endif
|
||
|
|
||
|
return pc;
|
||
|
}
|
||
|
EXPORT_SYMBOL(profile_pc);
|
||
|
|
||
|
|
||
|
/* clock source code */
|
||
|
|
||
|
static u64 notrace read_cr16(struct clocksource *cs)
|
||
|
{
|
||
|
return get_cycles();
|
||
|
}
|
||
|
|
||
|
static struct clocksource clocksource_cr16 = {
|
||
|
.name = "cr16",
|
||
|
.rating = 300,
|
||
|
.read = read_cr16,
|
||
|
.mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
|
||
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||
|
};
|
||
|
|
||
|
void __init start_cpu_itimer(void)
|
||
|
{
|
||
|
unsigned int cpu = smp_processor_id();
|
||
|
unsigned long next_tick = mfctl(16) + clocktick;
|
||
|
|
||
|
mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
|
||
|
|
||
|
per_cpu(cpu_data, cpu).it_value = next_tick;
|
||
|
}
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
|
||
|
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
|
||
|
{
|
||
|
struct pdc_tod tod_data;
|
||
|
|
||
|
memset(tm, 0, sizeof(*tm));
|
||
|
if (pdc_tod_read(&tod_data) < 0)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
/* we treat tod_sec as unsigned, so this can work until year 2106 */
|
||
|
rtc_time64_to_tm(tod_data.tod_sec, tm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
|
||
|
{
|
||
|
time64_t secs = rtc_tm_to_time64(tm);
|
||
|
|
||
|
if (pdc_tod_set(secs, 0) < 0)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct rtc_class_ops rtc_generic_ops = {
|
||
|
.read_time = rtc_generic_get_time,
|
||
|
.set_time = rtc_generic_set_time,
|
||
|
};
|
||
|
|
||
|
static int __init rtc_init(void)
|
||
|
{
|
||
|
struct platform_device *pdev;
|
||
|
|
||
|
pdev = platform_device_register_data(NULL, "rtc-generic", -1,
|
||
|
&rtc_generic_ops,
|
||
|
sizeof(rtc_generic_ops));
|
||
|
|
||
|
return PTR_ERR_OR_ZERO(pdev);
|
||
|
}
|
||
|
device_initcall(rtc_init);
|
||
|
#endif
|
||
|
|
||
|
void read_persistent_clock64(struct timespec64 *ts)
|
||
|
{
|
||
|
static struct pdc_tod tod_data;
|
||
|
if (pdc_tod_read(&tod_data) == 0) {
|
||
|
ts->tv_sec = tod_data.tod_sec;
|
||
|
ts->tv_nsec = tod_data.tod_usec * 1000;
|
||
|
} else {
|
||
|
printk(KERN_ERR "Error reading tod clock\n");
|
||
|
ts->tv_sec = 0;
|
||
|
ts->tv_nsec = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static u64 notrace read_cr16_sched_clock(void)
|
||
|
{
|
||
|
return get_cycles();
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* timer interrupt and sched_clock() initialization
|
||
|
*/
|
||
|
|
||
|
void __init time_init(void)
|
||
|
{
|
||
|
unsigned long cr16_hz;
|
||
|
|
||
|
clocktick = (100 * PAGE0->mem_10msec) / HZ;
|
||
|
start_cpu_itimer(); /* get CPU 0 started */
|
||
|
|
||
|
cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */
|
||
|
|
||
|
/* register as sched_clock source */
|
||
|
sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
|
||
|
}
|
||
|
|
||
|
static int __init init_cr16_clocksource(void)
|
||
|
{
|
||
|
/*
|
||
|
* The cr16 interval timers are not syncronized across CPUs on
|
||
|
* different sockets, so mark them unstable and lower rating on
|
||
|
* multi-socket SMP systems.
|
||
|
*/
|
||
|
if (num_online_cpus() > 1 && !running_on_qemu) {
|
||
|
int cpu;
|
||
|
unsigned long cpu0_loc;
|
||
|
cpu0_loc = per_cpu(cpu_data, 0).cpu_loc;
|
||
|
|
||
|
for_each_online_cpu(cpu) {
|
||
|
if (cpu == 0)
|
||
|
continue;
|
||
|
if ((cpu0_loc != 0) &&
|
||
|
(cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc))
|
||
|
continue;
|
||
|
|
||
|
clocksource_cr16.name = "cr16_unstable";
|
||
|
clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
|
||
|
clocksource_cr16.rating = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* XXX: We may want to mark sched_clock stable here if cr16 clocks are
|
||
|
* in sync:
|
||
|
* (clocksource_cr16.flags == CLOCK_SOURCE_IS_CONTINUOUS) */
|
||
|
|
||
|
/* register at clocksource framework */
|
||
|
clocksource_register_hz(&clocksource_cr16,
|
||
|
100 * PAGE0->mem_10msec);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
device_initcall(init_cr16_clocksource);
|