2444 lines
68 KiB
C
2444 lines
68 KiB
C
|
/*
|
||
|
* Procedures for maintaining information about logical memory blocks.
|
||
|
*
|
||
|
* Peter Bergner, IBM Corp. June 2001.
|
||
|
* Copyright (C) 2001 Peter Bergner.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/poison.h>
|
||
|
#include <linux/pfn.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/kmemleak.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include <linux/memblock.h>
|
||
|
#include <linux/bootmem.h>
|
||
|
|
||
|
#include <asm/sections.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/sort.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
|
||
|
/**
|
||
|
* DOC: memblock overview
|
||
|
*
|
||
|
* Memblock is a method of managing memory regions during the early
|
||
|
* boot period when the usual kernel memory allocators are not up and
|
||
|
* running.
|
||
|
*
|
||
|
* Memblock views the system memory as collections of contiguous
|
||
|
* regions. There are several types of these collections:
|
||
|
*
|
||
|
* * ``memory`` - describes the physical memory available to the
|
||
|
* kernel; this may differ from the actual physical memory installed
|
||
|
* in the system, for instance when the memory is restricted with
|
||
|
* ``mem=`` command line parameter
|
||
|
* * ``reserved`` - describes the regions that were allocated
|
||
|
* * ``physmap`` - describes the actual physical memory regardless of
|
||
|
* the possible restrictions; the ``physmap`` type is only available
|
||
|
* on some architectures.
|
||
|
*
|
||
|
* Each region is represented by :c:type:`struct memblock_region` that
|
||
|
* defines the region extents, its attributes and NUMA node id on NUMA
|
||
|
* systems. Every memory type is described by the :c:type:`struct
|
||
|
* memblock_type` which contains an array of memory regions along with
|
||
|
* the allocator metadata. The memory types are nicely wrapped with
|
||
|
* :c:type:`struct memblock`. This structure is statically initialzed
|
||
|
* at build time. The region arrays for the "memory" and "reserved"
|
||
|
* types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
|
||
|
* "physmap" type to %INIT_PHYSMEM_REGIONS.
|
||
|
* The :c:func:`memblock_allow_resize` enables automatic resizing of
|
||
|
* the region arrays during addition of new regions. This feature
|
||
|
* should be used with care so that memory allocated for the region
|
||
|
* array will not overlap with areas that should be reserved, for
|
||
|
* example initrd.
|
||
|
*
|
||
|
* The early architecture setup should tell memblock what the physical
|
||
|
* memory layout is by using :c:func:`memblock_add` or
|
||
|
* :c:func:`memblock_add_node` functions. The first function does not
|
||
|
* assign the region to a NUMA node and it is appropriate for UMA
|
||
|
* systems. Yet, it is possible to use it on NUMA systems as well and
|
||
|
* assign the region to a NUMA node later in the setup process using
|
||
|
* :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
|
||
|
* performs such an assignment directly.
|
||
|
*
|
||
|
* Once memblock is setup the memory can be allocated using either
|
||
|
* memblock or bootmem APIs.
|
||
|
*
|
||
|
* As the system boot progresses, the architecture specific
|
||
|
* :c:func:`mem_init` function frees all the memory to the buddy page
|
||
|
* allocator.
|
||
|
*
|
||
|
* If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
|
||
|
* memblock data structures will be discarded after the system
|
||
|
* initialization compltes.
|
||
|
*/
|
||
|
|
||
|
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
|
||
|
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
|
||
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
||
|
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
|
||
|
#endif
|
||
|
|
||
|
struct memblock memblock __initdata_memblock = {
|
||
|
.memory.regions = memblock_memory_init_regions,
|
||
|
.memory.cnt = 1, /* empty dummy entry */
|
||
|
.memory.max = INIT_MEMBLOCK_REGIONS,
|
||
|
.memory.name = "memory",
|
||
|
|
||
|
.reserved.regions = memblock_reserved_init_regions,
|
||
|
.reserved.cnt = 1, /* empty dummy entry */
|
||
|
.reserved.max = INIT_MEMBLOCK_REGIONS,
|
||
|
.reserved.name = "reserved",
|
||
|
|
||
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
||
|
.physmem.regions = memblock_physmem_init_regions,
|
||
|
.physmem.cnt = 1, /* empty dummy entry */
|
||
|
.physmem.max = INIT_PHYSMEM_REGIONS,
|
||
|
.physmem.name = "physmem",
|
||
|
#endif
|
||
|
|
||
|
.bottom_up = false,
|
||
|
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
|
||
|
};
|
||
|
|
||
|
int memblock_debug __initdata_memblock;
|
||
|
static bool system_has_some_mirror __initdata_memblock = false;
|
||
|
static int memblock_can_resize __initdata_memblock;
|
||
|
static int memblock_memory_in_slab __initdata_memblock = 0;
|
||
|
static int memblock_reserved_in_slab __initdata_memblock = 0;
|
||
|
|
||
|
enum memblock_flags __init_memblock choose_memblock_flags(void)
|
||
|
{
|
||
|
return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
|
||
|
}
|
||
|
|
||
|
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
|
||
|
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
|
||
|
{
|
||
|
return *size = min(*size, PHYS_ADDR_MAX - base);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Address comparison utilities
|
||
|
*/
|
||
|
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
|
||
|
phys_addr_t base2, phys_addr_t size2)
|
||
|
{
|
||
|
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
|
||
|
}
|
||
|
|
||
|
bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
|
||
|
phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
unsigned long i;
|
||
|
|
||
|
for (i = 0; i < type->cnt; i++)
|
||
|
if (memblock_addrs_overlap(base, size, type->regions[i].base,
|
||
|
type->regions[i].size))
|
||
|
break;
|
||
|
return i < type->cnt;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __memblock_find_range_bottom_up - find free area utility in bottom-up
|
||
|
* @start: start of candidate range
|
||
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
||
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
||
|
* @size: size of free area to find
|
||
|
* @align: alignment of free area to find
|
||
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
||
|
* @flags: pick from blocks based on memory attributes
|
||
|
*
|
||
|
* Utility called from memblock_find_in_range_node(), find free area bottom-up.
|
||
|
*
|
||
|
* Return:
|
||
|
* Found address on success, 0 on failure.
|
||
|
*/
|
||
|
static phys_addr_t __init_memblock
|
||
|
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
|
||
|
phys_addr_t size, phys_addr_t align, int nid,
|
||
|
enum memblock_flags flags)
|
||
|
{
|
||
|
phys_addr_t this_start, this_end, cand;
|
||
|
u64 i;
|
||
|
|
||
|
for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
|
||
|
this_start = clamp(this_start, start, end);
|
||
|
this_end = clamp(this_end, start, end);
|
||
|
|
||
|
cand = round_up(this_start, align);
|
||
|
if (cand < this_end && this_end - cand >= size)
|
||
|
return cand;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __memblock_find_range_top_down - find free area utility, in top-down
|
||
|
* @start: start of candidate range
|
||
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
||
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
||
|
* @size: size of free area to find
|
||
|
* @align: alignment of free area to find
|
||
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
||
|
* @flags: pick from blocks based on memory attributes
|
||
|
*
|
||
|
* Utility called from memblock_find_in_range_node(), find free area top-down.
|
||
|
*
|
||
|
* Return:
|
||
|
* Found address on success, 0 on failure.
|
||
|
*/
|
||
|
static phys_addr_t __init_memblock
|
||
|
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
|
||
|
phys_addr_t size, phys_addr_t align, int nid,
|
||
|
enum memblock_flags flags)
|
||
|
{
|
||
|
phys_addr_t this_start, this_end, cand;
|
||
|
u64 i;
|
||
|
|
||
|
for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
|
||
|
NULL) {
|
||
|
this_start = clamp(this_start, start, end);
|
||
|
this_end = clamp(this_end, start, end);
|
||
|
|
||
|
if (this_end < size)
|
||
|
continue;
|
||
|
|
||
|
cand = round_down(this_end - size, align);
|
||
|
if (cand >= this_start)
|
||
|
return cand;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_find_in_range_node - find free area in given range and node
|
||
|
* @size: size of free area to find
|
||
|
* @align: alignment of free area to find
|
||
|
* @start: start of candidate range
|
||
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
||
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
||
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
||
|
* @flags: pick from blocks based on memory attributes
|
||
|
*
|
||
|
* Find @size free area aligned to @align in the specified range and node.
|
||
|
*
|
||
|
* Return:
|
||
|
* Found address on success, 0 on failure.
|
||
|
*/
|
||
|
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
|
||
|
phys_addr_t align, phys_addr_t start,
|
||
|
phys_addr_t end, int nid,
|
||
|
enum memblock_flags flags)
|
||
|
{
|
||
|
/* pump up @end */
|
||
|
if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
|
||
|
end == MEMBLOCK_ALLOC_KASAN)
|
||
|
end = memblock.current_limit;
|
||
|
|
||
|
/* avoid allocating the first page */
|
||
|
start = max_t(phys_addr_t, start, PAGE_SIZE);
|
||
|
end = max(start, end);
|
||
|
|
||
|
if (memblock_bottom_up())
|
||
|
return __memblock_find_range_bottom_up(start, end, size, align,
|
||
|
nid, flags);
|
||
|
else
|
||
|
return __memblock_find_range_top_down(start, end, size, align,
|
||
|
nid, flags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_find_in_range - find free area in given range
|
||
|
* @start: start of candidate range
|
||
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
||
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
||
|
* @size: size of free area to find
|
||
|
* @align: alignment of free area to find
|
||
|
*
|
||
|
* Find @size free area aligned to @align in the specified range.
|
||
|
*
|
||
|
* Return:
|
||
|
* Found address on success, 0 on failure.
|
||
|
*/
|
||
|
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
|
||
|
phys_addr_t end, phys_addr_t size,
|
||
|
phys_addr_t align)
|
||
|
{
|
||
|
phys_addr_t ret;
|
||
|
enum memblock_flags flags = choose_memblock_flags();
|
||
|
|
||
|
again:
|
||
|
ret = memblock_find_in_range_node(size, align, start, end,
|
||
|
NUMA_NO_NODE, flags);
|
||
|
|
||
|
if (!ret && (flags & MEMBLOCK_MIRROR)) {
|
||
|
pr_warn("Could not allocate %pap bytes of mirrored memory\n",
|
||
|
&size);
|
||
|
flags &= ~MEMBLOCK_MIRROR;
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
|
||
|
{
|
||
|
type->total_size -= type->regions[r].size;
|
||
|
memmove(&type->regions[r], &type->regions[r + 1],
|
||
|
(type->cnt - (r + 1)) * sizeof(type->regions[r]));
|
||
|
type->cnt--;
|
||
|
|
||
|
/* Special case for empty arrays */
|
||
|
if (type->cnt == 0) {
|
||
|
WARN_ON(type->total_size != 0);
|
||
|
type->cnt = 1;
|
||
|
type->regions[0].base = 0;
|
||
|
type->regions[0].size = 0;
|
||
|
type->regions[0].flags = 0;
|
||
|
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
|
||
|
/**
|
||
|
* memblock_discard - discard memory and reserved arrays if they were allocated
|
||
|
*/
|
||
|
void __init memblock_discard(void)
|
||
|
{
|
||
|
phys_addr_t addr, size;
|
||
|
|
||
|
if (memblock.reserved.regions != memblock_reserved_init_regions) {
|
||
|
addr = __pa(memblock.reserved.regions);
|
||
|
size = PAGE_ALIGN(sizeof(struct memblock_region) *
|
||
|
memblock.reserved.max);
|
||
|
__memblock_free_late(addr, size);
|
||
|
}
|
||
|
|
||
|
if (memblock.memory.regions != memblock_memory_init_regions) {
|
||
|
addr = __pa(memblock.memory.regions);
|
||
|
size = PAGE_ALIGN(sizeof(struct memblock_region) *
|
||
|
memblock.memory.max);
|
||
|
__memblock_free_late(addr, size);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* memblock_double_array - double the size of the memblock regions array
|
||
|
* @type: memblock type of the regions array being doubled
|
||
|
* @new_area_start: starting address of memory range to avoid overlap with
|
||
|
* @new_area_size: size of memory range to avoid overlap with
|
||
|
*
|
||
|
* Double the size of the @type regions array. If memblock is being used to
|
||
|
* allocate memory for a new reserved regions array and there is a previously
|
||
|
* allocated memory range [@new_area_start, @new_area_start + @new_area_size]
|
||
|
* waiting to be reserved, ensure the memory used by the new array does
|
||
|
* not overlap.
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success, -1 on failure.
|
||
|
*/
|
||
|
static int __init_memblock memblock_double_array(struct memblock_type *type,
|
||
|
phys_addr_t new_area_start,
|
||
|
phys_addr_t new_area_size)
|
||
|
{
|
||
|
struct memblock_region *new_array, *old_array;
|
||
|
phys_addr_t old_alloc_size, new_alloc_size;
|
||
|
phys_addr_t old_size, new_size, addr, new_end;
|
||
|
int use_slab = slab_is_available();
|
||
|
int *in_slab;
|
||
|
|
||
|
/* We don't allow resizing until we know about the reserved regions
|
||
|
* of memory that aren't suitable for allocation
|
||
|
*/
|
||
|
if (!memblock_can_resize)
|
||
|
return -1;
|
||
|
|
||
|
/* Calculate new doubled size */
|
||
|
old_size = type->max * sizeof(struct memblock_region);
|
||
|
new_size = old_size << 1;
|
||
|
/*
|
||
|
* We need to allocated new one align to PAGE_SIZE,
|
||
|
* so we can free them completely later.
|
||
|
*/
|
||
|
old_alloc_size = PAGE_ALIGN(old_size);
|
||
|
new_alloc_size = PAGE_ALIGN(new_size);
|
||
|
|
||
|
/* Retrieve the slab flag */
|
||
|
if (type == &memblock.memory)
|
||
|
in_slab = &memblock_memory_in_slab;
|
||
|
else
|
||
|
in_slab = &memblock_reserved_in_slab;
|
||
|
|
||
|
/* Try to find some space for it.
|
||
|
*
|
||
|
* WARNING: We assume that either slab_is_available() and we use it or
|
||
|
* we use MEMBLOCK for allocations. That means that this is unsafe to
|
||
|
* use when bootmem is currently active (unless bootmem itself is
|
||
|
* implemented on top of MEMBLOCK which isn't the case yet)
|
||
|
*
|
||
|
* This should however not be an issue for now, as we currently only
|
||
|
* call into MEMBLOCK while it's still active, or much later when slab
|
||
|
* is active for memory hotplug operations
|
||
|
*/
|
||
|
if (use_slab) {
|
||
|
new_array = kmalloc(new_size, GFP_KERNEL);
|
||
|
addr = new_array ? __pa(new_array) : 0;
|
||
|
} else {
|
||
|
/* only exclude range when trying to double reserved.regions */
|
||
|
if (type != &memblock.reserved)
|
||
|
new_area_start = new_area_size = 0;
|
||
|
|
||
|
addr = memblock_find_in_range(new_area_start + new_area_size,
|
||
|
memblock.current_limit,
|
||
|
new_alloc_size, PAGE_SIZE);
|
||
|
if (!addr && new_area_size)
|
||
|
addr = memblock_find_in_range(0,
|
||
|
min(new_area_start, memblock.current_limit),
|
||
|
new_alloc_size, PAGE_SIZE);
|
||
|
|
||
|
new_array = addr ? __va(addr) : NULL;
|
||
|
}
|
||
|
if (!addr) {
|
||
|
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
|
||
|
type->name, type->max, type->max * 2);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
new_end = addr + new_size - 1;
|
||
|
memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
|
||
|
type->name, type->max * 2, &addr, &new_end);
|
||
|
|
||
|
/*
|
||
|
* Found space, we now need to move the array over before we add the
|
||
|
* reserved region since it may be our reserved array itself that is
|
||
|
* full.
|
||
|
*/
|
||
|
memcpy(new_array, type->regions, old_size);
|
||
|
memset(new_array + type->max, 0, old_size);
|
||
|
old_array = type->regions;
|
||
|
type->regions = new_array;
|
||
|
type->max <<= 1;
|
||
|
|
||
|
/* Free old array. We needn't free it if the array is the static one */
|
||
|
if (*in_slab)
|
||
|
kfree(old_array);
|
||
|
else if (old_array != memblock_memory_init_regions &&
|
||
|
old_array != memblock_reserved_init_regions)
|
||
|
memblock_free(__pa(old_array), old_alloc_size);
|
||
|
|
||
|
/*
|
||
|
* Reserve the new array if that comes from the memblock. Otherwise, we
|
||
|
* needn't do it
|
||
|
*/
|
||
|
if (!use_slab)
|
||
|
BUG_ON(memblock_reserve(addr, new_alloc_size));
|
||
|
|
||
|
/* Update slab flag */
|
||
|
*in_slab = use_slab;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_merge_regions - merge neighboring compatible regions
|
||
|
* @type: memblock type to scan
|
||
|
*
|
||
|
* Scan @type and merge neighboring compatible regions.
|
||
|
*/
|
||
|
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
|
||
|
{
|
||
|
int i = 0;
|
||
|
|
||
|
/* cnt never goes below 1 */
|
||
|
while (i < type->cnt - 1) {
|
||
|
struct memblock_region *this = &type->regions[i];
|
||
|
struct memblock_region *next = &type->regions[i + 1];
|
||
|
|
||
|
if (this->base + this->size != next->base ||
|
||
|
memblock_get_region_node(this) !=
|
||
|
memblock_get_region_node(next) ||
|
||
|
this->flags != next->flags) {
|
||
|
BUG_ON(this->base + this->size > next->base);
|
||
|
i++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
this->size += next->size;
|
||
|
/* move forward from next + 1, index of which is i + 2 */
|
||
|
memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
|
||
|
type->cnt--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_insert_region - insert new memblock region
|
||
|
* @type: memblock type to insert into
|
||
|
* @idx: index for the insertion point
|
||
|
* @base: base address of the new region
|
||
|
* @size: size of the new region
|
||
|
* @nid: node id of the new region
|
||
|
* @flags: flags of the new region
|
||
|
*
|
||
|
* Insert new memblock region [@base, @base + @size) into @type at @idx.
|
||
|
* @type must already have extra room to accommodate the new region.
|
||
|
*/
|
||
|
static void __init_memblock memblock_insert_region(struct memblock_type *type,
|
||
|
int idx, phys_addr_t base,
|
||
|
phys_addr_t size,
|
||
|
int nid,
|
||
|
enum memblock_flags flags)
|
||
|
{
|
||
|
struct memblock_region *rgn = &type->regions[idx];
|
||
|
|
||
|
BUG_ON(type->cnt >= type->max);
|
||
|
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
|
||
|
rgn->base = base;
|
||
|
rgn->size = size;
|
||
|
rgn->flags = flags;
|
||
|
memblock_set_region_node(rgn, nid);
|
||
|
type->cnt++;
|
||
|
type->total_size += size;
|
||
|
}
|
||
|
|
||
|
#define NAME_SIZE 14
|
||
|
struct reserved_mem_reg {
|
||
|
phys_addr_t base;
|
||
|
long size;
|
||
|
bool nomap; /* 1/16 byte */
|
||
|
bool reusable; /* 1/16 byte */
|
||
|
char name[NAME_SIZE]; /* 14/16 byte */
|
||
|
};
|
||
|
|
||
|
static struct reserved_mem_reg kernel_mem_reg[] = {
|
||
|
[MEMSIZE_KERNEL_KERNEL] = {0, 0, false, false, "Kernel "},
|
||
|
[MEMSIZE_KERNEL_PAGING] = {0, 0, false, false, "paging "},
|
||
|
[MEMSIZE_KERNEL_LOGBUF] = {0, 0, false, false, "log_buffer"},
|
||
|
[MEMSIZE_KERNEL_PIDHASH] = {0, 0, false, false, "pid_hash "},
|
||
|
[MEMSIZE_KERNEL_VFSHASH] = {0, 0, false, false, "vfs_hash "},
|
||
|
[MEMSIZE_KERNEL_MM_INIT] = {0, 0, false, false, "mm_init "},
|
||
|
[MEMSIZE_KERNEL_OTHERS] = {0, 0, false, false, "others "},
|
||
|
};
|
||
|
|
||
|
#define MAX_RESERVED_MEM_REG 64
|
||
|
static struct reserved_mem_reg reserved_mem_reg[MAX_RESERVED_MEM_REG];
|
||
|
static int reserved_mem_reg_count;
|
||
|
|
||
|
static enum memsize_kernel_type memsize_kernel_type = MEMSIZE_KERNEL_STOP;
|
||
|
static const char *memsize_reserved_name;
|
||
|
|
||
|
void set_memsize_kernel_type(enum memsize_kernel_type type)
|
||
|
{
|
||
|
memsize_kernel_type = type;
|
||
|
}
|
||
|
|
||
|
void set_memsize_reserved_name(const char *name)
|
||
|
{
|
||
|
memsize_reserved_name = name;
|
||
|
}
|
||
|
|
||
|
void unset_memsize_reserved_name(void)
|
||
|
{
|
||
|
memsize_reserved_name = NULL;
|
||
|
}
|
||
|
|
||
|
/* assume that freeing region is NOT bigger than the previous region */
|
||
|
void free_memsize_reserved(phys_addr_t free_base, phys_addr_t free_size)
|
||
|
{
|
||
|
int i;
|
||
|
struct reserved_mem_reg *rmem_reg;
|
||
|
phys_addr_t free_end, end;
|
||
|
|
||
|
for (i = 0 ; i < reserved_mem_reg_count; i++) {
|
||
|
rmem_reg = &reserved_mem_reg[i];
|
||
|
|
||
|
end = rmem_reg->base + rmem_reg->size;
|
||
|
if (free_base < rmem_reg->base ||
|
||
|
free_base >= end)
|
||
|
continue;
|
||
|
|
||
|
free_end = free_base + free_size;
|
||
|
if (free_base == rmem_reg->base) {
|
||
|
rmem_reg->size -= free_size;
|
||
|
if (rmem_reg->size != 0)
|
||
|
rmem_reg->base += free_size;
|
||
|
} else if (free_end == end) {
|
||
|
rmem_reg->size -= free_size;
|
||
|
} else {
|
||
|
record_memsize_reserved(rmem_reg->name,
|
||
|
free_end, end - free_end, rmem_reg->nomap,
|
||
|
rmem_reg->reusable);
|
||
|
rmem_reg->size = free_base - rmem_reg->base;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define MAX_LATE_FREE 10
|
||
|
static unsigned long late_free_ip_addr[MAX_LATE_FREE];
|
||
|
static struct page *late_free_first_page[MAX_LATE_FREE];
|
||
|
static struct page *late_free_last_page[MAX_LATE_FREE];
|
||
|
static int late_free_new_idx, late_free_prev_idx;
|
||
|
|
||
|
static int __get_late_free_idx(unsigned long ip)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (late_free_ip_addr[late_free_prev_idx] == ip)
|
||
|
goto found;
|
||
|
|
||
|
for (i = 0; i < late_free_new_idx; i++) {
|
||
|
if (late_free_ip_addr[i] == ip) {
|
||
|
late_free_prev_idx = i;
|
||
|
goto found;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (late_free_new_idx == MAX_LATE_FREE) {
|
||
|
pr_err("memsize: no space of late free\n");
|
||
|
return -ENOSPC;
|
||
|
}
|
||
|
|
||
|
late_free_ip_addr[late_free_new_idx] = ip;
|
||
|
late_free_prev_idx = late_free_new_idx;
|
||
|
late_free_new_idx++;
|
||
|
found:
|
||
|
return late_free_prev_idx;
|
||
|
}
|
||
|
|
||
|
static void __clear_late_free_idx(int idx)
|
||
|
{
|
||
|
late_free_ip_addr[idx] = 0;
|
||
|
late_free_first_page[idx] = NULL;
|
||
|
late_free_last_page[idx] = NULL;
|
||
|
}
|
||
|
|
||
|
int late_free_memsize_page(unsigned long ip, struct page *page)
|
||
|
{
|
||
|
int idx, ret = 0;
|
||
|
struct page *first = NULL, *last = NULL;
|
||
|
|
||
|
idx =__get_late_free_idx(ip);
|
||
|
if (idx < 0) {
|
||
|
ret = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
first = late_free_first_page[idx];
|
||
|
last = late_free_last_page[idx];
|
||
|
if (!first) {
|
||
|
late_free_first_page[idx] = page;
|
||
|
late_free_last_page[idx] = page;
|
||
|
} else if (last + 1 == page) {
|
||
|
late_free_last_page[idx] = page;
|
||
|
} else {
|
||
|
__clear_late_free_idx(idx);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void update_memsize_late_free(void)
|
||
|
{
|
||
|
int i;
|
||
|
phys_addr_t first, last;
|
||
|
unsigned long addr;
|
||
|
|
||
|
for (i = 0; i < late_free_new_idx; i++)
|
||
|
{
|
||
|
if (!late_free_ip_addr[i] || !late_free_first_page[i])
|
||
|
continue;
|
||
|
addr = late_free_ip_addr[i];
|
||
|
first = page_to_pfn(late_free_first_page[i]) << PAGE_SHIFT;
|
||
|
last = page_to_pfn(late_free_last_page[i]) << PAGE_SHIFT;
|
||
|
pr_debug("%s %lx--%lx %ps\n", __func__, first, last + PAGE_SIZE,
|
||
|
(void*)addr);
|
||
|
free_memsize_reserved(first, last + PAGE_SIZE - first);
|
||
|
late_free_first_page[i] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void record_memsize_size_only(enum memsize_kernel_type type, long size)
|
||
|
{
|
||
|
struct reserved_mem_reg *rmem_reg;
|
||
|
|
||
|
if (type >= ARRAY_SIZE(kernel_mem_reg)) {
|
||
|
pr_err("type index is out ouf kernel_mem_reg\n");
|
||
|
return;
|
||
|
}
|
||
|
rmem_reg = &kernel_mem_reg[type];
|
||
|
rmem_reg->size += size;
|
||
|
}
|
||
|
|
||
|
static void memsize_get_valid_name(char *valid_name, const char *name)
|
||
|
{
|
||
|
char *head, *tail, *found;
|
||
|
int val_size;
|
||
|
|
||
|
head = (char *)name;
|
||
|
tail = head + strlen(name);
|
||
|
|
||
|
/* get head position starting valid char */
|
||
|
found = strstr(head, "mblock-");
|
||
|
if (found) {
|
||
|
head = found + strlen("mblock-");
|
||
|
found = strchr(head, '-');
|
||
|
if (found)
|
||
|
head = found + 1;
|
||
|
if (head >= tail)
|
||
|
head = (char *)name;
|
||
|
}
|
||
|
|
||
|
/* get tail position after valid char */
|
||
|
found = strstr(head, "_region");
|
||
|
if (found)
|
||
|
tail = found;
|
||
|
found = strchr(name, '@');
|
||
|
if (found)
|
||
|
tail = found;
|
||
|
|
||
|
val_size = tail - head;
|
||
|
if (val_size > NAME_SIZE - 1)
|
||
|
val_size = NAME_SIZE - 1;
|
||
|
strncpy(valid_name, head, val_size);
|
||
|
valid_name[NAME_SIZE - 1] = '\0';
|
||
|
}
|
||
|
|
||
|
static inline struct reserved_mem_reg *memsize_get_new_reg(void)
|
||
|
{
|
||
|
if (reserved_mem_reg_count == ARRAY_SIZE(reserved_mem_reg)) {
|
||
|
pr_err("not enough space on reserved_mem_reg\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
return &reserved_mem_reg[reserved_mem_reg_count++];
|
||
|
}
|
||
|
|
||
|
/* The memory region can be added into memblock reserved even after the same
|
||
|
* memory region was already removed out of memblock memory. Let's assume that
|
||
|
* additions to memblock reserved are valid information to be clear. Get the
|
||
|
* new address as a new region and remove the new address out of the existing
|
||
|
* region.
|
||
|
*/
|
||
|
static bool memsize_update_nomap_region(const char *name, phys_addr_t base,
|
||
|
phys_addr_t size, bool nomap)
|
||
|
{
|
||
|
int i;
|
||
|
struct reserved_mem_reg *rmem_reg, *new_reg;
|
||
|
|
||
|
if (!name || nomap)
|
||
|
return false;
|
||
|
|
||
|
for (i = 0; i < reserved_mem_reg_count; i++)
|
||
|
{
|
||
|
rmem_reg = &reserved_mem_reg[i];
|
||
|
|
||
|
if (!rmem_reg->nomap)
|
||
|
continue;
|
||
|
if (base < rmem_reg->base)
|
||
|
continue;
|
||
|
if (base + size > rmem_reg->base + rmem_reg->size)
|
||
|
continue;
|
||
|
|
||
|
if (base == rmem_reg->base && size == rmem_reg->size) {
|
||
|
memsize_get_valid_name(rmem_reg->name, name);
|
||
|
return true;
|
||
|
}
|
||
|
new_reg = memsize_get_new_reg();
|
||
|
if (!new_reg)
|
||
|
return true;
|
||
|
new_reg->base = base;
|
||
|
new_reg->size = size;
|
||
|
new_reg->nomap = nomap;
|
||
|
new_reg->reusable = false;
|
||
|
memsize_get_valid_name(rmem_reg->name, name);
|
||
|
|
||
|
if (base == rmem_reg->base && size < rmem_reg->size) {
|
||
|
rmem_reg->base = base + size;
|
||
|
rmem_reg->size -= size;
|
||
|
} else if (base + size == rmem_reg->base + rmem_reg->size) {
|
||
|
rmem_reg->size -= size;
|
||
|
} else {
|
||
|
new_reg = memsize_get_new_reg();
|
||
|
if (!new_reg)
|
||
|
return true;
|
||
|
new_reg->base = base + size;
|
||
|
new_reg->size = (rmem_reg->base + rmem_reg->size)
|
||
|
- (base + size);
|
||
|
new_reg->nomap = nomap;
|
||
|
new_reg->reusable = false;
|
||
|
strcpy(new_reg->name, "unknown");
|
||
|
rmem_reg->size = base - rmem_reg->base;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void record_memsize_reserved(const char *name, phys_addr_t base,
|
||
|
phys_addr_t size, bool nomap, bool reusable)
|
||
|
{
|
||
|
struct reserved_mem_reg *rmem_reg;
|
||
|
|
||
|
if (memsize_update_nomap_region(name, base, size, nomap))
|
||
|
return;
|
||
|
|
||
|
rmem_reg = memsize_get_new_reg();
|
||
|
if (!rmem_reg)
|
||
|
return;
|
||
|
|
||
|
rmem_reg->base = base;
|
||
|
rmem_reg->size = size;
|
||
|
rmem_reg->nomap = nomap;
|
||
|
rmem_reg->reusable = reusable;
|
||
|
|
||
|
if (!name)
|
||
|
strcpy(rmem_reg->name, "unknown");
|
||
|
else
|
||
|
memsize_get_valid_name(rmem_reg->name, name);
|
||
|
}
|
||
|
|
||
|
/* This function will be called to by early_init_dt_scan_nodes */
|
||
|
void record_memsize_memory_hole(void)
|
||
|
{
|
||
|
phys_addr_t base, end;
|
||
|
phys_addr_t prev_end, hole_s;
|
||
|
int idx;
|
||
|
struct memblock_region *rgn;
|
||
|
int memblock_cnt = (int)memblock.memory.cnt;
|
||
|
|
||
|
/* assume that the hole size is less than 256 MB */
|
||
|
for_each_memblock_type(idx, (&memblock.memory), rgn) {
|
||
|
if (idx == 0)
|
||
|
prev_end = round_down(base, SZ_256M);
|
||
|
else
|
||
|
prev_end = end;
|
||
|
base = rgn->base;
|
||
|
end = rgn->base + rgn->size;
|
||
|
|
||
|
/* only for the last */
|
||
|
if (idx + 1 == memblock_cnt) {
|
||
|
hole_s = round_up(end, SZ_256M) - end;
|
||
|
if (hole_s)
|
||
|
record_memsize_reserved(NULL, end, hole_s, 1, 0);
|
||
|
}
|
||
|
|
||
|
/* for each region */
|
||
|
hole_s = base - prev_end;
|
||
|
if (!hole_s)
|
||
|
continue;
|
||
|
if (hole_s < SZ_256M) {
|
||
|
record_memsize_reserved(NULL, prev_end, hole_s, 1, 0);
|
||
|
} else {
|
||
|
phys_addr_t hole_s1, hole_s2;
|
||
|
|
||
|
hole_s1 = round_up(prev_end, SZ_256M) - prev_end;
|
||
|
if (hole_s1)
|
||
|
record_memsize_reserved(NULL, prev_end,
|
||
|
hole_s1, 1, 0);
|
||
|
hole_s2 = base % SZ_256M;
|
||
|
if (hole_s2)
|
||
|
record_memsize_reserved(NULL, base - hole_s2,
|
||
|
hole_s2, 1, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_add_range - add new memblock region
|
||
|
* @type: memblock type to add new region into
|
||
|
* @base: base address of the new region
|
||
|
* @size: size of the new region
|
||
|
* @nid: nid of the new region
|
||
|
* @flags: flags of the new region
|
||
|
*
|
||
|
* Add new memblock region [@base, @base + @size) into @type. The new region
|
||
|
* is allowed to overlap with existing ones - overlaps don't affect already
|
||
|
* existing regions. @type is guaranteed to be minimal (all neighbouring
|
||
|
* compatible regions are merged) after the addition.
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_add_range(struct memblock_type *type,
|
||
|
phys_addr_t base, phys_addr_t size,
|
||
|
int nid, enum memblock_flags flags)
|
||
|
{
|
||
|
bool insert = false;
|
||
|
phys_addr_t obase = base;
|
||
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
||
|
int idx, nr_new;
|
||
|
struct memblock_region *rgn;
|
||
|
unsigned long new_size = 0;
|
||
|
|
||
|
if (!size)
|
||
|
return 0;
|
||
|
|
||
|
/* special case for empty array */
|
||
|
if (type->regions[0].size == 0) {
|
||
|
WARN_ON(type->cnt != 1 || type->total_size);
|
||
|
type->regions[0].base = base;
|
||
|
type->regions[0].size = size;
|
||
|
type->regions[0].flags = flags;
|
||
|
memblock_set_region_node(&type->regions[0], nid);
|
||
|
type->total_size = size;
|
||
|
new_size = (unsigned long)size;
|
||
|
goto done;
|
||
|
}
|
||
|
repeat:
|
||
|
/*
|
||
|
* The following is executed twice. Once with %false @insert and
|
||
|
* then with %true. The first counts the number of regions needed
|
||
|
* to accommodate the new area. The second actually inserts them.
|
||
|
*/
|
||
|
base = obase;
|
||
|
nr_new = 0;
|
||
|
|
||
|
for_each_memblock_type(idx, type, rgn) {
|
||
|
phys_addr_t rbase = rgn->base;
|
||
|
phys_addr_t rend = rbase + rgn->size;
|
||
|
|
||
|
if (rbase >= end)
|
||
|
break;
|
||
|
if (rend <= base)
|
||
|
continue;
|
||
|
/*
|
||
|
* @rgn overlaps. If it separates the lower part of new
|
||
|
* area, insert that portion.
|
||
|
*/
|
||
|
if (rbase > base) {
|
||
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
||
|
WARN_ON(nid != memblock_get_region_node(rgn));
|
||
|
#endif
|
||
|
WARN_ON(flags != rgn->flags);
|
||
|
nr_new++;
|
||
|
if (insert) {
|
||
|
memblock_insert_region(type, idx++, base,
|
||
|
rbase - base, nid,
|
||
|
flags);
|
||
|
new_size += (unsigned long)(rbase - base);
|
||
|
}
|
||
|
}
|
||
|
/* area below @rend is dealt with, forget about it */
|
||
|
base = min(rend, end);
|
||
|
}
|
||
|
|
||
|
/* insert the remaining portion */
|
||
|
if (base < end) {
|
||
|
nr_new++;
|
||
|
if (insert) {
|
||
|
memblock_insert_region(type, idx, base, end - base,
|
||
|
nid, flags);
|
||
|
new_size += (unsigned long)(end - base);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!nr_new)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* If this was the first round, resize array and repeat for actual
|
||
|
* insertions; otherwise, merge and return.
|
||
|
*/
|
||
|
if (!insert) {
|
||
|
while (type->cnt + nr_new > type->max)
|
||
|
if (memblock_double_array(type, obase, size) < 0)
|
||
|
return -ENOMEM;
|
||
|
insert = true;
|
||
|
goto repeat;
|
||
|
} else {
|
||
|
memblock_merge_regions(type);
|
||
|
}
|
||
|
done:
|
||
|
if (memsize_reserved_name && type == &memblock.reserved)
|
||
|
record_memsize_reserved(memsize_reserved_name, obase, size,
|
||
|
false, false);
|
||
|
else if (memsize_kernel_type != MEMSIZE_KERNEL_STOP &&
|
||
|
type == &memblock.reserved)
|
||
|
record_memsize_size_only(memsize_kernel_type, (long)new_size);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_add_node - add new memblock region within a NUMA node
|
||
|
* @base: base address of the new region
|
||
|
* @size: size of the new region
|
||
|
* @nid: nid of the new region
|
||
|
*
|
||
|
* Add new memblock region [@base, @base + @size) to the "memory"
|
||
|
* type. See memblock_add_range() description for mode details
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
|
||
|
int nid)
|
||
|
{
|
||
|
return memblock_add_range(&memblock.memory, base, size, nid, 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_add - add new memblock region
|
||
|
* @base: base address of the new region
|
||
|
* @size: size of the new region
|
||
|
*
|
||
|
* Add new memblock region [@base, @base + @size) to the "memory"
|
||
|
* type. See memblock_add_range() description for mode details
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
phys_addr_t end = base + size - 1;
|
||
|
|
||
|
memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
|
||
|
&base, &end, (void *)_RET_IP_);
|
||
|
|
||
|
return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_isolate_range - isolate given range into disjoint memblocks
|
||
|
* @type: memblock type to isolate range for
|
||
|
* @base: base of range to isolate
|
||
|
* @size: size of range to isolate
|
||
|
* @start_rgn: out parameter for the start of isolated region
|
||
|
* @end_rgn: out parameter for the end of isolated region
|
||
|
*
|
||
|
* Walk @type and ensure that regions don't cross the boundaries defined by
|
||
|
* [@base, @base + @size). Crossing regions are split at the boundaries,
|
||
|
* which may create at most two more regions. The index of the first
|
||
|
* region inside the range is returned in *@start_rgn and end in *@end_rgn.
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success, -errno on failure.
|
||
|
*/
|
||
|
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
|
||
|
phys_addr_t base, phys_addr_t size,
|
||
|
int *start_rgn, int *end_rgn)
|
||
|
{
|
||
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
||
|
int idx;
|
||
|
struct memblock_region *rgn;
|
||
|
|
||
|
*start_rgn = *end_rgn = 0;
|
||
|
|
||
|
if (!size)
|
||
|
return 0;
|
||
|
|
||
|
/* we'll create at most two more regions */
|
||
|
while (type->cnt + 2 > type->max)
|
||
|
if (memblock_double_array(type, base, size) < 0)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
for_each_memblock_type(idx, type, rgn) {
|
||
|
phys_addr_t rbase = rgn->base;
|
||
|
phys_addr_t rend = rbase + rgn->size;
|
||
|
|
||
|
if (rbase >= end)
|
||
|
break;
|
||
|
if (rend <= base)
|
||
|
continue;
|
||
|
|
||
|
if (rbase < base) {
|
||
|
/*
|
||
|
* @rgn intersects from below. Split and continue
|
||
|
* to process the next region - the new top half.
|
||
|
*/
|
||
|
rgn->base = base;
|
||
|
rgn->size -= base - rbase;
|
||
|
type->total_size -= base - rbase;
|
||
|
memblock_insert_region(type, idx, rbase, base - rbase,
|
||
|
memblock_get_region_node(rgn),
|
||
|
rgn->flags);
|
||
|
} else if (rend > end) {
|
||
|
/*
|
||
|
* @rgn intersects from above. Split and redo the
|
||
|
* current region - the new bottom half.
|
||
|
*/
|
||
|
rgn->base = end;
|
||
|
rgn->size -= end - rbase;
|
||
|
type->total_size -= end - rbase;
|
||
|
memblock_insert_region(type, idx--, rbase, end - rbase,
|
||
|
memblock_get_region_node(rgn),
|
||
|
rgn->flags);
|
||
|
} else {
|
||
|
/* @rgn is fully contained, record it */
|
||
|
if (!*end_rgn)
|
||
|
*start_rgn = idx;
|
||
|
*end_rgn = idx + 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __init_memblock memblock_remove_range(struct memblock_type *type,
|
||
|
phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
int start_rgn, end_rgn;
|
||
|
int i, ret;
|
||
|
|
||
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (memsize_reserved_name && type == &memblock.memory)
|
||
|
record_memsize_reserved(memsize_reserved_name, base, size,
|
||
|
true, false);
|
||
|
else if (type == &memblock.reserved)
|
||
|
free_memsize_reserved(base, size);
|
||
|
else if (memsize_kernel_type != MEMSIZE_KERNEL_STOP
|
||
|
&& type == &memblock.reserved)
|
||
|
record_memsize_size_only(memsize_kernel_type, size * -1);
|
||
|
for (i = end_rgn - 1; i >= start_rgn; i--)
|
||
|
memblock_remove_region(type, i);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
phys_addr_t end = base + size - 1;
|
||
|
|
||
|
memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
|
||
|
&base, &end, (void *)_RET_IP_);
|
||
|
|
||
|
return memblock_remove_range(&memblock.memory, base, size);
|
||
|
}
|
||
|
|
||
|
|
||
|
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
phys_addr_t end = base + size - 1;
|
||
|
|
||
|
memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
|
||
|
&base, &end, (void *)_RET_IP_);
|
||
|
|
||
|
kmemleak_free_part_phys(base, size);
|
||
|
return memblock_remove_range(&memblock.reserved, base, size);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(memblock_free);
|
||
|
|
||
|
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
phys_addr_t end = base + size - 1;
|
||
|
|
||
|
memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
|
||
|
&base, &end, (void *)_RET_IP_);
|
||
|
|
||
|
return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_setclr_flag - set or clear flag for a memory region
|
||
|
* @base: base address of the region
|
||
|
* @size: size of the region
|
||
|
* @set: set or clear the flag
|
||
|
* @flag: the flag to udpate
|
||
|
*
|
||
|
* This function isolates region [@base, @base + @size), and sets/clears flag
|
||
|
*
|
||
|
* Return: 0 on success, -errno on failure.
|
||
|
*/
|
||
|
static int __init_memblock memblock_setclr_flag(phys_addr_t base,
|
||
|
phys_addr_t size, int set, int flag)
|
||
|
{
|
||
|
struct memblock_type *type = &memblock.memory;
|
||
|
int i, ret, start_rgn, end_rgn;
|
||
|
|
||
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
for (i = start_rgn; i < end_rgn; i++)
|
||
|
if (set)
|
||
|
memblock_set_region_flags(&type->regions[i], flag);
|
||
|
else
|
||
|
memblock_clear_region_flags(&type->regions[i], flag);
|
||
|
|
||
|
memblock_merge_regions(type);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
|
||
|
* @base: the base phys addr of the region
|
||
|
* @size: the size of the region
|
||
|
*
|
||
|
* Return: 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
|
||
|
* @base: the base phys addr of the region
|
||
|
* @size: the size of the region
|
||
|
*
|
||
|
* Return: 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
|
||
|
* @base: the base phys addr of the region
|
||
|
* @size: the size of the region
|
||
|
*
|
||
|
* Return: 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
system_has_some_mirror = true;
|
||
|
|
||
|
return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
|
||
|
* @base: the base phys addr of the region
|
||
|
* @size: the size of the region
|
||
|
*
|
||
|
* Return: 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
|
||
|
* @base: the base phys addr of the region
|
||
|
* @size: the size of the region
|
||
|
*
|
||
|
* Return: 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __next_reserved_mem_region - next function for for_each_reserved_region()
|
||
|
* @idx: pointer to u64 loop variable
|
||
|
* @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
|
||
|
* @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
|
||
|
*
|
||
|
* Iterate over all reserved memory regions.
|
||
|
*/
|
||
|
void __init_memblock __next_reserved_mem_region(u64 *idx,
|
||
|
phys_addr_t *out_start,
|
||
|
phys_addr_t *out_end)
|
||
|
{
|
||
|
struct memblock_type *type = &memblock.reserved;
|
||
|
|
||
|
if (*idx < type->cnt) {
|
||
|
struct memblock_region *r = &type->regions[*idx];
|
||
|
phys_addr_t base = r->base;
|
||
|
phys_addr_t size = r->size;
|
||
|
|
||
|
if (out_start)
|
||
|
*out_start = base;
|
||
|
if (out_end)
|
||
|
*out_end = base + size - 1;
|
||
|
|
||
|
*idx += 1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* signal end of iteration */
|
||
|
*idx = ULLONG_MAX;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __next__mem_range - next function for for_each_free_mem_range() etc.
|
||
|
* @idx: pointer to u64 loop variable
|
||
|
* @nid: node selector, %NUMA_NO_NODE for all nodes
|
||
|
* @flags: pick from blocks based on memory attributes
|
||
|
* @type_a: pointer to memblock_type from where the range is taken
|
||
|
* @type_b: pointer to memblock_type which excludes memory from being taken
|
||
|
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
||
|
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
||
|
* @out_nid: ptr to int for nid of the range, can be %NULL
|
||
|
*
|
||
|
* Find the first area from *@idx which matches @nid, fill the out
|
||
|
* parameters, and update *@idx for the next iteration. The lower 32bit of
|
||
|
* *@idx contains index into type_a and the upper 32bit indexes the
|
||
|
* areas before each region in type_b. For example, if type_b regions
|
||
|
* look like the following,
|
||
|
*
|
||
|
* 0:[0-16), 1:[32-48), 2:[128-130)
|
||
|
*
|
||
|
* The upper 32bit indexes the following regions.
|
||
|
*
|
||
|
* 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
|
||
|
*
|
||
|
* As both region arrays are sorted, the function advances the two indices
|
||
|
* in lockstep and returns each intersection.
|
||
|
*/
|
||
|
void __init_memblock __next_mem_range(u64 *idx, int nid,
|
||
|
enum memblock_flags flags,
|
||
|
struct memblock_type *type_a,
|
||
|
struct memblock_type *type_b,
|
||
|
phys_addr_t *out_start,
|
||
|
phys_addr_t *out_end, int *out_nid)
|
||
|
{
|
||
|
int idx_a = *idx & 0xffffffff;
|
||
|
int idx_b = *idx >> 32;
|
||
|
|
||
|
if (WARN_ONCE(nid == MAX_NUMNODES,
|
||
|
"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
||
|
nid = NUMA_NO_NODE;
|
||
|
|
||
|
for (; idx_a < type_a->cnt; idx_a++) {
|
||
|
struct memblock_region *m = &type_a->regions[idx_a];
|
||
|
|
||
|
phys_addr_t m_start = m->base;
|
||
|
phys_addr_t m_end = m->base + m->size;
|
||
|
int m_nid = memblock_get_region_node(m);
|
||
|
|
||
|
/* only memory regions are associated with nodes, check it */
|
||
|
if (nid != NUMA_NO_NODE && nid != m_nid)
|
||
|
continue;
|
||
|
|
||
|
/* skip hotpluggable memory regions if needed */
|
||
|
if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
|
||
|
continue;
|
||
|
|
||
|
/* if we want mirror memory skip non-mirror memory regions */
|
||
|
if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
|
||
|
continue;
|
||
|
|
||
|
/* skip nomap memory unless we were asked for it explicitly */
|
||
|
if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
|
||
|
continue;
|
||
|
|
||
|
if (!type_b) {
|
||
|
if (out_start)
|
||
|
*out_start = m_start;
|
||
|
if (out_end)
|
||
|
*out_end = m_end;
|
||
|
if (out_nid)
|
||
|
*out_nid = m_nid;
|
||
|
idx_a++;
|
||
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* scan areas before each reservation */
|
||
|
for (; idx_b < type_b->cnt + 1; idx_b++) {
|
||
|
struct memblock_region *r;
|
||
|
phys_addr_t r_start;
|
||
|
phys_addr_t r_end;
|
||
|
|
||
|
r = &type_b->regions[idx_b];
|
||
|
r_start = idx_b ? r[-1].base + r[-1].size : 0;
|
||
|
r_end = idx_b < type_b->cnt ?
|
||
|
r->base : PHYS_ADDR_MAX;
|
||
|
|
||
|
/*
|
||
|
* if idx_b advanced past idx_a,
|
||
|
* break out to advance idx_a
|
||
|
*/
|
||
|
if (r_start >= m_end)
|
||
|
break;
|
||
|
/* if the two regions intersect, we're done */
|
||
|
if (m_start < r_end) {
|
||
|
if (out_start)
|
||
|
*out_start =
|
||
|
max(m_start, r_start);
|
||
|
if (out_end)
|
||
|
*out_end = min(m_end, r_end);
|
||
|
if (out_nid)
|
||
|
*out_nid = m_nid;
|
||
|
/*
|
||
|
* The region which ends first is
|
||
|
* advanced for the next iteration.
|
||
|
*/
|
||
|
if (m_end <= r_end)
|
||
|
idx_a++;
|
||
|
else
|
||
|
idx_b++;
|
||
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* signal end of iteration */
|
||
|
*idx = ULLONG_MAX;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __next_mem_range_rev - generic next function for for_each_*_range_rev()
|
||
|
*
|
||
|
* @idx: pointer to u64 loop variable
|
||
|
* @nid: node selector, %NUMA_NO_NODE for all nodes
|
||
|
* @flags: pick from blocks based on memory attributes
|
||
|
* @type_a: pointer to memblock_type from where the range is taken
|
||
|
* @type_b: pointer to memblock_type which excludes memory from being taken
|
||
|
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
||
|
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
||
|
* @out_nid: ptr to int for nid of the range, can be %NULL
|
||
|
*
|
||
|
* Finds the next range from type_a which is not marked as unsuitable
|
||
|
* in type_b.
|
||
|
*
|
||
|
* Reverse of __next_mem_range().
|
||
|
*/
|
||
|
void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
|
||
|
enum memblock_flags flags,
|
||
|
struct memblock_type *type_a,
|
||
|
struct memblock_type *type_b,
|
||
|
phys_addr_t *out_start,
|
||
|
phys_addr_t *out_end, int *out_nid)
|
||
|
{
|
||
|
int idx_a = *idx & 0xffffffff;
|
||
|
int idx_b = *idx >> 32;
|
||
|
|
||
|
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
||
|
nid = NUMA_NO_NODE;
|
||
|
|
||
|
if (*idx == (u64)ULLONG_MAX) {
|
||
|
idx_a = type_a->cnt - 1;
|
||
|
if (type_b != NULL)
|
||
|
idx_b = type_b->cnt;
|
||
|
else
|
||
|
idx_b = 0;
|
||
|
}
|
||
|
|
||
|
for (; idx_a >= 0; idx_a--) {
|
||
|
struct memblock_region *m = &type_a->regions[idx_a];
|
||
|
|
||
|
phys_addr_t m_start = m->base;
|
||
|
phys_addr_t m_end = m->base + m->size;
|
||
|
int m_nid = memblock_get_region_node(m);
|
||
|
|
||
|
/* only memory regions are associated with nodes, check it */
|
||
|
if (nid != NUMA_NO_NODE && nid != m_nid)
|
||
|
continue;
|
||
|
|
||
|
/* skip hotpluggable memory regions if needed */
|
||
|
if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
|
||
|
continue;
|
||
|
|
||
|
/* if we want mirror memory skip non-mirror memory regions */
|
||
|
if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
|
||
|
continue;
|
||
|
|
||
|
/* skip nomap memory unless we were asked for it explicitly */
|
||
|
if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
|
||
|
continue;
|
||
|
|
||
|
if (!type_b) {
|
||
|
if (out_start)
|
||
|
*out_start = m_start;
|
||
|
if (out_end)
|
||
|
*out_end = m_end;
|
||
|
if (out_nid)
|
||
|
*out_nid = m_nid;
|
||
|
idx_a--;
|
||
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* scan areas before each reservation */
|
||
|
for (; idx_b >= 0; idx_b--) {
|
||
|
struct memblock_region *r;
|
||
|
phys_addr_t r_start;
|
||
|
phys_addr_t r_end;
|
||
|
|
||
|
r = &type_b->regions[idx_b];
|
||
|
r_start = idx_b ? r[-1].base + r[-1].size : 0;
|
||
|
r_end = idx_b < type_b->cnt ?
|
||
|
r->base : PHYS_ADDR_MAX;
|
||
|
/*
|
||
|
* if idx_b advanced past idx_a,
|
||
|
* break out to advance idx_a
|
||
|
*/
|
||
|
|
||
|
if (r_end <= m_start)
|
||
|
break;
|
||
|
/* if the two regions intersect, we're done */
|
||
|
if (m_end > r_start) {
|
||
|
if (out_start)
|
||
|
*out_start = max(m_start, r_start);
|
||
|
if (out_end)
|
||
|
*out_end = min(m_end, r_end);
|
||
|
if (out_nid)
|
||
|
*out_nid = m_nid;
|
||
|
if (m_start >= r_start)
|
||
|
idx_a--;
|
||
|
else
|
||
|
idx_b--;
|
||
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* signal end of iteration */
|
||
|
*idx = ULLONG_MAX;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
||
|
/*
|
||
|
* Common iterator interface used to define for_each_mem_range().
|
||
|
*/
|
||
|
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
|
||
|
unsigned long *out_start_pfn,
|
||
|
unsigned long *out_end_pfn, int *out_nid)
|
||
|
{
|
||
|
struct memblock_type *type = &memblock.memory;
|
||
|
struct memblock_region *r;
|
||
|
|
||
|
while (++*idx < type->cnt) {
|
||
|
r = &type->regions[*idx];
|
||
|
|
||
|
if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
|
||
|
continue;
|
||
|
if (nid == MAX_NUMNODES || nid == r->nid)
|
||
|
break;
|
||
|
}
|
||
|
if (*idx >= type->cnt) {
|
||
|
*idx = -1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (out_start_pfn)
|
||
|
*out_start_pfn = PFN_UP(r->base);
|
||
|
if (out_end_pfn)
|
||
|
*out_end_pfn = PFN_DOWN(r->base + r->size);
|
||
|
if (out_nid)
|
||
|
*out_nid = r->nid;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_set_node - set node ID on memblock regions
|
||
|
* @base: base of area to set node ID for
|
||
|
* @size: size of area to set node ID for
|
||
|
* @type: memblock type to set node ID for
|
||
|
* @nid: node ID to set
|
||
|
*
|
||
|
* Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
|
||
|
* Regions which cross the area boundaries are split as necessary.
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 on success, -errno on failure.
|
||
|
*/
|
||
|
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
|
||
|
struct memblock_type *type, int nid)
|
||
|
{
|
||
|
int start_rgn, end_rgn;
|
||
|
int i, ret;
|
||
|
|
||
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
for (i = start_rgn; i < end_rgn; i++)
|
||
|
memblock_set_region_node(&type->regions[i], nid);
|
||
|
|
||
|
memblock_merge_regions(type);
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
||
|
|
||
|
static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
|
||
|
phys_addr_t align, phys_addr_t start,
|
||
|
phys_addr_t end, int nid,
|
||
|
enum memblock_flags flags)
|
||
|
{
|
||
|
phys_addr_t found;
|
||
|
|
||
|
if (!align)
|
||
|
align = SMP_CACHE_BYTES;
|
||
|
|
||
|
found = memblock_find_in_range_node(size, align, start, end, nid,
|
||
|
flags);
|
||
|
if (found && !memblock_reserve(found, size)) {
|
||
|
/*
|
||
|
* The min_count is set to 0 so that memblock allocations are
|
||
|
* never reported as leaks.
|
||
|
*/
|
||
|
kmemleak_alloc_phys(found, size, 0, 0);
|
||
|
return found;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
|
||
|
phys_addr_t start, phys_addr_t end,
|
||
|
enum memblock_flags flags)
|
||
|
{
|
||
|
return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
|
||
|
flags);
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
|
||
|
phys_addr_t align, phys_addr_t max_addr,
|
||
|
int nid, enum memblock_flags flags)
|
||
|
{
|
||
|
return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
|
||
|
{
|
||
|
enum memblock_flags flags = choose_memblock_flags();
|
||
|
phys_addr_t ret;
|
||
|
|
||
|
again:
|
||
|
ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
|
||
|
nid, flags);
|
||
|
|
||
|
if (!ret && (flags & MEMBLOCK_MIRROR)) {
|
||
|
flags &= ~MEMBLOCK_MIRROR;
|
||
|
goto again;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
|
||
|
{
|
||
|
return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
|
||
|
MEMBLOCK_NONE);
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
|
||
|
{
|
||
|
phys_addr_t alloc;
|
||
|
|
||
|
alloc = __memblock_alloc_base(size, align, max_addr);
|
||
|
|
||
|
if (alloc == 0)
|
||
|
panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
|
||
|
&size, &max_addr);
|
||
|
|
||
|
return alloc;
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
|
||
|
{
|
||
|
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
|
||
|
{
|
||
|
phys_addr_t res = memblock_alloc_nid(size, align, nid);
|
||
|
|
||
|
if (res)
|
||
|
return res;
|
||
|
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
||
|
}
|
||
|
|
||
|
#if defined(CONFIG_NO_BOOTMEM)
|
||
|
/**
|
||
|
* memblock_virt_alloc_internal - allocate boot memory block
|
||
|
* @size: size of memory block to be allocated in bytes
|
||
|
* @align: alignment of the region and block's size
|
||
|
* @min_addr: the lower bound of the memory region to allocate (phys address)
|
||
|
* @max_addr: the upper bound of the memory region to allocate (phys address)
|
||
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
||
|
*
|
||
|
* The @min_addr limit is dropped if it can not be satisfied and the allocation
|
||
|
* will fall back to memory below @min_addr. Also, allocation may fall back
|
||
|
* to any node in the system if the specified node can not
|
||
|
* hold the requested memory.
|
||
|
*
|
||
|
* The allocation is performed from memory region limited by
|
||
|
* memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
|
||
|
*
|
||
|
* The memory block is aligned on %SMP_CACHE_BYTES if @align == 0.
|
||
|
*
|
||
|
* The phys address of allocated boot memory block is converted to virtual and
|
||
|
* allocated memory is reset to 0.
|
||
|
*
|
||
|
* In addition, function sets the min_count to 0 using kmemleak_alloc for
|
||
|
* allocated boot memory block, so that it is never reported as leaks.
|
||
|
*
|
||
|
* Return:
|
||
|
* Virtual address of allocated memory block on success, NULL on failure.
|
||
|
*/
|
||
|
static void * __init memblock_virt_alloc_internal(
|
||
|
phys_addr_t size, phys_addr_t align,
|
||
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
||
|
int nid)
|
||
|
{
|
||
|
phys_addr_t alloc;
|
||
|
void *ptr;
|
||
|
enum memblock_flags flags = choose_memblock_flags();
|
||
|
|
||
|
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
||
|
nid = NUMA_NO_NODE;
|
||
|
|
||
|
/*
|
||
|
* Detect any accidental use of these APIs after slab is ready, as at
|
||
|
* this moment memblock may be deinitialized already and its
|
||
|
* internal data may be destroyed (after execution of free_all_bootmem)
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(slab_is_available()))
|
||
|
return kzalloc_node(size, GFP_NOWAIT, nid);
|
||
|
|
||
|
if (!align)
|
||
|
align = SMP_CACHE_BYTES;
|
||
|
|
||
|
if (max_addr > memblock.current_limit)
|
||
|
max_addr = memblock.current_limit;
|
||
|
again:
|
||
|
alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
|
||
|
nid, flags);
|
||
|
if (alloc && !memblock_reserve(alloc, size))
|
||
|
goto done;
|
||
|
|
||
|
if (nid != NUMA_NO_NODE) {
|
||
|
alloc = memblock_find_in_range_node(size, align, min_addr,
|
||
|
max_addr, NUMA_NO_NODE,
|
||
|
flags);
|
||
|
if (alloc && !memblock_reserve(alloc, size))
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if (min_addr) {
|
||
|
min_addr = 0;
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
if (flags & MEMBLOCK_MIRROR) {
|
||
|
flags &= ~MEMBLOCK_MIRROR;
|
||
|
pr_warn("Could not allocate %pap bytes of mirrored memory\n",
|
||
|
&size);
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
done:
|
||
|
ptr = phys_to_virt(alloc);
|
||
|
|
||
|
/* Skip kmemleak for kasan_init() due to high volume. */
|
||
|
if (max_addr != MEMBLOCK_ALLOC_KASAN)
|
||
|
/*
|
||
|
* The min_count is set to 0 so that bootmem allocated
|
||
|
* blocks are never reported as leaks. This is because many
|
||
|
* of these blocks are only referred via the physical
|
||
|
* address which is not looked up by kmemleak.
|
||
|
*/
|
||
|
kmemleak_alloc(ptr, size, 0, 0);
|
||
|
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
|
||
|
* memory and without panicking
|
||
|
* @size: size of memory block to be allocated in bytes
|
||
|
* @align: alignment of the region and block's size
|
||
|
* @min_addr: the lower bound of the memory region from where the allocation
|
||
|
* is preferred (phys address)
|
||
|
* @max_addr: the upper bound of the memory region from where the allocation
|
||
|
* is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
|
||
|
* allocate only from memory limited by memblock.current_limit value
|
||
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
||
|
*
|
||
|
* Public function, provides additional debug information (including caller
|
||
|
* info), if enabled. Does not zero allocated memory, does not panic if request
|
||
|
* cannot be satisfied.
|
||
|
*
|
||
|
* Return:
|
||
|
* Virtual address of allocated memory block on success, NULL on failure.
|
||
|
*/
|
||
|
void * __init memblock_virt_alloc_try_nid_raw(
|
||
|
phys_addr_t size, phys_addr_t align,
|
||
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
||
|
int nid)
|
||
|
{
|
||
|
void *ptr;
|
||
|
|
||
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
|
||
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
||
|
&max_addr, (void *)_RET_IP_);
|
||
|
|
||
|
ptr = memblock_virt_alloc_internal(size, align,
|
||
|
min_addr, max_addr, nid);
|
||
|
#ifdef CONFIG_DEBUG_VM
|
||
|
if (ptr && size > 0)
|
||
|
memset(ptr, PAGE_POISON_PATTERN, size);
|
||
|
#endif
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
|
||
|
* @size: size of memory block to be allocated in bytes
|
||
|
* @align: alignment of the region and block's size
|
||
|
* @min_addr: the lower bound of the memory region from where the allocation
|
||
|
* is preferred (phys address)
|
||
|
* @max_addr: the upper bound of the memory region from where the allocation
|
||
|
* is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
|
||
|
* allocate only from memory limited by memblock.current_limit value
|
||
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
||
|
*
|
||
|
* Public function, provides additional debug information (including caller
|
||
|
* info), if enabled. This function zeroes the allocated memory.
|
||
|
*
|
||
|
* Return:
|
||
|
* Virtual address of allocated memory block on success, NULL on failure.
|
||
|
*/
|
||
|
void * __init memblock_virt_alloc_try_nid_nopanic(
|
||
|
phys_addr_t size, phys_addr_t align,
|
||
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
||
|
int nid)
|
||
|
{
|
||
|
void *ptr;
|
||
|
|
||
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
|
||
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
||
|
&max_addr, (void *)_RET_IP_);
|
||
|
|
||
|
ptr = memblock_virt_alloc_internal(size, align,
|
||
|
min_addr, max_addr, nid);
|
||
|
if (ptr)
|
||
|
memset(ptr, 0, size);
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memblock_virt_alloc_try_nid - allocate boot memory block with panicking
|
||
|
* @size: size of memory block to be allocated in bytes
|
||
|
* @align: alignment of the region and block's size
|
||
|
* @min_addr: the lower bound of the memory region from where the allocation
|
||
|
* is preferred (phys address)
|
||
|
* @max_addr: the upper bound of the memory region from where the allocation
|
||
|
* is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
|
||
|
* allocate only from memory limited by memblock.current_limit value
|
||
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
||
|
*
|
||
|
* Public panicking version of memblock_virt_alloc_try_nid_nopanic()
|
||
|
* which provides debug information (including caller info), if enabled,
|
||
|
* and panics if the request can not be satisfied.
|
||
|
*
|
||
|
* Return:
|
||
|
* Virtual address of allocated memory block on success, NULL on failure.
|
||
|
*/
|
||
|
void * __init memblock_virt_alloc_try_nid(
|
||
|
phys_addr_t size, phys_addr_t align,
|
||
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
||
|
int nid)
|
||
|
{
|
||
|
void *ptr;
|
||
|
|
||
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
|
||
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
||
|
&max_addr, (void *)_RET_IP_);
|
||
|
ptr = memblock_virt_alloc_internal(size, align,
|
||
|
min_addr, max_addr, nid);
|
||
|
if (ptr) {
|
||
|
memset(ptr, 0, size);
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
|
||
|
__func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
|
||
|
return NULL;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* __memblock_free_early - free boot memory block
|
||
|
* @base: phys starting address of the boot memory block
|
||
|
* @size: size of the boot memory block in bytes
|
||
|
*
|
||
|
* Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
|
||
|
* The freeing memory will not be released to the buddy allocator.
|
||
|
*/
|
||
|
void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
memblock_free(base, size);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __memblock_free_late - free bootmem block pages directly to buddy allocator
|
||
|
* @base: phys starting address of the boot memory block
|
||
|
* @size: size of the boot memory block in bytes
|
||
|
*
|
||
|
* This is only useful when the bootmem allocator has already been torn
|
||
|
* down, but we are still initializing the system. Pages are released directly
|
||
|
* to the buddy allocator, no bootmem metadata is updated because it is gone.
|
||
|
*/
|
||
|
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
phys_addr_t cursor, end;
|
||
|
|
||
|
end = base + size - 1;
|
||
|
memblock_dbg("%s: [%pa-%pa] %pF\n",
|
||
|
__func__, &base, &end, (void *)_RET_IP_);
|
||
|
kmemleak_free_part_phys(base, size);
|
||
|
cursor = PFN_UP(base);
|
||
|
end = PFN_DOWN(base + size);
|
||
|
|
||
|
for (; cursor < end; cursor++) {
|
||
|
__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
|
||
|
totalram_pages++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Remaining API functions
|
||
|
*/
|
||
|
|
||
|
phys_addr_t __init_memblock memblock_phys_mem_size(void)
|
||
|
{
|
||
|
return memblock.memory.total_size;
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init_memblock memblock_reserved_size(void)
|
||
|
{
|
||
|
return memblock.reserved.total_size;
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
|
||
|
{
|
||
|
unsigned long pages = 0;
|
||
|
struct memblock_region *r;
|
||
|
unsigned long start_pfn, end_pfn;
|
||
|
|
||
|
for_each_memblock(memory, r) {
|
||
|
start_pfn = memblock_region_memory_base_pfn(r);
|
||
|
end_pfn = memblock_region_memory_end_pfn(r);
|
||
|
start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
|
||
|
end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
|
||
|
pages += end_pfn - start_pfn;
|
||
|
}
|
||
|
|
||
|
return PFN_PHYS(pages);
|
||
|
}
|
||
|
|
||
|
/* lowest address */
|
||
|
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
|
||
|
{
|
||
|
return memblock.memory.regions[0].base;
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
|
||
|
{
|
||
|
int idx = memblock.memory.cnt - 1;
|
||
|
|
||
|
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
|
||
|
}
|
||
|
|
||
|
static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
|
||
|
{
|
||
|
phys_addr_t max_addr = PHYS_ADDR_MAX;
|
||
|
struct memblock_region *r;
|
||
|
|
||
|
/*
|
||
|
* translate the memory @limit size into the max address within one of
|
||
|
* the memory memblock regions, if the @limit exceeds the total size
|
||
|
* of those regions, max_addr will keep original value PHYS_ADDR_MAX
|
||
|
*/
|
||
|
for_each_memblock(memory, r) {
|
||
|
if (limit <= r->size) {
|
||
|
max_addr = r->base + limit;
|
||
|
break;
|
||
|
}
|
||
|
limit -= r->size;
|
||
|
}
|
||
|
|
||
|
return max_addr;
|
||
|
}
|
||
|
|
||
|
void __init memblock_enforce_memory_limit(phys_addr_t limit)
|
||
|
{
|
||
|
phys_addr_t max_addr = PHYS_ADDR_MAX;
|
||
|
|
||
|
if (!limit)
|
||
|
return;
|
||
|
|
||
|
max_addr = __find_max_addr(limit);
|
||
|
|
||
|
/* @limit exceeds the total size of the memory, do nothing */
|
||
|
if (max_addr == PHYS_ADDR_MAX)
|
||
|
return;
|
||
|
|
||
|
/* truncate both memory and reserved regions */
|
||
|
memblock_remove_range(&memblock.memory, max_addr,
|
||
|
PHYS_ADDR_MAX);
|
||
|
memblock_remove_range(&memblock.reserved, max_addr,
|
||
|
PHYS_ADDR_MAX);
|
||
|
}
|
||
|
|
||
|
void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
int start_rgn, end_rgn;
|
||
|
int i, ret;
|
||
|
|
||
|
if (!size)
|
||
|
return;
|
||
|
|
||
|
ret = memblock_isolate_range(&memblock.memory, base, size,
|
||
|
&start_rgn, &end_rgn);
|
||
|
if (ret)
|
||
|
return;
|
||
|
|
||
|
/* remove all the MAP regions */
|
||
|
for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
|
||
|
if (!memblock_is_nomap(&memblock.memory.regions[i]))
|
||
|
memblock_remove_region(&memblock.memory, i);
|
||
|
|
||
|
for (i = start_rgn - 1; i >= 0; i--)
|
||
|
if (!memblock_is_nomap(&memblock.memory.regions[i]))
|
||
|
memblock_remove_region(&memblock.memory, i);
|
||
|
|
||
|
/* truncate the reserved regions */
|
||
|
memblock_remove_range(&memblock.reserved, 0, base);
|
||
|
memblock_remove_range(&memblock.reserved,
|
||
|
base + size, PHYS_ADDR_MAX);
|
||
|
}
|
||
|
|
||
|
void __init memblock_mem_limit_remove_map(phys_addr_t limit)
|
||
|
{
|
||
|
phys_addr_t max_addr;
|
||
|
|
||
|
if (!limit)
|
||
|
return;
|
||
|
|
||
|
max_addr = __find_max_addr(limit);
|
||
|
|
||
|
/* @limit exceeds the total size of the memory, do nothing */
|
||
|
if (max_addr == PHYS_ADDR_MAX)
|
||
|
return;
|
||
|
|
||
|
memblock_cap_memory_range(0, max_addr);
|
||
|
}
|
||
|
|
||
|
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
|
||
|
{
|
||
|
unsigned int left = 0, right = type->cnt;
|
||
|
|
||
|
do {
|
||
|
unsigned int mid = (right + left) / 2;
|
||
|
|
||
|
if (addr < type->regions[mid].base)
|
||
|
right = mid;
|
||
|
else if (addr >= (type->regions[mid].base +
|
||
|
type->regions[mid].size))
|
||
|
left = mid + 1;
|
||
|
else
|
||
|
return mid;
|
||
|
} while (left < right);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
bool __init memblock_is_reserved(phys_addr_t addr)
|
||
|
{
|
||
|
return memblock_search(&memblock.reserved, addr) != -1;
|
||
|
}
|
||
|
|
||
|
bool __init_memblock memblock_is_memory(phys_addr_t addr)
|
||
|
{
|
||
|
return memblock_search(&memblock.memory, addr) != -1;
|
||
|
}
|
||
|
|
||
|
bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
|
||
|
{
|
||
|
int i = memblock_search(&memblock.memory, addr);
|
||
|
|
||
|
if (i == -1)
|
||
|
return false;
|
||
|
return !memblock_is_nomap(&memblock.memory.regions[i]);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
||
|
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
|
||
|
unsigned long *start_pfn, unsigned long *end_pfn)
|
||
|
{
|
||
|
struct memblock_type *type = &memblock.memory;
|
||
|
int mid = memblock_search(type, PFN_PHYS(pfn));
|
||
|
|
||
|
if (mid == -1)
|
||
|
return -1;
|
||
|
|
||
|
*start_pfn = PFN_DOWN(type->regions[mid].base);
|
||
|
*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
|
||
|
|
||
|
return type->regions[mid].nid;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* memblock_is_region_memory - check if a region is a subset of memory
|
||
|
* @base: base of region to check
|
||
|
* @size: size of region to check
|
||
|
*
|
||
|
* Check if the region [@base, @base + @size) is a subset of a memory block.
|
||
|
*
|
||
|
* Return:
|
||
|
* 0 if false, non-zero if true
|
||
|
*/
|
||
|
bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
int idx = memblock_search(&memblock.memory, base);
|
||
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
||
|
|
||
|
if (idx == -1)
|
||
|
return false;
|
||
|
return (memblock.memory.regions[idx].base +
|
||
|
memblock.memory.regions[idx].size) >= end;
|
||
|
}
|
||
|
|
||
|
bool __init_memblock memblock_overlaps_memory(phys_addr_t base,
|
||
|
phys_addr_t size)
|
||
|
{
|
||
|
memblock_cap_size(base, &size);
|
||
|
|
||
|
return memblock_overlaps_region(&memblock.memory, base, size);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(memblock_overlaps_memory);
|
||
|
|
||
|
/**
|
||
|
* memblock_is_region_reserved - check if a region intersects reserved memory
|
||
|
* @base: base of region to check
|
||
|
* @size: size of region to check
|
||
|
*
|
||
|
* Check if the region [@base, @base + @size) intersects a reserved
|
||
|
* memory block.
|
||
|
*
|
||
|
* Return:
|
||
|
* True if they intersect, false if not.
|
||
|
*/
|
||
|
bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
|
||
|
{
|
||
|
memblock_cap_size(base, &size);
|
||
|
return memblock_overlaps_region(&memblock.reserved, base, size);
|
||
|
}
|
||
|
|
||
|
void __init_memblock memblock_trim_memory(phys_addr_t align)
|
||
|
{
|
||
|
phys_addr_t start, end, orig_start, orig_end;
|
||
|
struct memblock_region *r;
|
||
|
|
||
|
for_each_memblock(memory, r) {
|
||
|
orig_start = r->base;
|
||
|
orig_end = r->base + r->size;
|
||
|
start = round_up(orig_start, align);
|
||
|
end = round_down(orig_end, align);
|
||
|
|
||
|
if (start == orig_start && end == orig_end)
|
||
|
continue;
|
||
|
|
||
|
if (start < end) {
|
||
|
r->base = start;
|
||
|
r->size = end - start;
|
||
|
} else {
|
||
|
memblock_remove_region(&memblock.memory,
|
||
|
r - memblock.memory.regions);
|
||
|
r--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
|
||
|
{
|
||
|
memblock.current_limit = limit;
|
||
|
}
|
||
|
|
||
|
phys_addr_t __init_memblock memblock_get_current_limit(void)
|
||
|
{
|
||
|
return memblock.current_limit;
|
||
|
}
|
||
|
|
||
|
static void __init_memblock memblock_dump(struct memblock_type *type)
|
||
|
{
|
||
|
phys_addr_t base, end, size;
|
||
|
enum memblock_flags flags;
|
||
|
int idx;
|
||
|
struct memblock_region *rgn;
|
||
|
|
||
|
pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
|
||
|
|
||
|
for_each_memblock_type(idx, type, rgn) {
|
||
|
char nid_buf[32] = "";
|
||
|
|
||
|
base = rgn->base;
|
||
|
size = rgn->size;
|
||
|
end = base + size - 1;
|
||
|
flags = rgn->flags;
|
||
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
||
|
if (memblock_get_region_node(rgn) != MAX_NUMNODES)
|
||
|
snprintf(nid_buf, sizeof(nid_buf), " on node %d",
|
||
|
memblock_get_region_node(rgn));
|
||
|
#endif
|
||
|
pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
|
||
|
type->name, idx, &base, &end, &size, nid_buf, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __init_memblock __memblock_dump_all(void)
|
||
|
{
|
||
|
pr_info("MEMBLOCK configuration:\n");
|
||
|
pr_info(" memory size = %pa reserved size = %pa\n",
|
||
|
&memblock.memory.total_size,
|
||
|
&memblock.reserved.total_size);
|
||
|
|
||
|
memblock_dump(&memblock.memory);
|
||
|
memblock_dump(&memblock.reserved);
|
||
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
||
|
memblock_dump(&memblock.physmem);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void __init memblock_allow_resize(void)
|
||
|
{
|
||
|
memblock_can_resize = 1;
|
||
|
}
|
||
|
|
||
|
static int __init early_memblock(char *p)
|
||
|
{
|
||
|
if (p && strstr(p, "debug"))
|
||
|
memblock_debug = 1;
|
||
|
return 0;
|
||
|
}
|
||
|
early_param("memblock", early_memblock);
|
||
|
|
||
|
static int memsize_kernel_show(struct seq_file *m, void *private)
|
||
|
{
|
||
|
int i;
|
||
|
unsigned long total, initmem, kernel, text, rodata, data, bss, etc;
|
||
|
struct reserved_mem_reg *rmem_reg;
|
||
|
unsigned long unsigned_size;
|
||
|
|
||
|
initmem = __init_end - __init_begin;
|
||
|
rmem_reg = &kernel_mem_reg[MEMSIZE_KERNEL_KERNEL];
|
||
|
kernel = rmem_reg->size - initmem;
|
||
|
text = _etext - _text;
|
||
|
rodata = __end_rodata - __start_rodata;
|
||
|
if (__start_rodata < _etext)
|
||
|
text -= rodata;
|
||
|
data = _edata - _sdata;
|
||
|
bss = __bss_stop - __bss_start;
|
||
|
etc = kernel - text - rodata - data - bss;
|
||
|
|
||
|
seq_printf(m, " Kernel : %8lu KB\n"
|
||
|
" .text : %8lu KB\n"
|
||
|
" .rodata : %8lu KB\n"
|
||
|
" .data : %8lu KB\n"
|
||
|
" .BSS : %8lu KB\n"
|
||
|
" .ETC : %8lu KB\n",
|
||
|
DIV_ROUND_UP(kernel, SZ_1K),
|
||
|
DIV_ROUND_UP(text, SZ_1K),
|
||
|
DIV_ROUND_UP(rodata, SZ_1K),
|
||
|
DIV_ROUND_UP(data, SZ_1K),
|
||
|
DIV_ROUND_UP(bss, SZ_1K),
|
||
|
DIV_ROUND_UP(etc, SZ_1K));
|
||
|
|
||
|
total = kernel;
|
||
|
for (i = MEMSIZE_KERNEL_KERNEL + 1; i < MEMSIZE_KERNEL_STOP; i++) {
|
||
|
rmem_reg = &kernel_mem_reg[i];
|
||
|
unsigned_size = (unsigned long)rmem_reg->size;
|
||
|
|
||
|
seq_printf(m, " %s : %8lu KB\n", rmem_reg->name,
|
||
|
DIV_ROUND_UP(unsigned_size, SZ_1K));
|
||
|
total += unsigned_size;
|
||
|
}
|
||
|
seq_printf(m, " Total : %8lu KB\n", DIV_ROUND_UP(total, SZ_1K));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static unsigned long get_memsize_kernel(void)
|
||
|
{
|
||
|
int i;
|
||
|
unsigned long total;
|
||
|
struct reserved_mem_reg *rmem_reg;
|
||
|
|
||
|
rmem_reg = &kernel_mem_reg[MEMSIZE_KERNEL_KERNEL];
|
||
|
total = rmem_reg->size - (__init_end - __init_begin);
|
||
|
|
||
|
for (i = MEMSIZE_KERNEL_KERNEL + 1; i < MEMSIZE_KERNEL_STOP; i++) {
|
||
|
rmem_reg = &kernel_mem_reg[i];
|
||
|
total += (unsigned long)rmem_reg->size;
|
||
|
}
|
||
|
|
||
|
return total;
|
||
|
}
|
||
|
|
||
|
static int proc_memsize_kernel_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return single_open(file, memsize_kernel_show, NULL);
|
||
|
}
|
||
|
|
||
|
static const struct file_operations proc_memsize_kernel_fops = {
|
||
|
.open = proc_memsize_kernel_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = single_release,
|
||
|
};
|
||
|
|
||
|
static int __rmem_reg_cmp(const void *a, const void *b)
|
||
|
{
|
||
|
const struct reserved_mem_reg *ra = a, *rb = b;
|
||
|
|
||
|
if (ra->base > rb->base)
|
||
|
return -1;
|
||
|
|
||
|
if (ra->base < rb->base)
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int memsize_reserved_show(struct seq_file *m, void *private)
|
||
|
{
|
||
|
int i;
|
||
|
struct reserved_mem_reg *rmem_reg;
|
||
|
unsigned long dt_reserved = 0, reusable = 0, kernel, total;
|
||
|
unsigned long system = totalram_pages << PAGE_SHIFT;
|
||
|
|
||
|
#ifdef CONFIG_ION_RBIN_HEAP
|
||
|
system += totalrbin_pages << PAGE_SHIFT;
|
||
|
#endif
|
||
|
update_memsize_late_free();
|
||
|
sort(reserved_mem_reg, reserved_mem_reg_count,
|
||
|
sizeof(reserved_mem_reg[0]), __rmem_reg_cmp, NULL);
|
||
|
seq_printf(m, "v1\n");
|
||
|
for (i = 0 ; i < reserved_mem_reg_count; i++) {
|
||
|
rmem_reg = &reserved_mem_reg[i];
|
||
|
seq_printf(m, "0x%09lx-0x%09lx 0x%08lx ( %7lu KB ) %s %s %s\n",
|
||
|
#if defined(CONFIG_SAMSUNG_PRODUCT_SHIP)
|
||
|
0UL,
|
||
|
0UL,
|
||
|
#else
|
||
|
(unsigned long)rmem_reg->base,
|
||
|
(unsigned long)(rmem_reg->base + rmem_reg->size),
|
||
|
#endif
|
||
|
(unsigned long)rmem_reg->size,
|
||
|
(unsigned long)DIV_ROUND_UP(rmem_reg->size, SZ_1K),
|
||
|
#if defined(CONFIG_SAMSUNG_PRODUCT_SHIP)
|
||
|
"xxxxx",
|
||
|
#else
|
||
|
rmem_reg->nomap ? "nomap" : " map",
|
||
|
#endif
|
||
|
rmem_reg->reusable ? "reusable" : "unusable",
|
||
|
rmem_reg->name);
|
||
|
if (rmem_reg->reusable)
|
||
|
reusable += (unsigned long)rmem_reg->size;
|
||
|
else
|
||
|
dt_reserved += (unsigned long)rmem_reg->size;
|
||
|
}
|
||
|
|
||
|
kernel = get_memsize_kernel();
|
||
|
seq_printf(m, "0x%09lx-0x%09lx 0x%08lx ( %7lu KB ) %s %s %s\n",
|
||
|
0UL, 0UL, kernel, DIV_ROUND_UP(kernel, SZ_1K), "xxxxx",
|
||
|
"unusable", "kernel");
|
||
|
total = kernel + dt_reserved + system;
|
||
|
|
||
|
seq_printf(m, "\n");
|
||
|
seq_printf(m, "Reserved : %7lu KB\n",
|
||
|
DIV_ROUND_UP(kernel + dt_reserved, SZ_1K));
|
||
|
seq_printf(m, " .kernel : %7lu KB\n",
|
||
|
DIV_ROUND_UP(kernel, SZ_1K));
|
||
|
seq_printf(m, " .DT&EPARAM : %7lu KB\n",
|
||
|
DIV_ROUND_UP(dt_reserved, SZ_1K));
|
||
|
seq_printf(m, "System : %7lu KB\n",
|
||
|
DIV_ROUND_UP(system, SZ_1K));
|
||
|
seq_printf(m, " .common : %7lu KB\n",
|
||
|
DIV_ROUND_UP(system - reusable, SZ_1K));
|
||
|
seq_printf(m, " .reusable : %7lu KB\n",
|
||
|
DIV_ROUND_UP(reusable, SZ_1K));
|
||
|
seq_printf(m, "Total : %7lu KB ( %5lu.%02lu MB )\n",
|
||
|
DIV_ROUND_UP(total, SZ_1K),
|
||
|
total >> 20, ((total % SZ_1M) * 100) >> 20);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int proc_memsize_reserved_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return single_open(file, memsize_reserved_show, NULL);
|
||
|
}
|
||
|
|
||
|
static const struct file_operations proc_memsize_reserved_fops = {
|
||
|
.open = proc_memsize_reserved_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = single_release,
|
||
|
};
|
||
|
|
||
|
static int __init memblock_memsize_init(void)
|
||
|
{
|
||
|
if (proc_mkdir("memsize", NULL)) {
|
||
|
proc_create("memsize/kernel", 0, NULL, &proc_memsize_kernel_fops);
|
||
|
proc_create("memsize/reserved", 0, NULL, &proc_memsize_reserved_fops);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
__initcall(memblock_memsize_init);
|
||
|
|
||
|
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
|
||
|
|
||
|
static int memblock_debug_show(struct seq_file *m, void *private)
|
||
|
{
|
||
|
struct memblock_type *type = m->private;
|
||
|
struct memblock_region *reg;
|
||
|
int i;
|
||
|
phys_addr_t end;
|
||
|
|
||
|
for (i = 0; i < type->cnt; i++) {
|
||
|
reg = &type->regions[i];
|
||
|
end = reg->base + reg->size - 1;
|
||
|
|
||
|
seq_printf(m, "%4d: ", i);
|
||
|
seq_printf(m, "%pa..%pa\n", ®->base, &end);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int memblock_debug_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return single_open(file, memblock_debug_show, inode->i_private);
|
||
|
}
|
||
|
|
||
|
static const struct file_operations memblock_debug_fops = {
|
||
|
.open = memblock_debug_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = single_release,
|
||
|
};
|
||
|
|
||
|
static int __init memblock_init_debugfs(void)
|
||
|
{
|
||
|
struct dentry *root = debugfs_create_dir("memblock", NULL);
|
||
|
if (!root)
|
||
|
return -ENXIO;
|
||
|
debugfs_create_file("memory", 0444, root,
|
||
|
&memblock.memory, &memblock_debug_fops);
|
||
|
debugfs_create_file("reserved", 0444, root,
|
||
|
&memblock.reserved, &memblock_debug_fops);
|
||
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
||
|
debugfs_create_file("physmem", 0444, root,
|
||
|
&memblock.physmem, &memblock_debug_fops);
|
||
|
#endif
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
__initcall(memblock_init_debugfs);
|
||
|
|
||
|
#endif /* CONFIG_DEBUG_FS */
|