160 lines
5.1 KiB
C
160 lines
5.1 KiB
C
|
/*
|
||
|
* Copyright (C) 2013, 2014 Linaro Ltd; <roy.franz@linaro.org>
|
||
|
*
|
||
|
* This file implements the EFI boot stub for the arm64 kernel.
|
||
|
* Adapted from ARM version by Mark Salter <msalter@redhat.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* To prevent the compiler from emitting GOT-indirected (and thus absolute)
|
||
|
* references to the section markers, override their visibility as 'hidden'
|
||
|
*/
|
||
|
#pragma GCC visibility push(hidden)
|
||
|
#include <asm/sections.h>
|
||
|
#pragma GCC visibility pop
|
||
|
|
||
|
#include <linux/efi.h>
|
||
|
#include <asm/efi.h>
|
||
|
#include <asm/memory.h>
|
||
|
#include <asm/sysreg.h>
|
||
|
|
||
|
#include "efistub.h"
|
||
|
|
||
|
efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
|
||
|
{
|
||
|
u64 tg;
|
||
|
|
||
|
/* UEFI mandates support for 4 KB granularity, no need to check */
|
||
|
if (IS_ENABLED(CONFIG_ARM64_4K_PAGES))
|
||
|
return EFI_SUCCESS;
|
||
|
|
||
|
tg = (read_cpuid(ID_AA64MMFR0_EL1) >> ID_AA64MMFR0_TGRAN_SHIFT) & 0xf;
|
||
|
if (tg != ID_AA64MMFR0_TGRAN_SUPPORTED) {
|
||
|
if (IS_ENABLED(CONFIG_ARM64_64K_PAGES))
|
||
|
pr_efi_err(sys_table_arg, "This 64 KB granular kernel is not supported by your CPU\n");
|
||
|
else
|
||
|
pr_efi_err(sys_table_arg, "This 16 KB granular kernel is not supported by your CPU\n");
|
||
|
return EFI_UNSUPPORTED;
|
||
|
}
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
efi_status_t handle_kernel_image(efi_system_table_t *sys_table_arg,
|
||
|
unsigned long *image_addr,
|
||
|
unsigned long *image_size,
|
||
|
unsigned long *reserve_addr,
|
||
|
unsigned long *reserve_size,
|
||
|
unsigned long dram_base,
|
||
|
efi_loaded_image_t *image)
|
||
|
{
|
||
|
efi_status_t status;
|
||
|
unsigned long kernel_size, kernel_memsize = 0;
|
||
|
void *old_image_addr = (void *)*image_addr;
|
||
|
unsigned long preferred_offset;
|
||
|
u64 phys_seed = 0;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
||
|
if (!nokaslr()) {
|
||
|
status = efi_get_random_bytes(sys_table_arg,
|
||
|
sizeof(phys_seed),
|
||
|
(u8 *)&phys_seed);
|
||
|
if (status == EFI_NOT_FOUND) {
|
||
|
pr_efi(sys_table_arg, "EFI_RNG_PROTOCOL unavailable, no randomness supplied\n");
|
||
|
} else if (status != EFI_SUCCESS) {
|
||
|
pr_efi_err(sys_table_arg, "efi_get_random_bytes() failed\n");
|
||
|
return status;
|
||
|
}
|
||
|
} else {
|
||
|
pr_efi(sys_table_arg, "KASLR disabled on kernel command line\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The preferred offset of the kernel Image is TEXT_OFFSET bytes beyond
|
||
|
* a 2 MB aligned base, which itself may be lower than dram_base, as
|
||
|
* long as the resulting offset equals or exceeds it.
|
||
|
*/
|
||
|
preferred_offset = round_down(dram_base, MIN_KIMG_ALIGN) + TEXT_OFFSET;
|
||
|
if (preferred_offset < dram_base)
|
||
|
preferred_offset += MIN_KIMG_ALIGN;
|
||
|
|
||
|
kernel_size = _edata - _text;
|
||
|
kernel_memsize = kernel_size + (_end - _edata);
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && phys_seed != 0) {
|
||
|
/*
|
||
|
* If CONFIG_DEBUG_ALIGN_RODATA is not set, produce a
|
||
|
* displacement in the interval [0, MIN_KIMG_ALIGN) that
|
||
|
* doesn't violate this kernel's de-facto alignment
|
||
|
* constraints.
|
||
|
*/
|
||
|
u32 mask = (MIN_KIMG_ALIGN - 1) & ~(EFI_KIMG_ALIGN - 1);
|
||
|
u32 offset = !IS_ENABLED(CONFIG_DEBUG_ALIGN_RODATA) ?
|
||
|
(phys_seed >> 32) & mask : TEXT_OFFSET;
|
||
|
|
||
|
/*
|
||
|
* With CONFIG_RANDOMIZE_TEXT_OFFSET=y, TEXT_OFFSET may not
|
||
|
* be a multiple of EFI_KIMG_ALIGN, and we must ensure that
|
||
|
* we preserve the misalignment of 'offset' relative to
|
||
|
* EFI_KIMG_ALIGN so that statically allocated objects whose
|
||
|
* alignment exceeds PAGE_SIZE appear correctly aligned in
|
||
|
* memory.
|
||
|
*/
|
||
|
offset |= TEXT_OFFSET % EFI_KIMG_ALIGN;
|
||
|
|
||
|
/*
|
||
|
* If KASLR is enabled, and we have some randomness available,
|
||
|
* locate the kernel at a randomized offset in physical memory.
|
||
|
*/
|
||
|
*reserve_size = kernel_memsize + offset;
|
||
|
status = efi_random_alloc(sys_table_arg, *reserve_size,
|
||
|
MIN_KIMG_ALIGN, reserve_addr,
|
||
|
(u32)phys_seed);
|
||
|
|
||
|
*image_addr = *reserve_addr + offset;
|
||
|
} else {
|
||
|
/*
|
||
|
* Else, try a straight allocation at the preferred offset.
|
||
|
* This will work around the issue where, if dram_base == 0x0,
|
||
|
* efi_low_alloc() refuses to allocate at 0x0 (to prevent the
|
||
|
* address of the allocation to be mistaken for a FAIL return
|
||
|
* value or a NULL pointer). It will also ensure that, on
|
||
|
* platforms where the [dram_base, dram_base + TEXT_OFFSET)
|
||
|
* interval is partially occupied by the firmware (like on APM
|
||
|
* Mustang), we can still place the kernel at the address
|
||
|
* 'dram_base + TEXT_OFFSET'.
|
||
|
*/
|
||
|
if (*image_addr == preferred_offset)
|
||
|
return EFI_SUCCESS;
|
||
|
|
||
|
*image_addr = *reserve_addr = preferred_offset;
|
||
|
*reserve_size = round_up(kernel_memsize, EFI_ALLOC_ALIGN);
|
||
|
|
||
|
status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
||
|
EFI_LOADER_DATA,
|
||
|
*reserve_size / EFI_PAGE_SIZE,
|
||
|
(efi_physical_addr_t *)reserve_addr);
|
||
|
}
|
||
|
|
||
|
if (status != EFI_SUCCESS) {
|
||
|
*reserve_size = kernel_memsize + TEXT_OFFSET;
|
||
|
status = efi_low_alloc(sys_table_arg, *reserve_size,
|
||
|
MIN_KIMG_ALIGN, reserve_addr);
|
||
|
|
||
|
if (status != EFI_SUCCESS) {
|
||
|
pr_efi_err(sys_table_arg, "Failed to relocate kernel\n");
|
||
|
*reserve_size = 0;
|
||
|
return status;
|
||
|
}
|
||
|
*image_addr = *reserve_addr + TEXT_OFFSET;
|
||
|
}
|
||
|
memcpy((void *)*image_addr, old_image_addr, kernel_size);
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|