2130 lines
54 KiB
C
2130 lines
54 KiB
C
|
/*
|
||
|
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
|
||
|
*
|
||
|
* Authors:
|
||
|
* Alexander Graf <agraf@suse.de>
|
||
|
* Kevin Wolf <mail@kevin-wolf.de>
|
||
|
* Paul Mackerras <paulus@samba.org>
|
||
|
*
|
||
|
* Description:
|
||
|
* Functions relating to running KVM on Book 3S processors where
|
||
|
* we don't have access to hypervisor mode, and we run the guest
|
||
|
* in problem state (user mode).
|
||
|
*
|
||
|
* This file is derived from arch/powerpc/kvm/44x.c,
|
||
|
* by Hollis Blanchard <hollisb@us.ibm.com>.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License, version 2, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <asm/reg.h>
|
||
|
#include <asm/cputable.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/kvm_ppc.h>
|
||
|
#include <asm/kvm_book3s.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/switch_to.h>
|
||
|
#include <asm/firmware.h>
|
||
|
#include <asm/setup.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/miscdevice.h>
|
||
|
#include <asm/asm-prototypes.h>
|
||
|
#include <asm/tm.h>
|
||
|
|
||
|
#include "book3s.h"
|
||
|
|
||
|
#define CREATE_TRACE_POINTS
|
||
|
#include "trace_pr.h"
|
||
|
|
||
|
/* #define EXIT_DEBUG */
|
||
|
/* #define DEBUG_EXT */
|
||
|
|
||
|
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
|
||
|
ulong msr);
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
|
||
|
#endif
|
||
|
|
||
|
/* Some compatibility defines */
|
||
|
#ifdef CONFIG_PPC_BOOK3S_32
|
||
|
#define MSR_USER32 MSR_USER
|
||
|
#define MSR_USER64 MSR_USER
|
||
|
#define HW_PAGE_SIZE PAGE_SIZE
|
||
|
#define HPTE_R_M _PAGE_COHERENT
|
||
|
#endif
|
||
|
|
||
|
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
ulong msr = kvmppc_get_msr(vcpu);
|
||
|
return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
ulong msr = kvmppc_get_msr(vcpu);
|
||
|
ulong pc = kvmppc_get_pc(vcpu);
|
||
|
|
||
|
/* We are in DR only split real mode */
|
||
|
if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
|
||
|
return;
|
||
|
|
||
|
/* We have not fixed up the guest already */
|
||
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
|
||
|
return;
|
||
|
|
||
|
/* The code is in fixupable address space */
|
||
|
if (pc & SPLIT_HACK_MASK)
|
||
|
return;
|
||
|
|
||
|
vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
|
||
|
kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
|
||
|
}
|
||
|
|
||
|
void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
|
||
|
|
||
|
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
|
||
|
{
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
||
|
memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
|
||
|
svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
|
||
|
svcpu->in_use = 0;
|
||
|
svcpu_put(svcpu);
|
||
|
#endif
|
||
|
|
||
|
/* Disable AIL if supported */
|
||
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
||
|
cpu_has_feature(CPU_FTR_ARCH_207S))
|
||
|
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
|
||
|
|
||
|
vcpu->cpu = smp_processor_id();
|
||
|
#ifdef CONFIG_PPC_BOOK3S_32
|
||
|
current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
|
||
|
#endif
|
||
|
|
||
|
if (kvmppc_is_split_real(vcpu))
|
||
|
kvmppc_fixup_split_real(vcpu);
|
||
|
|
||
|
kvmppc_restore_tm_pr(vcpu);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
||
|
if (svcpu->in_use) {
|
||
|
kvmppc_copy_from_svcpu(vcpu);
|
||
|
}
|
||
|
memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
|
||
|
to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
|
||
|
svcpu_put(svcpu);
|
||
|
#endif
|
||
|
|
||
|
if (kvmppc_is_split_real(vcpu))
|
||
|
kvmppc_unfixup_split_real(vcpu);
|
||
|
|
||
|
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
|
||
|
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
|
||
|
kvmppc_save_tm_pr(vcpu);
|
||
|
|
||
|
/* Enable AIL if supported */
|
||
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
||
|
cpu_has_feature(CPU_FTR_ARCH_207S))
|
||
|
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
|
||
|
|
||
|
vcpu->cpu = -1;
|
||
|
}
|
||
|
|
||
|
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
|
||
|
void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
||
|
|
||
|
svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
|
||
|
svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
|
||
|
svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
|
||
|
svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
|
||
|
svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
|
||
|
svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
|
||
|
svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
|
||
|
svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
|
||
|
svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
|
||
|
svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
|
||
|
svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
|
||
|
svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
|
||
|
svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
|
||
|
svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
|
||
|
svcpu->cr = vcpu->arch.regs.ccr;
|
||
|
svcpu->xer = vcpu->arch.regs.xer;
|
||
|
svcpu->ctr = vcpu->arch.regs.ctr;
|
||
|
svcpu->lr = vcpu->arch.regs.link;
|
||
|
svcpu->pc = vcpu->arch.regs.nip;
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
|
||
|
#endif
|
||
|
/*
|
||
|
* Now also save the current time base value. We use this
|
||
|
* to find the guest purr and spurr value.
|
||
|
*/
|
||
|
vcpu->arch.entry_tb = get_tb();
|
||
|
vcpu->arch.entry_vtb = get_vtb();
|
||
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
||
|
vcpu->arch.entry_ic = mfspr(SPRN_IC);
|
||
|
svcpu->in_use = true;
|
||
|
|
||
|
svcpu_put(svcpu);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
ulong guest_msr = kvmppc_get_msr(vcpu);
|
||
|
ulong smsr = guest_msr;
|
||
|
|
||
|
/* Guest MSR values */
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
|
||
|
MSR_TM | MSR_TS_MASK;
|
||
|
#else
|
||
|
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
|
||
|
#endif
|
||
|
/* Process MSR values */
|
||
|
smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
|
||
|
/* External providers the guest reserved */
|
||
|
smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
|
||
|
/* 64-bit Process MSR values */
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
smsr |= MSR_ISF | MSR_HV;
|
||
|
#endif
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
/*
|
||
|
* in guest privileged state, we want to fail all TM transactions.
|
||
|
* So disable MSR TM bit so that all tbegin. will be able to be
|
||
|
* trapped into host.
|
||
|
*/
|
||
|
if (!(guest_msr & MSR_PR))
|
||
|
smsr &= ~MSR_TM;
|
||
|
#endif
|
||
|
vcpu->arch.shadow_msr = smsr;
|
||
|
}
|
||
|
|
||
|
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
|
||
|
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
ulong old_msr;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Maybe we were already preempted and synced the svcpu from
|
||
|
* our preempt notifiers. Don't bother touching this svcpu then.
|
||
|
*/
|
||
|
if (!svcpu->in_use)
|
||
|
goto out;
|
||
|
|
||
|
vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
|
||
|
vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
|
||
|
vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
|
||
|
vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
|
||
|
vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
|
||
|
vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
|
||
|
vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
|
||
|
vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
|
||
|
vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
|
||
|
vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
|
||
|
vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
|
||
|
vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
|
||
|
vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
|
||
|
vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
|
||
|
vcpu->arch.regs.ccr = svcpu->cr;
|
||
|
vcpu->arch.regs.xer = svcpu->xer;
|
||
|
vcpu->arch.regs.ctr = svcpu->ctr;
|
||
|
vcpu->arch.regs.link = svcpu->lr;
|
||
|
vcpu->arch.regs.nip = svcpu->pc;
|
||
|
vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
|
||
|
vcpu->arch.fault_dar = svcpu->fault_dar;
|
||
|
vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
|
||
|
vcpu->arch.last_inst = svcpu->last_inst;
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
|
||
|
#endif
|
||
|
/*
|
||
|
* Update purr and spurr using time base on exit.
|
||
|
*/
|
||
|
vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
|
||
|
vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
|
||
|
to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
|
||
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
||
|
vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
|
||
|
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
/*
|
||
|
* Unlike other MSR bits, MSR[TS]bits can be changed at guest without
|
||
|
* notifying host:
|
||
|
* modified by unprivileged instructions like "tbegin"/"tend"/
|
||
|
* "tresume"/"tsuspend" in PR KVM guest.
|
||
|
*
|
||
|
* It is necessary to sync here to calculate a correct shadow_msr.
|
||
|
*
|
||
|
* privileged guest's tbegin will be failed at present. So we
|
||
|
* only take care of problem state guest.
|
||
|
*/
|
||
|
old_msr = kvmppc_get_msr(vcpu);
|
||
|
if (unlikely((old_msr & MSR_PR) &&
|
||
|
(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
|
||
|
(old_msr & (MSR_TS_MASK)))) {
|
||
|
old_msr &= ~(MSR_TS_MASK);
|
||
|
old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
|
||
|
kvmppc_set_msr_fast(vcpu, old_msr);
|
||
|
kvmppc_recalc_shadow_msr(vcpu);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
svcpu->in_use = false;
|
||
|
|
||
|
out:
|
||
|
svcpu_put(svcpu);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
tm_enable();
|
||
|
vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
|
||
|
vcpu->arch.texasr = mfspr(SPRN_TEXASR);
|
||
|
vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
|
||
|
tm_disable();
|
||
|
}
|
||
|
|
||
|
void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
tm_enable();
|
||
|
mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
|
||
|
mtspr(SPRN_TEXASR, vcpu->arch.texasr);
|
||
|
mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
|
||
|
tm_disable();
|
||
|
}
|
||
|
|
||
|
/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
|
||
|
* hardware.
|
||
|
*/
|
||
|
static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
ulong exit_nr;
|
||
|
ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
|
||
|
(MSR_FP | MSR_VEC | MSR_VSX);
|
||
|
|
||
|
if (!ext_diff)
|
||
|
return;
|
||
|
|
||
|
if (ext_diff == MSR_FP)
|
||
|
exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
|
||
|
else if (ext_diff == MSR_VEC)
|
||
|
exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
|
||
|
else
|
||
|
exit_nr = BOOK3S_INTERRUPT_VSX;
|
||
|
|
||
|
kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
|
||
|
}
|
||
|
|
||
|
void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
|
||
|
kvmppc_save_tm_sprs(vcpu);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
|
||
|
kvmppc_giveup_ext(vcpu, MSR_VSX);
|
||
|
|
||
|
preempt_disable();
|
||
|
_kvmppc_save_tm_pr(vcpu, mfmsr());
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
|
||
|
kvmppc_restore_tm_sprs(vcpu);
|
||
|
if (kvmppc_get_msr(vcpu) & MSR_TM) {
|
||
|
kvmppc_handle_lost_math_exts(vcpu);
|
||
|
if (vcpu->arch.fscr & FSCR_TAR)
|
||
|
kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
preempt_disable();
|
||
|
_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
|
||
|
preempt_enable();
|
||
|
|
||
|
if (kvmppc_get_msr(vcpu) & MSR_TM) {
|
||
|
kvmppc_handle_lost_math_exts(vcpu);
|
||
|
if (vcpu->arch.fscr & FSCR_TAR)
|
||
|
kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int r = 1; /* Indicate we want to get back into the guest */
|
||
|
|
||
|
/* We misuse TLB_FLUSH to indicate that we want to clear
|
||
|
all shadow cache entries */
|
||
|
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
|
||
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/************* MMU Notifiers *************/
|
||
|
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
|
||
|
unsigned long end)
|
||
|
{
|
||
|
long i;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
struct kvm_memslots *slots;
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
|
||
|
slots = kvm_memslots(kvm);
|
||
|
kvm_for_each_memslot(memslot, slots) {
|
||
|
unsigned long hva_start, hva_end;
|
||
|
gfn_t gfn, gfn_end;
|
||
|
|
||
|
hva_start = max(start, memslot->userspace_addr);
|
||
|
hva_end = min(end, memslot->userspace_addr +
|
||
|
(memslot->npages << PAGE_SHIFT));
|
||
|
if (hva_start >= hva_end)
|
||
|
continue;
|
||
|
/*
|
||
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
||
|
* {gfn, gfn+1, ..., gfn_end-1}.
|
||
|
*/
|
||
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
||
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
||
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
||
|
kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
|
||
|
gfn_end << PAGE_SHIFT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
|
||
|
unsigned long end)
|
||
|
{
|
||
|
do_kvm_unmap_hva(kvm, start, end);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
|
||
|
unsigned long end)
|
||
|
{
|
||
|
/* XXX could be more clever ;) */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
|
||
|
{
|
||
|
/* XXX could be more clever ;) */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
|
||
|
{
|
||
|
/* The page will get remapped properly on its next fault */
|
||
|
do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
|
||
|
}
|
||
|
|
||
|
/*****************************************/
|
||
|
|
||
|
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
|
||
|
{
|
||
|
ulong old_msr;
|
||
|
|
||
|
/* For PAPR guest, make sure MSR reflects guest mode */
|
||
|
if (vcpu->arch.papr_enabled)
|
||
|
msr = (msr & ~MSR_HV) | MSR_ME;
|
||
|
|
||
|
#ifdef EXIT_DEBUG
|
||
|
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
/* We should never target guest MSR to TS=10 && PR=0,
|
||
|
* since we always fail transaction for guest privilege
|
||
|
* state.
|
||
|
*/
|
||
|
if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
|
||
|
kvmppc_emulate_tabort(vcpu,
|
||
|
TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
|
||
|
#endif
|
||
|
|
||
|
old_msr = kvmppc_get_msr(vcpu);
|
||
|
msr &= to_book3s(vcpu)->msr_mask;
|
||
|
kvmppc_set_msr_fast(vcpu, msr);
|
||
|
kvmppc_recalc_shadow_msr(vcpu);
|
||
|
|
||
|
if (msr & MSR_POW) {
|
||
|
if (!vcpu->arch.pending_exceptions) {
|
||
|
kvm_vcpu_block(vcpu);
|
||
|
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
|
||
|
vcpu->stat.halt_wakeup++;
|
||
|
|
||
|
/* Unset POW bit after we woke up */
|
||
|
msr &= ~MSR_POW;
|
||
|
kvmppc_set_msr_fast(vcpu, msr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (kvmppc_is_split_real(vcpu))
|
||
|
kvmppc_fixup_split_real(vcpu);
|
||
|
else
|
||
|
kvmppc_unfixup_split_real(vcpu);
|
||
|
|
||
|
if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
|
||
|
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
|
||
|
kvmppc_mmu_flush_segments(vcpu);
|
||
|
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
|
||
|
|
||
|
/* Preload magic page segment when in kernel mode */
|
||
|
if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
|
||
|
struct kvm_vcpu_arch *a = &vcpu->arch;
|
||
|
|
||
|
if (msr & MSR_DR)
|
||
|
kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
|
||
|
else
|
||
|
kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When switching from 32 to 64-bit, we may have a stale 32-bit
|
||
|
* magic page around, we need to flush it. Typically 32-bit magic
|
||
|
* page will be instantiated when calling into RTAS. Note: We
|
||
|
* assume that such transition only happens while in kernel mode,
|
||
|
* ie, we never transition from user 32-bit to kernel 64-bit with
|
||
|
* a 32-bit magic page around.
|
||
|
*/
|
||
|
if (vcpu->arch.magic_page_pa &&
|
||
|
!(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
|
||
|
/* going from RTAS to normal kernel code */
|
||
|
kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
|
||
|
~0xFFFUL);
|
||
|
}
|
||
|
|
||
|
/* Preload FPU if it's enabled */
|
||
|
if (kvmppc_get_msr(vcpu) & MSR_FP)
|
||
|
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
|
||
|
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
if (kvmppc_get_msr(vcpu) & MSR_TM)
|
||
|
kvmppc_handle_lost_math_exts(vcpu);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
|
||
|
{
|
||
|
u32 host_pvr;
|
||
|
|
||
|
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
|
||
|
vcpu->arch.pvr = pvr;
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
|
||
|
kvmppc_mmu_book3s_64_init(vcpu);
|
||
|
if (!to_book3s(vcpu)->hior_explicit)
|
||
|
to_book3s(vcpu)->hior = 0xfff00000;
|
||
|
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
|
||
|
vcpu->arch.cpu_type = KVM_CPU_3S_64;
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
kvmppc_mmu_book3s_32_init(vcpu);
|
||
|
if (!to_book3s(vcpu)->hior_explicit)
|
||
|
to_book3s(vcpu)->hior = 0;
|
||
|
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
|
||
|
vcpu->arch.cpu_type = KVM_CPU_3S_32;
|
||
|
}
|
||
|
|
||
|
kvmppc_sanity_check(vcpu);
|
||
|
|
||
|
/* If we are in hypervisor level on 970, we can tell the CPU to
|
||
|
* treat DCBZ as 32 bytes store */
|
||
|
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
|
||
|
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
|
||
|
!strcmp(cur_cpu_spec->platform, "ppc970"))
|
||
|
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
|
||
|
|
||
|
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
|
||
|
really needs them in a VM on Cell and force disable them. */
|
||
|
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
|
||
|
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
|
||
|
|
||
|
/*
|
||
|
* If they're asking for POWER6 or later, set the flag
|
||
|
* indicating that we can do multiple large page sizes
|
||
|
* and 1TB segments.
|
||
|
* Also set the flag that indicates that tlbie has the large
|
||
|
* page bit in the RB operand instead of the instruction.
|
||
|
*/
|
||
|
switch (PVR_VER(pvr)) {
|
||
|
case PVR_POWER6:
|
||
|
case PVR_POWER7:
|
||
|
case PVR_POWER7p:
|
||
|
case PVR_POWER8:
|
||
|
case PVR_POWER8E:
|
||
|
case PVR_POWER8NVL:
|
||
|
vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
|
||
|
BOOK3S_HFLAG_NEW_TLBIE;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_32
|
||
|
/* 32 bit Book3S always has 32 byte dcbz */
|
||
|
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
|
||
|
#endif
|
||
|
|
||
|
/* On some CPUs we can execute paired single operations natively */
|
||
|
asm ( "mfpvr %0" : "=r"(host_pvr));
|
||
|
switch (host_pvr) {
|
||
|
case 0x00080200: /* lonestar 2.0 */
|
||
|
case 0x00088202: /* lonestar 2.2 */
|
||
|
case 0x70000100: /* gekko 1.0 */
|
||
|
case 0x00080100: /* gekko 2.0 */
|
||
|
case 0x00083203: /* gekko 2.3a */
|
||
|
case 0x00083213: /* gekko 2.3b */
|
||
|
case 0x00083204: /* gekko 2.4 */
|
||
|
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
|
||
|
case 0x00087200: /* broadway */
|
||
|
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
|
||
|
/* Enable HID2.PSE - in case we need it later */
|
||
|
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
|
||
|
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
|
||
|
* emulate 32 bytes dcbz length.
|
||
|
*
|
||
|
* The Book3s_64 inventors also realized this case and implemented a special bit
|
||
|
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
|
||
|
*
|
||
|
* My approach here is to patch the dcbz instruction on executing pages.
|
||
|
*/
|
||
|
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
|
||
|
{
|
||
|
struct page *hpage;
|
||
|
u64 hpage_offset;
|
||
|
u32 *page;
|
||
|
int i;
|
||
|
|
||
|
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
|
||
|
if (is_error_page(hpage))
|
||
|
return;
|
||
|
|
||
|
hpage_offset = pte->raddr & ~PAGE_MASK;
|
||
|
hpage_offset &= ~0xFFFULL;
|
||
|
hpage_offset /= 4;
|
||
|
|
||
|
get_page(hpage);
|
||
|
page = kmap_atomic(hpage);
|
||
|
|
||
|
/* patch dcbz into reserved instruction, so we trap */
|
||
|
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
|
||
|
if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
|
||
|
page[i] &= cpu_to_be32(0xfffffff7);
|
||
|
|
||
|
kunmap_atomic(page);
|
||
|
put_page(hpage);
|
||
|
}
|
||
|
|
||
|
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
|
||
|
{
|
||
|
ulong mp_pa = vcpu->arch.magic_page_pa;
|
||
|
|
||
|
if (!(kvmppc_get_msr(vcpu) & MSR_SF))
|
||
|
mp_pa = (uint32_t)mp_pa;
|
||
|
|
||
|
gpa &= ~0xFFFULL;
|
||
|
if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
|
||
|
}
|
||
|
|
||
|
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
||
|
ulong eaddr, int vec)
|
||
|
{
|
||
|
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
|
||
|
bool iswrite = false;
|
||
|
int r = RESUME_GUEST;
|
||
|
int relocated;
|
||
|
int page_found = 0;
|
||
|
struct kvmppc_pte pte = { 0 };
|
||
|
bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
|
||
|
bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
|
||
|
u64 vsid;
|
||
|
|
||
|
relocated = data ? dr : ir;
|
||
|
if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
|
||
|
iswrite = true;
|
||
|
|
||
|
/* Resolve real address if translation turned on */
|
||
|
if (relocated) {
|
||
|
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
|
||
|
} else {
|
||
|
pte.may_execute = true;
|
||
|
pte.may_read = true;
|
||
|
pte.may_write = true;
|
||
|
pte.raddr = eaddr & KVM_PAM;
|
||
|
pte.eaddr = eaddr;
|
||
|
pte.vpage = eaddr >> 12;
|
||
|
pte.page_size = MMU_PAGE_64K;
|
||
|
pte.wimg = HPTE_R_M;
|
||
|
}
|
||
|
|
||
|
switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
|
||
|
case 0:
|
||
|
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
|
||
|
break;
|
||
|
case MSR_DR:
|
||
|
if (!data &&
|
||
|
(vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
|
||
|
((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
|
||
|
pte.raddr &= ~SPLIT_HACK_MASK;
|
||
|
/* fall through */
|
||
|
case MSR_IR:
|
||
|
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
|
||
|
|
||
|
if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
|
||
|
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
|
||
|
else
|
||
|
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
|
||
|
pte.vpage |= vsid;
|
||
|
|
||
|
if (vsid == -1)
|
||
|
page_found = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
||
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
|
||
|
/*
|
||
|
* If we do the dcbz hack, we have to NX on every execution,
|
||
|
* so we can patch the executing code. This renders our guest
|
||
|
* NX-less.
|
||
|
*/
|
||
|
pte.may_execute = !data;
|
||
|
}
|
||
|
|
||
|
if (page_found == -ENOENT || page_found == -EPERM) {
|
||
|
/* Page not found in guest PTE entries, or protection fault */
|
||
|
u64 flags;
|
||
|
|
||
|
if (page_found == -EPERM)
|
||
|
flags = DSISR_PROTFAULT;
|
||
|
else
|
||
|
flags = DSISR_NOHPTE;
|
||
|
if (data) {
|
||
|
flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
|
||
|
kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
|
||
|
} else {
|
||
|
kvmppc_core_queue_inst_storage(vcpu, flags);
|
||
|
}
|
||
|
} else if (page_found == -EINVAL) {
|
||
|
/* Page not found in guest SLB */
|
||
|
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
|
||
|
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
|
||
|
} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
|
||
|
if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
|
||
|
/*
|
||
|
* There is already a host HPTE there, presumably
|
||
|
* a read-only one for a page the guest thinks
|
||
|
* is writable, so get rid of it first.
|
||
|
*/
|
||
|
kvmppc_mmu_unmap_page(vcpu, &pte);
|
||
|
}
|
||
|
/* The guest's PTE is not mapped yet. Map on the host */
|
||
|
if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
|
||
|
/* Exit KVM if mapping failed */
|
||
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
||
|
return RESUME_HOST;
|
||
|
}
|
||
|
if (data)
|
||
|
vcpu->stat.sp_storage++;
|
||
|
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
||
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
|
||
|
kvmppc_patch_dcbz(vcpu, &pte);
|
||
|
} else {
|
||
|
/* MMIO */
|
||
|
vcpu->stat.mmio_exits++;
|
||
|
vcpu->arch.paddr_accessed = pte.raddr;
|
||
|
vcpu->arch.vaddr_accessed = pte.eaddr;
|
||
|
r = kvmppc_emulate_mmio(run, vcpu);
|
||
|
if ( r == RESUME_HOST_NV )
|
||
|
r = RESUME_HOST;
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/* Give up external provider (FPU, Altivec, VSX) */
|
||
|
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
|
||
|
{
|
||
|
struct thread_struct *t = ¤t->thread;
|
||
|
|
||
|
/*
|
||
|
* VSX instructions can access FP and vector registers, so if
|
||
|
* we are giving up VSX, make sure we give up FP and VMX as well.
|
||
|
*/
|
||
|
if (msr & MSR_VSX)
|
||
|
msr |= MSR_FP | MSR_VEC;
|
||
|
|
||
|
msr &= vcpu->arch.guest_owned_ext;
|
||
|
if (!msr)
|
||
|
return;
|
||
|
|
||
|
#ifdef DEBUG_EXT
|
||
|
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
|
||
|
#endif
|
||
|
|
||
|
if (msr & MSR_FP) {
|
||
|
/*
|
||
|
* Note that on CPUs with VSX, giveup_fpu stores
|
||
|
* both the traditional FP registers and the added VSX
|
||
|
* registers into thread.fp_state.fpr[].
|
||
|
*/
|
||
|
if (t->regs->msr & MSR_FP)
|
||
|
giveup_fpu(current);
|
||
|
t->fp_save_area = NULL;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_ALTIVEC
|
||
|
if (msr & MSR_VEC) {
|
||
|
if (current->thread.regs->msr & MSR_VEC)
|
||
|
giveup_altivec(current);
|
||
|
t->vr_save_area = NULL;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
|
||
|
kvmppc_recalc_shadow_msr(vcpu);
|
||
|
}
|
||
|
|
||
|
/* Give up facility (TAR / EBB / DSCR) */
|
||
|
void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
|
||
|
{
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
|
||
|
/* Facility not available to the guest, ignore giveup request*/
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (fac) {
|
||
|
case FSCR_TAR_LG:
|
||
|
vcpu->arch.tar = mfspr(SPRN_TAR);
|
||
|
mtspr(SPRN_TAR, current->thread.tar);
|
||
|
vcpu->arch.shadow_fscr &= ~FSCR_TAR;
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Handle external providers (FPU, Altivec, VSX) */
|
||
|
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
|
||
|
ulong msr)
|
||
|
{
|
||
|
struct thread_struct *t = ¤t->thread;
|
||
|
|
||
|
/* When we have paired singles, we emulate in software */
|
||
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
|
||
|
return RESUME_GUEST;
|
||
|
|
||
|
if (!(kvmppc_get_msr(vcpu) & msr)) {
|
||
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
|
||
|
if (msr == MSR_VSX) {
|
||
|
/* No VSX? Give an illegal instruction interrupt */
|
||
|
#ifdef CONFIG_VSX
|
||
|
if (!cpu_has_feature(CPU_FTR_VSX))
|
||
|
#endif
|
||
|
{
|
||
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We have to load up all the FP and VMX registers before
|
||
|
* we can let the guest use VSX instructions.
|
||
|
*/
|
||
|
msr = MSR_FP | MSR_VEC | MSR_VSX;
|
||
|
}
|
||
|
|
||
|
/* See if we already own all the ext(s) needed */
|
||
|
msr &= ~vcpu->arch.guest_owned_ext;
|
||
|
if (!msr)
|
||
|
return RESUME_GUEST;
|
||
|
|
||
|
#ifdef DEBUG_EXT
|
||
|
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
|
||
|
#endif
|
||
|
|
||
|
if (msr & MSR_FP) {
|
||
|
preempt_disable();
|
||
|
enable_kernel_fp();
|
||
|
load_fp_state(&vcpu->arch.fp);
|
||
|
disable_kernel_fp();
|
||
|
t->fp_save_area = &vcpu->arch.fp;
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
if (msr & MSR_VEC) {
|
||
|
#ifdef CONFIG_ALTIVEC
|
||
|
preempt_disable();
|
||
|
enable_kernel_altivec();
|
||
|
load_vr_state(&vcpu->arch.vr);
|
||
|
disable_kernel_altivec();
|
||
|
t->vr_save_area = &vcpu->arch.vr;
|
||
|
preempt_enable();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
t->regs->msr |= msr;
|
||
|
vcpu->arch.guest_owned_ext |= msr;
|
||
|
kvmppc_recalc_shadow_msr(vcpu);
|
||
|
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Kernel code using FP or VMX could have flushed guest state to
|
||
|
* the thread_struct; if so, get it back now.
|
||
|
*/
|
||
|
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
unsigned long lost_ext;
|
||
|
|
||
|
lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
|
||
|
if (!lost_ext)
|
||
|
return;
|
||
|
|
||
|
if (lost_ext & MSR_FP) {
|
||
|
preempt_disable();
|
||
|
enable_kernel_fp();
|
||
|
load_fp_state(&vcpu->arch.fp);
|
||
|
disable_kernel_fp();
|
||
|
preempt_enable();
|
||
|
}
|
||
|
#ifdef CONFIG_ALTIVEC
|
||
|
if (lost_ext & MSR_VEC) {
|
||
|
preempt_disable();
|
||
|
enable_kernel_altivec();
|
||
|
load_vr_state(&vcpu->arch.vr);
|
||
|
disable_kernel_altivec();
|
||
|
preempt_enable();
|
||
|
}
|
||
|
#endif
|
||
|
current->thread.regs->msr |= lost_ext;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
|
||
|
void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
|
||
|
{
|
||
|
/* Inject the Interrupt Cause field and trigger a guest interrupt */
|
||
|
vcpu->arch.fscr &= ~(0xffULL << 56);
|
||
|
vcpu->arch.fscr |= (fac << 56);
|
||
|
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
|
||
|
{
|
||
|
enum emulation_result er = EMULATE_FAIL;
|
||
|
|
||
|
if (!(kvmppc_get_msr(vcpu) & MSR_PR))
|
||
|
er = kvmppc_emulate_instruction(vcpu->run, vcpu);
|
||
|
|
||
|
if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
|
||
|
/* Couldn't emulate, trigger interrupt in guest */
|
||
|
kvmppc_trigger_fac_interrupt(vcpu, fac);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Enable facilities (TAR, EBB, DSCR) for the guest */
|
||
|
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
|
||
|
{
|
||
|
bool guest_fac_enabled;
|
||
|
BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
|
||
|
|
||
|
/*
|
||
|
* Not every facility is enabled by FSCR bits, check whether the
|
||
|
* guest has this facility enabled at all.
|
||
|
*/
|
||
|
switch (fac) {
|
||
|
case FSCR_TAR_LG:
|
||
|
case FSCR_EBB_LG:
|
||
|
guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
|
||
|
break;
|
||
|
case FSCR_TM_LG:
|
||
|
guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
|
||
|
break;
|
||
|
default:
|
||
|
guest_fac_enabled = false;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!guest_fac_enabled) {
|
||
|
/* Facility not enabled by the guest */
|
||
|
kvmppc_trigger_fac_interrupt(vcpu, fac);
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
|
||
|
switch (fac) {
|
||
|
case FSCR_TAR_LG:
|
||
|
/* TAR switching isn't lazy in Linux yet */
|
||
|
current->thread.tar = mfspr(SPRN_TAR);
|
||
|
mtspr(SPRN_TAR, vcpu->arch.tar);
|
||
|
vcpu->arch.shadow_fscr |= FSCR_TAR;
|
||
|
break;
|
||
|
default:
|
||
|
kvmppc_emulate_fac(vcpu, fac);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
/* Since we disabled MSR_TM at privilege state, the mfspr instruction
|
||
|
* for TM spr can trigger TM fac unavailable. In this case, the
|
||
|
* emulation is handled by kvmppc_emulate_fac(), which invokes
|
||
|
* kvmppc_emulate_mfspr() finally. But note the mfspr can include
|
||
|
* RT for NV registers. So it need to restore those NV reg to reflect
|
||
|
* the update.
|
||
|
*/
|
||
|
if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
|
||
|
return RESUME_GUEST_NV;
|
||
|
#endif
|
||
|
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
|
||
|
void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
|
||
|
{
|
||
|
if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
|
||
|
/* TAR got dropped, drop it in shadow too */
|
||
|
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
|
||
|
} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
|
||
|
vcpu->arch.fscr = fscr;
|
||
|
kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
vcpu->arch.fscr = fscr;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
|
||
|
u64 msr = kvmppc_get_msr(vcpu);
|
||
|
|
||
|
kvmppc_set_msr(vcpu, msr | MSR_SE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
|
||
|
u64 msr = kvmppc_get_msr(vcpu);
|
||
|
|
||
|
kvmppc_set_msr(vcpu, msr & ~MSR_SE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
||
|
unsigned int exit_nr)
|
||
|
{
|
||
|
enum emulation_result er;
|
||
|
ulong flags;
|
||
|
u32 last_inst;
|
||
|
int emul, r;
|
||
|
|
||
|
/*
|
||
|
* shadow_srr1 only contains valid flags if we came here via a program
|
||
|
* exception. The other exceptions (emulation assist, FP unavailable,
|
||
|
* etc.) do not provide flags in SRR1, so use an illegal-instruction
|
||
|
* exception when injecting a program interrupt into the guest.
|
||
|
*/
|
||
|
if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
|
||
|
flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
|
||
|
else
|
||
|
flags = SRR1_PROGILL;
|
||
|
|
||
|
emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
|
||
|
if (emul != EMULATE_DONE)
|
||
|
return RESUME_GUEST;
|
||
|
|
||
|
if (kvmppc_get_msr(vcpu) & MSR_PR) {
|
||
|
#ifdef EXIT_DEBUG
|
||
|
pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
|
||
|
kvmppc_get_pc(vcpu), last_inst);
|
||
|
#endif
|
||
|
if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
|
||
|
kvmppc_core_queue_program(vcpu, flags);
|
||
|
return RESUME_GUEST;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vcpu->stat.emulated_inst_exits++;
|
||
|
er = kvmppc_emulate_instruction(run, vcpu);
|
||
|
switch (er) {
|
||
|
case EMULATE_DONE:
|
||
|
r = RESUME_GUEST_NV;
|
||
|
break;
|
||
|
case EMULATE_AGAIN:
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case EMULATE_FAIL:
|
||
|
pr_crit("%s: emulation at %lx failed (%08x)\n",
|
||
|
__func__, kvmppc_get_pc(vcpu), last_inst);
|
||
|
kvmppc_core_queue_program(vcpu, flags);
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case EMULATE_DO_MMIO:
|
||
|
run->exit_reason = KVM_EXIT_MMIO;
|
||
|
r = RESUME_HOST_NV;
|
||
|
break;
|
||
|
case EMULATE_EXIT_USER:
|
||
|
r = RESUME_HOST_NV;
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
||
|
unsigned int exit_nr)
|
||
|
{
|
||
|
int r = RESUME_HOST;
|
||
|
int s;
|
||
|
|
||
|
vcpu->stat.sum_exits++;
|
||
|
|
||
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
||
|
run->ready_for_interrupt_injection = 1;
|
||
|
|
||
|
/* We get here with MSR.EE=1 */
|
||
|
|
||
|
trace_kvm_exit(exit_nr, vcpu);
|
||
|
guest_exit();
|
||
|
|
||
|
switch (exit_nr) {
|
||
|
case BOOK3S_INTERRUPT_INST_STORAGE:
|
||
|
{
|
||
|
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
|
||
|
vcpu->stat.pf_instruc++;
|
||
|
|
||
|
if (kvmppc_is_split_real(vcpu))
|
||
|
kvmppc_fixup_split_real(vcpu);
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_32
|
||
|
/* We set segments as unused segments when invalidating them. So
|
||
|
* treat the respective fault as segment fault. */
|
||
|
{
|
||
|
struct kvmppc_book3s_shadow_vcpu *svcpu;
|
||
|
u32 sr;
|
||
|
|
||
|
svcpu = svcpu_get(vcpu);
|
||
|
sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
|
||
|
svcpu_put(svcpu);
|
||
|
if (sr == SR_INVALID) {
|
||
|
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* only care about PTEG not found errors, but leave NX alone */
|
||
|
if (shadow_srr1 & 0x40000000) {
|
||
|
int idx = srcu_read_lock(&vcpu->kvm->srcu);
|
||
|
r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
|
||
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
||
|
vcpu->stat.sp_instruc++;
|
||
|
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
||
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
|
||
|
/*
|
||
|
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
|
||
|
* so we can't use the NX bit inside the guest. Let's cross our fingers,
|
||
|
* that no guest that needs the dcbz hack does NX.
|
||
|
*/
|
||
|
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
|
||
|
r = RESUME_GUEST;
|
||
|
} else {
|
||
|
kvmppc_core_queue_inst_storage(vcpu,
|
||
|
shadow_srr1 & 0x58000000);
|
||
|
r = RESUME_GUEST;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case BOOK3S_INTERRUPT_DATA_STORAGE:
|
||
|
{
|
||
|
ulong dar = kvmppc_get_fault_dar(vcpu);
|
||
|
u32 fault_dsisr = vcpu->arch.fault_dsisr;
|
||
|
vcpu->stat.pf_storage++;
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_32
|
||
|
/* We set segments as unused segments when invalidating them. So
|
||
|
* treat the respective fault as segment fault. */
|
||
|
{
|
||
|
struct kvmppc_book3s_shadow_vcpu *svcpu;
|
||
|
u32 sr;
|
||
|
|
||
|
svcpu = svcpu_get(vcpu);
|
||
|
sr = svcpu->sr[dar >> SID_SHIFT];
|
||
|
svcpu_put(svcpu);
|
||
|
if (sr == SR_INVALID) {
|
||
|
kvmppc_mmu_map_segment(vcpu, dar);
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* We need to handle missing shadow PTEs, and
|
||
|
* protection faults due to us mapping a page read-only
|
||
|
* when the guest thinks it is writable.
|
||
|
*/
|
||
|
if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
|
||
|
int idx = srcu_read_lock(&vcpu->kvm->srcu);
|
||
|
r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
|
||
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
||
|
} else {
|
||
|
kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
|
||
|
r = RESUME_GUEST;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case BOOK3S_INTERRUPT_DATA_SEGMENT:
|
||
|
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
|
||
|
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
|
||
|
kvmppc_book3s_queue_irqprio(vcpu,
|
||
|
BOOK3S_INTERRUPT_DATA_SEGMENT);
|
||
|
}
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_INST_SEGMENT:
|
||
|
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
|
||
|
kvmppc_book3s_queue_irqprio(vcpu,
|
||
|
BOOK3S_INTERRUPT_INST_SEGMENT);
|
||
|
}
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
/* We're good on these - the host merely wanted to get our attention */
|
||
|
case BOOK3S_INTERRUPT_DECREMENTER:
|
||
|
case BOOK3S_INTERRUPT_HV_DECREMENTER:
|
||
|
case BOOK3S_INTERRUPT_DOORBELL:
|
||
|
case BOOK3S_INTERRUPT_H_DOORBELL:
|
||
|
vcpu->stat.dec_exits++;
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
||
|
case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
|
||
|
case BOOK3S_INTERRUPT_EXTERNAL_HV:
|
||
|
case BOOK3S_INTERRUPT_H_VIRT:
|
||
|
vcpu->stat.ext_intr_exits++;
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_HMI:
|
||
|
case BOOK3S_INTERRUPT_PERFMON:
|
||
|
case BOOK3S_INTERRUPT_SYSTEM_RESET:
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_PROGRAM:
|
||
|
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
|
||
|
r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_SYSCALL:
|
||
|
{
|
||
|
u32 last_sc;
|
||
|
int emul;
|
||
|
|
||
|
/* Get last sc for papr */
|
||
|
if (vcpu->arch.papr_enabled) {
|
||
|
/* The sc instuction points SRR0 to the next inst */
|
||
|
emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
|
||
|
if (emul != EMULATE_DONE) {
|
||
|
kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (vcpu->arch.papr_enabled &&
|
||
|
(last_sc == 0x44000022) &&
|
||
|
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
|
||
|
/* SC 1 papr hypercalls */
|
||
|
ulong cmd = kvmppc_get_gpr(vcpu, 3);
|
||
|
int i;
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
run->papr_hcall.nr = cmd;
|
||
|
for (i = 0; i < 9; ++i) {
|
||
|
ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
|
||
|
run->papr_hcall.args[i] = gpr;
|
||
|
}
|
||
|
run->exit_reason = KVM_EXIT_PAPR_HCALL;
|
||
|
vcpu->arch.hcall_needed = 1;
|
||
|
r = RESUME_HOST;
|
||
|
} else if (vcpu->arch.osi_enabled &&
|
||
|
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
|
||
|
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
|
||
|
/* MOL hypercalls */
|
||
|
u64 *gprs = run->osi.gprs;
|
||
|
int i;
|
||
|
|
||
|
run->exit_reason = KVM_EXIT_OSI;
|
||
|
for (i = 0; i < 32; i++)
|
||
|
gprs[i] = kvmppc_get_gpr(vcpu, i);
|
||
|
vcpu->arch.osi_needed = 1;
|
||
|
r = RESUME_HOST_NV;
|
||
|
} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
|
||
|
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
|
||
|
/* KVM PV hypercalls */
|
||
|
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
|
||
|
r = RESUME_GUEST;
|
||
|
} else {
|
||
|
/* Guest syscalls */
|
||
|
vcpu->stat.syscall_exits++;
|
||
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
||
|
r = RESUME_GUEST;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case BOOK3S_INTERRUPT_FP_UNAVAIL:
|
||
|
case BOOK3S_INTERRUPT_ALTIVEC:
|
||
|
case BOOK3S_INTERRUPT_VSX:
|
||
|
{
|
||
|
int ext_msr = 0;
|
||
|
int emul;
|
||
|
u32 last_inst;
|
||
|
|
||
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
|
||
|
/* Do paired single instruction emulation */
|
||
|
emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
|
||
|
&last_inst);
|
||
|
if (emul == EMULATE_DONE)
|
||
|
r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
|
||
|
else
|
||
|
r = RESUME_GUEST;
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Enable external provider */
|
||
|
switch (exit_nr) {
|
||
|
case BOOK3S_INTERRUPT_FP_UNAVAIL:
|
||
|
ext_msr = MSR_FP;
|
||
|
break;
|
||
|
|
||
|
case BOOK3S_INTERRUPT_ALTIVEC:
|
||
|
ext_msr = MSR_VEC;
|
||
|
break;
|
||
|
|
||
|
case BOOK3S_INTERRUPT_VSX:
|
||
|
ext_msr = MSR_VSX;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
|
||
|
break;
|
||
|
}
|
||
|
case BOOK3S_INTERRUPT_ALIGNMENT:
|
||
|
{
|
||
|
u32 last_inst;
|
||
|
int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
|
||
|
|
||
|
if (emul == EMULATE_DONE) {
|
||
|
u32 dsisr;
|
||
|
u64 dar;
|
||
|
|
||
|
dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
|
||
|
dar = kvmppc_alignment_dar(vcpu, last_inst);
|
||
|
|
||
|
kvmppc_set_dsisr(vcpu, dsisr);
|
||
|
kvmppc_set_dar(vcpu, dar);
|
||
|
|
||
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
||
|
}
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
}
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
case BOOK3S_INTERRUPT_FAC_UNAVAIL:
|
||
|
r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
|
||
|
break;
|
||
|
#endif
|
||
|
case BOOK3S_INTERRUPT_MACHINE_CHECK:
|
||
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
||
|
r = RESUME_GUEST;
|
||
|
break;
|
||
|
case BOOK3S_INTERRUPT_TRACE:
|
||
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
|
||
|
run->exit_reason = KVM_EXIT_DEBUG;
|
||
|
r = RESUME_HOST;
|
||
|
} else {
|
||
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
||
|
r = RESUME_GUEST;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
{
|
||
|
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
|
||
|
/* Ugh - bork here! What did we get? */
|
||
|
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
|
||
|
exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
|
||
|
r = RESUME_HOST;
|
||
|
BUG();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!(r & RESUME_HOST)) {
|
||
|
/* To avoid clobbering exit_reason, only check for signals if
|
||
|
* we aren't already exiting to userspace for some other
|
||
|
* reason. */
|
||
|
|
||
|
/*
|
||
|
* Interrupts could be timers for the guest which we have to
|
||
|
* inject again, so let's postpone them until we're in the guest
|
||
|
* and if we really did time things so badly, then we just exit
|
||
|
* again due to a host external interrupt.
|
||
|
*/
|
||
|
s = kvmppc_prepare_to_enter(vcpu);
|
||
|
if (s <= 0)
|
||
|
r = s;
|
||
|
else {
|
||
|
/* interrupts now hard-disabled */
|
||
|
kvmppc_fix_ee_before_entry();
|
||
|
}
|
||
|
|
||
|
kvmppc_handle_lost_ext(vcpu);
|
||
|
}
|
||
|
|
||
|
trace_kvm_book3s_reenter(r, vcpu);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_sregs *sregs)
|
||
|
{
|
||
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
||
|
int i;
|
||
|
|
||
|
sregs->pvr = vcpu->arch.pvr;
|
||
|
|
||
|
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
|
||
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
|
||
|
for (i = 0; i < 64; i++) {
|
||
|
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
|
||
|
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
|
||
|
}
|
||
|
} else {
|
||
|
for (i = 0; i < 16; i++)
|
||
|
sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
|
||
|
|
||
|
for (i = 0; i < 8; i++) {
|
||
|
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
|
||
|
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_sregs *sregs)
|
||
|
{
|
||
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
||
|
int i;
|
||
|
|
||
|
kvmppc_set_pvr_pr(vcpu, sregs->pvr);
|
||
|
|
||
|
vcpu3s->sdr1 = sregs->u.s.sdr1;
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
|
||
|
/* Flush all SLB entries */
|
||
|
vcpu->arch.mmu.slbmte(vcpu, 0, 0);
|
||
|
vcpu->arch.mmu.slbia(vcpu);
|
||
|
|
||
|
for (i = 0; i < 64; i++) {
|
||
|
u64 rb = sregs->u.s.ppc64.slb[i].slbe;
|
||
|
u64 rs = sregs->u.s.ppc64.slb[i].slbv;
|
||
|
|
||
|
if (rb & SLB_ESID_V)
|
||
|
vcpu->arch.mmu.slbmte(vcpu, rs, rb);
|
||
|
}
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
for (i = 0; i < 16; i++) {
|
||
|
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
|
||
|
}
|
||
|
for (i = 0; i < 8; i++) {
|
||
|
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
|
||
|
(u32)sregs->u.s.ppc32.ibat[i]);
|
||
|
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
|
||
|
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
|
||
|
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
|
||
|
(u32)sregs->u.s.ppc32.dbat[i]);
|
||
|
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
|
||
|
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Flush the MMU after messing with the segments */
|
||
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
|
||
|
union kvmppc_one_reg *val)
|
||
|
{
|
||
|
int r = 0;
|
||
|
|
||
|
switch (id) {
|
||
|
case KVM_REG_PPC_DEBUG_INST:
|
||
|
*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
|
||
|
break;
|
||
|
case KVM_REG_PPC_HIOR:
|
||
|
*val = get_reg_val(id, to_book3s(vcpu)->hior);
|
||
|
break;
|
||
|
case KVM_REG_PPC_VTB:
|
||
|
*val = get_reg_val(id, to_book3s(vcpu)->vtb);
|
||
|
break;
|
||
|
case KVM_REG_PPC_LPCR:
|
||
|
case KVM_REG_PPC_LPCR_64:
|
||
|
/*
|
||
|
* We are only interested in the LPCR_ILE bit
|
||
|
*/
|
||
|
if (vcpu->arch.intr_msr & MSR_LE)
|
||
|
*val = get_reg_val(id, LPCR_ILE);
|
||
|
else
|
||
|
*val = get_reg_val(id, 0);
|
||
|
break;
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
case KVM_REG_PPC_TFHAR:
|
||
|
*val = get_reg_val(id, vcpu->arch.tfhar);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TFIAR:
|
||
|
*val = get_reg_val(id, vcpu->arch.tfiar);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TEXASR:
|
||
|
*val = get_reg_val(id, vcpu->arch.texasr);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
|
||
|
*val = get_reg_val(id,
|
||
|
vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
i = id - KVM_REG_PPC_TM_VSR0;
|
||
|
if (i < 32)
|
||
|
for (j = 0; j < TS_FPRWIDTH; j++)
|
||
|
val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
|
||
|
else {
|
||
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
||
|
val->vval = vcpu->arch.vr_tm.vr[i-32];
|
||
|
else
|
||
|
r = -ENXIO;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case KVM_REG_PPC_TM_CR:
|
||
|
*val = get_reg_val(id, vcpu->arch.cr_tm);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_XER:
|
||
|
*val = get_reg_val(id, vcpu->arch.xer_tm);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_LR:
|
||
|
*val = get_reg_val(id, vcpu->arch.lr_tm);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_CTR:
|
||
|
*val = get_reg_val(id, vcpu->arch.ctr_tm);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_FPSCR:
|
||
|
*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_AMR:
|
||
|
*val = get_reg_val(id, vcpu->arch.amr_tm);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_PPR:
|
||
|
*val = get_reg_val(id, vcpu->arch.ppr_tm);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_VRSAVE:
|
||
|
*val = get_reg_val(id, vcpu->arch.vrsave_tm);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_VSCR:
|
||
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
||
|
*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
|
||
|
else
|
||
|
r = -ENXIO;
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_DSCR:
|
||
|
*val = get_reg_val(id, vcpu->arch.dscr_tm);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_TAR:
|
||
|
*val = get_reg_val(id, vcpu->arch.tar_tm);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
|
||
|
{
|
||
|
if (new_lpcr & LPCR_ILE)
|
||
|
vcpu->arch.intr_msr |= MSR_LE;
|
||
|
else
|
||
|
vcpu->arch.intr_msr &= ~MSR_LE;
|
||
|
}
|
||
|
|
||
|
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
|
||
|
union kvmppc_one_reg *val)
|
||
|
{
|
||
|
int r = 0;
|
||
|
|
||
|
switch (id) {
|
||
|
case KVM_REG_PPC_HIOR:
|
||
|
to_book3s(vcpu)->hior = set_reg_val(id, *val);
|
||
|
to_book3s(vcpu)->hior_explicit = true;
|
||
|
break;
|
||
|
case KVM_REG_PPC_VTB:
|
||
|
to_book3s(vcpu)->vtb = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_LPCR:
|
||
|
case KVM_REG_PPC_LPCR_64:
|
||
|
kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
|
||
|
break;
|
||
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
||
|
case KVM_REG_PPC_TFHAR:
|
||
|
vcpu->arch.tfhar = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TFIAR:
|
||
|
vcpu->arch.tfiar = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TEXASR:
|
||
|
vcpu->arch.texasr = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
|
||
|
vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
|
||
|
set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
i = id - KVM_REG_PPC_TM_VSR0;
|
||
|
if (i < 32)
|
||
|
for (j = 0; j < TS_FPRWIDTH; j++)
|
||
|
vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
|
||
|
else
|
||
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
||
|
vcpu->arch.vr_tm.vr[i-32] = val->vval;
|
||
|
else
|
||
|
r = -ENXIO;
|
||
|
break;
|
||
|
}
|
||
|
case KVM_REG_PPC_TM_CR:
|
||
|
vcpu->arch.cr_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_XER:
|
||
|
vcpu->arch.xer_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_LR:
|
||
|
vcpu->arch.lr_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_CTR:
|
||
|
vcpu->arch.ctr_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_FPSCR:
|
||
|
vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_AMR:
|
||
|
vcpu->arch.amr_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_PPR:
|
||
|
vcpu->arch.ppr_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_VRSAVE:
|
||
|
vcpu->arch.vrsave_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_VSCR:
|
||
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
||
|
vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
|
||
|
else
|
||
|
r = -ENXIO;
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_DSCR:
|
||
|
vcpu->arch.dscr_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
case KVM_REG_PPC_TM_TAR:
|
||
|
vcpu->arch.tar_tm = set_reg_val(id, *val);
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
r = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
|
||
|
unsigned int id)
|
||
|
{
|
||
|
struct kvmppc_vcpu_book3s *vcpu_book3s;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
int err = -ENOMEM;
|
||
|
unsigned long p;
|
||
|
|
||
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
||
|
if (!vcpu)
|
||
|
goto out;
|
||
|
|
||
|
vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
|
||
|
if (!vcpu_book3s)
|
||
|
goto free_vcpu;
|
||
|
vcpu->arch.book3s = vcpu_book3s;
|
||
|
|
||
|
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
|
||
|
vcpu->arch.shadow_vcpu =
|
||
|
kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
|
||
|
if (!vcpu->arch.shadow_vcpu)
|
||
|
goto free_vcpu3s;
|
||
|
#endif
|
||
|
|
||
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
||
|
if (err)
|
||
|
goto free_shadow_vcpu;
|
||
|
|
||
|
err = -ENOMEM;
|
||
|
p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
|
||
|
if (!p)
|
||
|
goto uninit_vcpu;
|
||
|
vcpu->arch.shared = (void *)p;
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
/* Always start the shared struct in native endian mode */
|
||
|
#ifdef __BIG_ENDIAN__
|
||
|
vcpu->arch.shared_big_endian = true;
|
||
|
#else
|
||
|
vcpu->arch.shared_big_endian = false;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Default to the same as the host if we're on sufficiently
|
||
|
* recent machine that we have 1TB segments;
|
||
|
* otherwise default to PPC970FX.
|
||
|
*/
|
||
|
vcpu->arch.pvr = 0x3C0301;
|
||
|
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
||
|
vcpu->arch.pvr = mfspr(SPRN_PVR);
|
||
|
vcpu->arch.intr_msr = MSR_SF;
|
||
|
#else
|
||
|
/* default to book3s_32 (750) */
|
||
|
vcpu->arch.pvr = 0x84202;
|
||
|
#endif
|
||
|
kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
|
||
|
vcpu->arch.slb_nr = 64;
|
||
|
|
||
|
vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
|
||
|
|
||
|
err = kvmppc_mmu_init(vcpu);
|
||
|
if (err < 0)
|
||
|
goto free_shared_page;
|
||
|
|
||
|
return vcpu;
|
||
|
|
||
|
free_shared_page:
|
||
|
free_page((unsigned long)vcpu->arch.shared);
|
||
|
uninit_vcpu:
|
||
|
kvm_vcpu_uninit(vcpu);
|
||
|
free_shadow_vcpu:
|
||
|
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
|
||
|
kfree(vcpu->arch.shadow_vcpu);
|
||
|
free_vcpu3s:
|
||
|
#endif
|
||
|
vfree(vcpu_book3s);
|
||
|
free_vcpu:
|
||
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
||
|
out:
|
||
|
return ERR_PTR(err);
|
||
|
}
|
||
|
|
||
|
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
|
||
|
|
||
|
free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
|
||
|
kvm_vcpu_uninit(vcpu);
|
||
|
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
|
||
|
kfree(vcpu->arch.shadow_vcpu);
|
||
|
#endif
|
||
|
vfree(vcpu_book3s);
|
||
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
||
|
}
|
||
|
|
||
|
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int ret;
|
||
|
#ifdef CONFIG_ALTIVEC
|
||
|
unsigned long uninitialized_var(vrsave);
|
||
|
#endif
|
||
|
|
||
|
/* Check if we can run the vcpu at all */
|
||
|
if (!vcpu->arch.sane) {
|
||
|
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
kvmppc_setup_debug(vcpu);
|
||
|
|
||
|
/*
|
||
|
* Interrupts could be timers for the guest which we have to inject
|
||
|
* again, so let's postpone them until we're in the guest and if we
|
||
|
* really did time things so badly, then we just exit again due to
|
||
|
* a host external interrupt.
|
||
|
*/
|
||
|
ret = kvmppc_prepare_to_enter(vcpu);
|
||
|
if (ret <= 0)
|
||
|
goto out;
|
||
|
/* interrupts now hard-disabled */
|
||
|
|
||
|
/* Save FPU, Altivec and VSX state */
|
||
|
giveup_all(current);
|
||
|
|
||
|
/* Preload FPU if it's enabled */
|
||
|
if (kvmppc_get_msr(vcpu) & MSR_FP)
|
||
|
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
|
||
|
|
||
|
kvmppc_fix_ee_before_entry();
|
||
|
|
||
|
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
|
||
|
|
||
|
kvmppc_clear_debug(vcpu);
|
||
|
|
||
|
/* No need for guest_exit. It's done in handle_exit.
|
||
|
We also get here with interrupts enabled. */
|
||
|
|
||
|
/* Make sure we save the guest FPU/Altivec/VSX state */
|
||
|
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
|
||
|
|
||
|
/* Make sure we save the guest TAR/EBB/DSCR state */
|
||
|
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
|
||
|
|
||
|
out:
|
||
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get (and clear) the dirty memory log for a memory slot.
|
||
|
*/
|
||
|
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
|
||
|
struct kvm_dirty_log *log)
|
||
|
{
|
||
|
struct kvm_memslots *slots;
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
ulong ga, ga_end;
|
||
|
int is_dirty = 0;
|
||
|
int r;
|
||
|
unsigned long n;
|
||
|
|
||
|
mutex_lock(&kvm->slots_lock);
|
||
|
|
||
|
r = kvm_get_dirty_log(kvm, log, &is_dirty);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
|
||
|
/* If nothing is dirty, don't bother messing with page tables. */
|
||
|
if (is_dirty) {
|
||
|
slots = kvm_memslots(kvm);
|
||
|
memslot = id_to_memslot(slots, log->slot);
|
||
|
|
||
|
ga = memslot->base_gfn << PAGE_SHIFT;
|
||
|
ga_end = ga + (memslot->npages << PAGE_SHIFT);
|
||
|
|
||
|
kvm_for_each_vcpu(n, vcpu, kvm)
|
||
|
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
|
||
|
|
||
|
n = kvm_dirty_bitmap_bytes(memslot);
|
||
|
memset(memslot->dirty_bitmap, 0, n);
|
||
|
}
|
||
|
|
||
|
r = 0;
|
||
|
out:
|
||
|
mutex_unlock(&kvm->slots_lock);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
|
||
|
struct kvm_memory_slot *memslot)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
|
||
|
struct kvm_memory_slot *memslot,
|
||
|
const struct kvm_userspace_memory_region *mem)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
|
||
|
const struct kvm_userspace_memory_region *mem,
|
||
|
const struct kvm_memory_slot *old,
|
||
|
const struct kvm_memory_slot *new)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
|
||
|
struct kvm_memory_slot *dont)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
|
||
|
unsigned long npages)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef CONFIG_PPC64
|
||
|
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
|
||
|
struct kvm_ppc_smmu_info *info)
|
||
|
{
|
||
|
long int i;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
|
||
|
info->flags = 0;
|
||
|
|
||
|
/* SLB is always 64 entries */
|
||
|
info->slb_size = 64;
|
||
|
|
||
|
/* Standard 4k base page size segment */
|
||
|
info->sps[0].page_shift = 12;
|
||
|
info->sps[0].slb_enc = 0;
|
||
|
info->sps[0].enc[0].page_shift = 12;
|
||
|
info->sps[0].enc[0].pte_enc = 0;
|
||
|
|
||
|
/*
|
||
|
* 64k large page size.
|
||
|
* We only want to put this in if the CPUs we're emulating
|
||
|
* support it, but unfortunately we don't have a vcpu easily
|
||
|
* to hand here to test. Just pick the first vcpu, and if
|
||
|
* that doesn't exist yet, report the minimum capability,
|
||
|
* i.e., no 64k pages.
|
||
|
* 1T segment support goes along with 64k pages.
|
||
|
*/
|
||
|
i = 1;
|
||
|
vcpu = kvm_get_vcpu(kvm, 0);
|
||
|
if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
|
||
|
info->flags = KVM_PPC_1T_SEGMENTS;
|
||
|
info->sps[i].page_shift = 16;
|
||
|
info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
|
||
|
info->sps[i].enc[0].page_shift = 16;
|
||
|
info->sps[i].enc[0].pte_enc = 1;
|
||
|
++i;
|
||
|
}
|
||
|
|
||
|
/* Standard 16M large page size segment */
|
||
|
info->sps[i].page_shift = 24;
|
||
|
info->sps[i].slb_enc = SLB_VSID_L;
|
||
|
info->sps[i].enc[0].page_shift = 24;
|
||
|
info->sps[i].enc[0].pte_enc = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
|
||
|
{
|
||
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
||
|
return -ENODEV;
|
||
|
/* Require flags and process table base and size to all be zero. */
|
||
|
if (cfg->flags || cfg->process_table)
|
||
|
return -EINVAL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
|
||
|
struct kvm_ppc_smmu_info *info)
|
||
|
{
|
||
|
/* We should not get called */
|
||
|
BUG();
|
||
|
}
|
||
|
#endif /* CONFIG_PPC64 */
|
||
|
|
||
|
static unsigned int kvm_global_user_count = 0;
|
||
|
static DEFINE_SPINLOCK(kvm_global_user_count_lock);
|
||
|
|
||
|
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
|
||
|
{
|
||
|
mutex_init(&kvm->arch.hpt_mutex);
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
/* Start out with the default set of hcalls enabled */
|
||
|
kvmppc_pr_init_default_hcalls(kvm);
|
||
|
#endif
|
||
|
|
||
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
||
|
spin_lock(&kvm_global_user_count_lock);
|
||
|
if (++kvm_global_user_count == 1)
|
||
|
pseries_disable_reloc_on_exc();
|
||
|
spin_unlock(&kvm_global_user_count_lock);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
|
||
|
{
|
||
|
#ifdef CONFIG_PPC64
|
||
|
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
|
||
|
#endif
|
||
|
|
||
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
||
|
spin_lock(&kvm_global_user_count_lock);
|
||
|
BUG_ON(kvm_global_user_count == 0);
|
||
|
if (--kvm_global_user_count == 0)
|
||
|
pseries_enable_reloc_on_exc();
|
||
|
spin_unlock(&kvm_global_user_count_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int kvmppc_core_check_processor_compat_pr(void)
|
||
|
{
|
||
|
/*
|
||
|
* PR KVM can work on POWER9 inside a guest partition
|
||
|
* running in HPT mode. It can't work if we are using
|
||
|
* radix translation (because radix provides no way for
|
||
|
* a process to have unique translations in quadrant 3).
|
||
|
*/
|
||
|
if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
|
||
|
return -EIO;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static long kvm_arch_vm_ioctl_pr(struct file *filp,
|
||
|
unsigned int ioctl, unsigned long arg)
|
||
|
{
|
||
|
return -ENOTTY;
|
||
|
}
|
||
|
|
||
|
static struct kvmppc_ops kvm_ops_pr = {
|
||
|
.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
|
||
|
.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
|
||
|
.get_one_reg = kvmppc_get_one_reg_pr,
|
||
|
.set_one_reg = kvmppc_set_one_reg_pr,
|
||
|
.vcpu_load = kvmppc_core_vcpu_load_pr,
|
||
|
.vcpu_put = kvmppc_core_vcpu_put_pr,
|
||
|
.set_msr = kvmppc_set_msr_pr,
|
||
|
.vcpu_run = kvmppc_vcpu_run_pr,
|
||
|
.vcpu_create = kvmppc_core_vcpu_create_pr,
|
||
|
.vcpu_free = kvmppc_core_vcpu_free_pr,
|
||
|
.check_requests = kvmppc_core_check_requests_pr,
|
||
|
.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
|
||
|
.flush_memslot = kvmppc_core_flush_memslot_pr,
|
||
|
.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
|
||
|
.commit_memory_region = kvmppc_core_commit_memory_region_pr,
|
||
|
.unmap_hva_range = kvm_unmap_hva_range_pr,
|
||
|
.age_hva = kvm_age_hva_pr,
|
||
|
.test_age_hva = kvm_test_age_hva_pr,
|
||
|
.set_spte_hva = kvm_set_spte_hva_pr,
|
||
|
.mmu_destroy = kvmppc_mmu_destroy_pr,
|
||
|
.free_memslot = kvmppc_core_free_memslot_pr,
|
||
|
.create_memslot = kvmppc_core_create_memslot_pr,
|
||
|
.init_vm = kvmppc_core_init_vm_pr,
|
||
|
.destroy_vm = kvmppc_core_destroy_vm_pr,
|
||
|
.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
|
||
|
.emulate_op = kvmppc_core_emulate_op_pr,
|
||
|
.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
|
||
|
.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
|
||
|
.fast_vcpu_kick = kvm_vcpu_kick,
|
||
|
.arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
.hcall_implemented = kvmppc_hcall_impl_pr,
|
||
|
.configure_mmu = kvm_configure_mmu_pr,
|
||
|
#endif
|
||
|
.giveup_ext = kvmppc_giveup_ext,
|
||
|
};
|
||
|
|
||
|
|
||
|
int kvmppc_book3s_init_pr(void)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
r = kvmppc_core_check_processor_compat_pr();
|
||
|
if (r < 0)
|
||
|
return r;
|
||
|
|
||
|
kvm_ops_pr.owner = THIS_MODULE;
|
||
|
kvmppc_pr_ops = &kvm_ops_pr;
|
||
|
|
||
|
r = kvmppc_mmu_hpte_sysinit();
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
void kvmppc_book3s_exit_pr(void)
|
||
|
{
|
||
|
kvmppc_pr_ops = NULL;
|
||
|
kvmppc_mmu_hpte_sysexit();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We only support separate modules for book3s 64
|
||
|
*/
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
|
||
|
module_init(kvmppc_book3s_init_pr);
|
||
|
module_exit(kvmppc_book3s_exit_pr);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_ALIAS_MISCDEV(KVM_MINOR);
|
||
|
MODULE_ALIAS("devname:kvm");
|
||
|
#endif
|