kernel_samsung_a34x-permissive/drivers/sensorhub/debug/shub_debug_sysfs.c

585 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) 2020, Samsung Electronics Co. Ltd. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/device.h>
#include <linux/slab.h>
#include "../comm/shub_comm.h"
#include "../sensor/scontext.h"
#include "../sensormanager/shub_sensor.h"
#include "../sensormanager/shub_sensor_manager.h"
#include "../sensorhub/shub_device.h"
#include "../utility/shub_utility.h"
#include "../utility/shub_dev_core.h"
#include "../utility/sensor_core.h"
#include "../vendor/shub_vendor.h"
#include "shub_sensor_dump.h"
#include "shub_system_checker.h"
#include "shub_debug.h"
#define TIMEINFO_SIZE 50
#define SUPPORT_SENSORLIST \
do { \
{SENSOR_TYPE_ACCELEROMETER, SENSOR_TYPE_GYROSCOPE, SENSOR_TYPE_GEOMAGNETIC_FIELD, SENSOR_TYPE_PRESSURE, \
SENSOR_TYPE_PROXIMITY, SENSOR_TYPE_LIGHT} \
} while (0)
static ssize_t sensor_dump_show(struct device *dev, struct device_attribute *attr, char *buf)
{
char **sensor_dump_data = get_sensor_dump_data();
int types[] = SENSOR_DUMP_SENSOR_LIST;
char str_no_sensor_dump[] = "there is no sensor dump";
int i = 0, ret;
char *sensor_dump;
char temp[sensor_dump_length(DUMPREGISTER_MAX_SIZE) + LENGTH_SENSOR_TYPE_MAX + 2] = {0,};
char time_temp[TIMEINFO_SIZE] = "";
char *time_info;
char str_no_registered_sensor[] = "there is no registered sensor";
char reset_info[TIMEINFO_SIZE*2 + 20] = "Sensor Hub Reset : ";
int cnt = 0;
struct shub_sensor *sensor;
sensor_dump = kzalloc(
(sensor_dump_length(DUMPREGISTER_MAX_SIZE) + LENGTH_SENSOR_TYPE_MAX + 3) * (ARRAY_SIZE(types)), GFP_KERNEL);
if (!sensor_dump) {
shub_errf("fail to allocate memory for dump buffer");
return -ENOMEM;
}
for (i = 0; i < ARRAY_SIZE(types); i++) {
if (sensor_dump_data[types[i]] != NULL) {
snprintf(temp, (int)strlen(sensor_dump_data[types[i]]) + LENGTH_SENSOR_TYPE_MAX + 3,
"%3d\n%s\n\n", types[i], sensor_dump_data[types[i]]);
/* %3d -> 3 : LENGTH_SENSOR_TYPE_MAX */
strcpy(&sensor_dump[(int)strlen(sensor_dump)], temp);
}
}
if (get_reset_count() > 0) {
struct reset_info_t reset = get_reset_info();
if (reset.reason == RESET_TYPE_KERNEL_SYSFS)
snprintf(&reset_info[(int)strlen(reset_info)], sizeof(reset_info) - (int)strlen(reset_info),
"Kernel Sysfs\n");
else if (reset.reason == RESET_TYPE_KERNEL_NO_EVENT)
snprintf(&reset_info[(int)strlen(reset_info)], sizeof(reset_info) - (int)strlen(reset_info),
"Kernel No Event\n");
else if (reset.reason == RESET_TYPE_HUB_NO_EVENT)
snprintf(&reset_info[(int)strlen(reset_info)], sizeof(reset_info) - (int)strlen(reset_info),
"Hub Req No Event\n");
else if (reset.reason == RESET_TYPE_KERNEL_COM_FAIL)
snprintf(&reset_info[(int)strlen(reset_info)], sizeof(reset_info) - (int)strlen(reset_info),
"Com Fail\n");
else
snprintf(&reset_info[(int)strlen(reset_info)], sizeof(reset_info) - (int)strlen(reset_info),
"HUB Reset\n");
strcpy(&reset_info[(int)strlen(reset_info)], time_temp);
snprintf(time_temp, sizeof(time_temp),
" %04d%02d%02d %02d:%02d:%02d UTC(%llu)\n", reset.time.tm_year + 1900,
reset.time.tm_mon + 1, reset.time.tm_mday, reset.time.tm_hour, reset.time.tm_min,
reset.time.tm_sec, reset.timestamp);
strncpy(&reset_info[(int)strlen(reset_info)], time_temp, sizeof(reset_info) - (int)strlen(reset_info));
} else {
snprintf(&reset_info[(int)strlen(reset_info)], sizeof(reset_info) - (int)strlen(reset_info), " None\n");
}
for (i = 0; i < SENSOR_TYPE_MAX; i++) {
sensor = get_sensor(i);
if (sensor && sensor->enable_timestamp != 0)
cnt++;
}
if (cnt > 0) {
time_info = kzalloc(TIMEINFO_SIZE * 3 * cnt, GFP_KERNEL);
if (!time_info) {
shub_infof("fail to allocate memory for time info");
time_info = NULL;
cnt = 0;
goto print_sensordump;
}
for (i = 0; i < SENSOR_TYPE_MAX; i++) {
sensor = get_sensor(i);
if (sensor && sensor->enable_timestamp != 0) {
struct rtc_time regi_tm = sensor->enable_time;
struct rtc_time unregi_tm = sensor->disable_time;
char name[SENSOR_NAME_MAX] = "";
memcpy(name, sensor->name, SENSOR_NAME_MAX);
memset(time_temp, 0, sizeof(time_temp));
snprintf(time_temp, TIMEINFO_SIZE, "%3d %s\n", i, name);
strcpy(&time_info[(int)strlen(time_info)], time_temp);
if (sensor->enabled) {
if (sensor->disable_timestamp != 0) {
snprintf(time_temp, TIMEINFO_SIZE,
"- %04d%02d%02d %02d:%02d:%02d UTC(%llu)\n",
unregi_tm.tm_year + 1900, unregi_tm.tm_mon + 1,
unregi_tm.tm_mday, unregi_tm.tm_hour, unregi_tm.tm_min,
unregi_tm.tm_sec, sensor->disable_timestamp);
strcpy(&time_info[(int)strlen(time_info)], time_temp);
}
snprintf(time_temp, TIMEINFO_SIZE,
"+ %04d%02d%02d %02d:%02d:%02d UTC(%llu)\n",
regi_tm.tm_year + 1900, regi_tm.tm_mon + 1, regi_tm.tm_mday,
regi_tm.tm_hour, regi_tm.tm_min, regi_tm.tm_sec,
sensor->enable_timestamp);
strcpy(&time_info[(int)strlen(time_info)], time_temp);
} else {
snprintf(time_temp, TIMEINFO_SIZE,
"+ %04d%02d%02d %02d:%02d:%02d UTC(%llu)\n",
regi_tm.tm_year + 1900, regi_tm.tm_mon + 1, regi_tm.tm_mday,
regi_tm.tm_hour, regi_tm.tm_min, regi_tm.tm_sec,
sensor->enable_timestamp);
strcpy(&time_info[(int)strlen(time_info)], time_temp);
if (sensor->disable_timestamp != 0) {
snprintf(time_temp, TIMEINFO_SIZE,
"- %04d%02d%02d %02d:%02d:%02d UTC(%llu)\n",
unregi_tm.tm_year + 1900, unregi_tm.tm_mon + 1,
unregi_tm.tm_mday, unregi_tm.tm_hour, unregi_tm.tm_min,
unregi_tm.tm_sec, sensor->disable_timestamp);
strcpy(&time_info[(int)strlen(time_info)], time_temp);
}
}
}
}
} else {
time_info = str_no_registered_sensor;
}
print_sensordump:
if ((int)strlen(sensor_dump) == 0)
ret = snprintf(buf, PAGE_SIZE, "%s\n%s\n%s\n", str_no_sensor_dump, reset_info, time_info);
else
ret = snprintf(buf, PAGE_SIZE, "%s\n%s\n%s\n", sensor_dump, reset_info, time_info);
kfree(sensor_dump);
if (cnt > 0)
kfree(time_info);
return ret;
}
static ssize_t sensor_dump_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)
{
int sensor_type, ret;
char name[SENSOR_NAME_MAX + 1] = {0,};
if (sscanf(buf, "%40s", name) != 1) // 40 : SENSOR_NAME_MAX
return -EINVAL;
if ((strcmp(name, "all")) == 0) {
sensorhub_save_ram_dump();
ret = send_all_sensor_dump_command();
} else {
if (strcmp(name, "accelerometer") == 0)
sensor_type = SENSOR_TYPE_ACCELEROMETER;
else if (strcmp(name, "gyroscope") == 0)
sensor_type = SENSOR_TYPE_GYROSCOPE;
else if (strcmp(name, "magnetic") == 0)
sensor_type = SENSOR_TYPE_GEOMAGNETIC_FIELD;
else if (strcmp(name, "pressure") == 0)
sensor_type = SENSOR_TYPE_PRESSURE;
else if (strcmp(name, "proximity") == 0)
sensor_type = SENSOR_TYPE_PROXIMITY;
else if (strcmp(name, "light") == 0)
sensor_type = SENSOR_TYPE_LIGHT;
else {
shub_errf("is not supported : %s", buf);
sensor_type = -1;
return -EINVAL;
}
ret = send_sensor_dump_command(sensor_type);
}
return (ret == 0) ? size : ret;
}
static ssize_t sensor_axis_show(struct device *dev, struct device_attribute *attr, char *buf)
{
int accel_position = -1;
int gyro_position = -1;
int mag_position = -1;
struct shub_sensor *sensor;
sensor = get_sensor(SENSOR_TYPE_ACCELEROMETER);
if (sensor)
accel_position = sensor->funcs->get_position();
sensor = get_sensor(SENSOR_TYPE_GYROSCOPE);
if (sensor)
gyro_position = sensor->funcs->get_position();
sensor = get_sensor(SENSOR_TYPE_GEOMAGNETIC_FIELD);
if (sensor)
mag_position = sensor->funcs->get_position();
return snprintf(buf, PAGE_SIZE, "%d: %d\n%d: %d\n%d: %d\n",
SENSOR_TYPE_ACCELEROMETER, accel_position,
SENSOR_TYPE_GYROSCOPE, gyro_position,
SENSOR_TYPE_GEOMAGNETIC_FIELD, mag_position);
}
static ssize_t sensor_axis_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)
{
struct shub_sensor *sensor;
int type = 0;
int position = 0;
sscanf(buf, "%9d,%9d", &type, &position);
if (position < 0)
return -EINVAL;
sensor = get_sensor(type);
if (!sensor) {
shub_errf("type %d is not suppoerted", type);
return -EINVAL;
}
sensor->funcs->set_position(position);
return size;
}
static bool debug_enable[SHUB_LOG_MAX];
bool check_debug_log_state(int log_type)
{
return log_type < SHUB_LOG_MAX ? debug_enable[log_type] : false;
}
static ssize_t debug_enable_show(struct device *dev, struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d %d\n",
debug_enable[SHUB_LOG_EVENT_TIMESTAMP], debug_enable[SHUB_LOG_DATA_PACKET]);
}
static ssize_t debug_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)
{
char *input_str = NULL, *tmp = NULL, *dup_str = NULL;
unsigned int arg[5] = {0,};
int index = 0;
shub_infof("%s", buf);
if (strlen(buf) == 0)
return size;
input_str = kzalloc(strlen(buf) + 1, GFP_KERNEL);
if (!input_str)
return -ENOMEM;
memcpy(input_str, buf, strlen(buf));
dup_str = kstrdup(input_str, GFP_KERNEL);
while (((tmp = strsep(&dup_str, " ")) != NULL)) {
switch (index) {
case 0:
if (kstrtoint(tmp, 10, &arg[0]) < 0)
goto exit;
break;
case 1:
if (kstrtoint(tmp, 10, &arg[1]) < 0)
goto exit;
break;
default:
goto exit;
}
index++;
}
if (index == 1) {
for (index = 0; index < SHUB_LOG_MAX; index++)
debug_enable[index] = arg[0] ? true : false;
} else if (arg[1] < SHUB_LOG_MAX) {
debug_enable[arg[1]] = arg[0] ? true : false;
}
exit:
kfree(dup_str);
kfree(input_str);
return size;
}
#ifdef CONFIG_SHUB_DEBUG
int htou8(char input)
{
int ret = 0;
if ('0' <= input && input <= '9')
return ret = input - '0';
else if ('a' <= input && input <= 'f')
return ret = input - 'a' + 10;
else if ('A' <= input && input <= 'F')
return ret = input - 'A' + 10;
else
return 0;
}
char register_value[5];
static ssize_t make_command_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)
{
int ret = 0;
u8 cmd = 0, type = 0, subcmd = 0;
char *send_buf = NULL;
int send_buf_len = 0;
unsigned int arg[10] = {0, };
char *input_str, *tmp, *dup_str = NULL;
int index = 0, i = 0;
shub_infof("%s", buf);
if (strlen(buf) == 0)
return size;
input_str = kzalloc(strlen(buf) + 1, GFP_KERNEL);
if (!input_str)
return -ENOMEM;
memcpy(input_str, buf, strlen(buf));
dup_str = kstrdup(input_str, GFP_KERNEL);
while (((tmp = strsep(&dup_str, " ")) != NULL)) {
switch (index) {
case 0:
if (kstrtou8(tmp, 10, &cmd) < 0) {
shub_errf("invalid cmd(%d)", cmd);
goto exit;
}
break;
case 1:
if (kstrtou8(tmp, 10, &type) < 0) {
shub_errf("invalid type(%d)", type);
goto exit;
}
break;
case 2:
if (kstrtou8(tmp, 10, &subcmd) < 0) {
shub_errf("invalid subcmd(%d)", subcmd);
goto exit;
}
break;
case 3:
if (cmd == CMD_SETVALUE && subcmd == HUB_SYSTEM_CHECK) {
if (kstrtouint(tmp, 10, &arg[0])) {
shub_errf("parsing error");
goto exit;
}
} else {
if ((strlen(tmp) - 1) % 2 != 0) {
shub_errf("not match buf len(%d) != %d", (int)strlen(tmp), send_buf_len);
goto exit;
}
send_buf_len = (strlen(tmp) - 1) / 2;
send_buf = kzalloc(send_buf_len, GFP_KERNEL);
if (!send_buf) {
shub_errf("fail to alloc memory");
goto exit;
}
for (i = 0; i < send_buf_len; i++) {
send_buf[i] = (u8)((htou8(tmp[2 * i]) << 4) | htou8(tmp[2 * i + 1]));
shub_infof("[%d]:%d", i, send_buf[i]);
}
}
break;
case 4:
if (cmd == CMD_SETVALUE && subcmd == HUB_SYSTEM_CHECK)
if (kstrtouint(tmp, 10, &arg[1])) {
shub_errf("parsing error");
goto exit;
}
break;
default:
goto exit;
}
index++;
}
if (index < 2) {
shub_errf("need more input");
goto exit;
}
if (cmd == CMD_SETVALUE && subcmd == HUB_SYSTEM_CHECK) {
sensorhub_system_check(arg[0], arg[1]);
} else {
ret = shub_send_command(cmd, type, subcmd, send_buf, send_buf_len);
if (ret < 0) {
shub_errf("shub_send_command failed");
goto exit;
}
}
exit:
kfree(send_buf);
kfree(dup_str);
kfree(input_str);
return size;
}
static ssize_t register_rw_show(struct device *dev, struct device_attribute *attr, char *buf)
{
if (register_value[1] == 'r') {
return sprintf(buf, "sensor(%d) %c regi(0x%x) val(0x%x) ret(%d)\n",
register_value[0], register_value[1], register_value[2],
register_value[3], register_value[4]);
} else {
if (register_value[4] == true) {
return sprintf(buf, "sensor(%d) %c regi(0x%x) val(0x%x) SUCCESS\n",
register_value[0], register_value[1], register_value[2], register_value[3]);
} else {
return sprintf(buf, "sensor(%d) %c regi(0x%x) val(0x%x) FAIL\n",
register_value[0], register_value[1], register_value[2], register_value[3]);
}
}
}
static ssize_t register_rw_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)
{
int index = 0, ret = 0;
u8 sensor_type, send_val[2];
char rw_cmd;
char input_str[20] = {0,};
char *dup_str = NULL;
char *tmp;
if (strlen(buf) >= sizeof(input_str)) {
shub_errf("bufsize too long(%d)", strlen(buf));
goto exit;
}
memcpy(input_str, buf, strlen(buf));
dup_str = kstrdup(input_str, GFP_KERNEL);
while (((tmp = strsep(&dup_str, " ")) != NULL)) {
switch (index) {
case 0:
if (kstrtou8(tmp, 10, &sensor_type) < 0 || (sensor_type >= SENSOR_TYPE_MAX)) {
shub_errf("invalid type(%d)", sensor_type);
goto exit;
}
break;
case 1:
if (tmp[0] == 'r' || tmp[0] == 'w')
rw_cmd = tmp[0];
else {
shub_errf("invalid cmd(%c)", tmp[0]);
goto exit;
}
break;
case 2:
case 3:
if ((strlen(tmp) == 4) && tmp[0] != '0' && tmp[1] != 'x') {
shub_errf("invalid value(0xOO) %s", tmp);
goto exit;
}
send_val[index - 2] = (u8)((htou8(tmp[2]) << 4) | htou8(tmp[3]));
break;
default:
goto exit;
}
index++;
}
register_value[0] = sensor_type;
register_value[1] = rw_cmd;
register_value[2] = send_val[0];
if (rw_cmd == 'r') {
char *rec_buf = NULL;
int rec_buf_len = 0;
ret = shub_send_command_wait(CMD_GETVALUE, sensor_type, SENSOR_REGISTER_RW,
1000, send_val, 1, &rec_buf, &rec_buf_len, false);
register_value[4] = true;
if (ret < 0) {
register_value[4] = false;
shub_errf("shub_send_command_wait fail %d", ret);
goto exit;
}
register_value[3] = rec_buf[0];
kfree(rec_buf);
} else { /* rw_cmd == w */
ret = shub_send_command(CMD_SETVALUE, sensor_type, SENSOR_REGISTER_RW, send_val, 2);
register_value[3] = send_val[1];
register_value[4] = true;
if (ret < 0) {
register_value[4] = false;
shub_errf("shub_send_command fail %d", ret);
goto exit;
}
}
exit:
kfree(dup_str);
return size;
}
#endif
static DEVICE_ATTR(sensor_dump, 0664, sensor_dump_show, sensor_dump_store);
static DEVICE_ATTR_RW(sensor_axis);
static DEVICE_ATTR_RW(debug_enable);
#ifdef CONFIG_SHUB_DEBUG
static DEVICE_ATTR(make_command, 0220, NULL, make_command_store);
static DEVICE_ATTR_RW(register_rw);
#endif
static struct device_attribute *shub_debug_attrs[] = {
&dev_attr_sensor_axis,
&dev_attr_sensor_dump,
&dev_attr_debug_enable,
#ifdef CONFIG_SHUB_DEBUG
&dev_attr_make_command,
&dev_attr_register_rw,
#endif
NULL,
};
int init_shub_debug_sysfs(void)
{
struct shub_data_t *data = get_shub_data();
int ret;
ret = sensor_device_create(&data->sysfs_dev, data, "ssp_sensor");
if (ret < 0) {
shub_errf("fail to creat ssp_sensor device");
return ret;
}
ret = add_sensor_device_attr(data->sysfs_dev, shub_debug_attrs);
if (ret < 0)
shub_errf("fail to add shub debug attr");
return ret;
}
void remove_shub_debug_sysfs(void)
{
struct shub_data_t *data = get_shub_data();
remove_sensor_device_attr(data->sysfs_dev, shub_debug_attrs);
sensor_device_destroy(data->sysfs_dev);
}