882 lines
23 KiB
C
882 lines
23 KiB
C
|
/*
|
||
|
* Copyright © 2012-2014 Intel Corporation
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
|
* copy of this software and associated documentation files (the "Software"),
|
||
|
* to deal in the Software without restriction, including without limitation
|
||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||
|
* Software is furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice (including the next
|
||
|
* paragraph) shall be included in all copies or substantial portions of the
|
||
|
* Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
* IN THE SOFTWARE.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <drm/drmP.h>
|
||
|
#include <drm/i915_drm.h>
|
||
|
#include "i915_drv.h"
|
||
|
#include "i915_trace.h"
|
||
|
#include "intel_drv.h"
|
||
|
#include <linux/mmu_context.h>
|
||
|
#include <linux/mmu_notifier.h>
|
||
|
#include <linux/mempolicy.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/sched/mm.h>
|
||
|
|
||
|
struct i915_mm_struct {
|
||
|
struct mm_struct *mm;
|
||
|
struct drm_i915_private *i915;
|
||
|
struct i915_mmu_notifier *mn;
|
||
|
struct hlist_node node;
|
||
|
struct kref kref;
|
||
|
struct work_struct work;
|
||
|
};
|
||
|
|
||
|
#if defined(CONFIG_MMU_NOTIFIER)
|
||
|
#include <linux/interval_tree.h>
|
||
|
|
||
|
struct i915_mmu_notifier {
|
||
|
spinlock_t lock;
|
||
|
struct hlist_node node;
|
||
|
struct mmu_notifier mn;
|
||
|
struct rb_root_cached objects;
|
||
|
struct workqueue_struct *wq;
|
||
|
};
|
||
|
|
||
|
struct i915_mmu_object {
|
||
|
struct i915_mmu_notifier *mn;
|
||
|
struct drm_i915_gem_object *obj;
|
||
|
struct interval_tree_node it;
|
||
|
struct list_head link;
|
||
|
struct work_struct work;
|
||
|
bool attached;
|
||
|
};
|
||
|
|
||
|
static void cancel_userptr(struct work_struct *work)
|
||
|
{
|
||
|
struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
|
||
|
struct drm_i915_gem_object *obj = mo->obj;
|
||
|
struct work_struct *active;
|
||
|
|
||
|
/* Cancel any active worker and force us to re-evaluate gup */
|
||
|
mutex_lock(&obj->mm.lock);
|
||
|
active = fetch_and_zero(&obj->userptr.work);
|
||
|
mutex_unlock(&obj->mm.lock);
|
||
|
if (active)
|
||
|
goto out;
|
||
|
|
||
|
i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
|
||
|
|
||
|
mutex_lock(&obj->base.dev->struct_mutex);
|
||
|
|
||
|
/* We are inside a kthread context and can't be interrupted */
|
||
|
if (i915_gem_object_unbind(obj) == 0)
|
||
|
__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
|
||
|
WARN_ONCE(i915_gem_object_has_pages(obj),
|
||
|
"Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_global=%d\n",
|
||
|
obj->bind_count,
|
||
|
atomic_read(&obj->mm.pages_pin_count),
|
||
|
obj->pin_global);
|
||
|
|
||
|
mutex_unlock(&obj->base.dev->struct_mutex);
|
||
|
|
||
|
out:
|
||
|
i915_gem_object_put(obj);
|
||
|
}
|
||
|
|
||
|
static void add_object(struct i915_mmu_object *mo)
|
||
|
{
|
||
|
if (mo->attached)
|
||
|
return;
|
||
|
|
||
|
interval_tree_insert(&mo->it, &mo->mn->objects);
|
||
|
mo->attached = true;
|
||
|
}
|
||
|
|
||
|
static void del_object(struct i915_mmu_object *mo)
|
||
|
{
|
||
|
if (!mo->attached)
|
||
|
return;
|
||
|
|
||
|
interval_tree_remove(&mo->it, &mo->mn->objects);
|
||
|
mo->attached = false;
|
||
|
}
|
||
|
|
||
|
static int i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long start,
|
||
|
unsigned long end,
|
||
|
bool blockable)
|
||
|
{
|
||
|
struct i915_mmu_notifier *mn =
|
||
|
container_of(_mn, struct i915_mmu_notifier, mn);
|
||
|
struct i915_mmu_object *mo;
|
||
|
struct interval_tree_node *it;
|
||
|
LIST_HEAD(cancelled);
|
||
|
|
||
|
if (RB_EMPTY_ROOT(&mn->objects.rb_root))
|
||
|
return 0;
|
||
|
|
||
|
/* interval ranges are inclusive, but invalidate range is exclusive */
|
||
|
end--;
|
||
|
|
||
|
spin_lock(&mn->lock);
|
||
|
it = interval_tree_iter_first(&mn->objects, start, end);
|
||
|
while (it) {
|
||
|
if (!blockable) {
|
||
|
spin_unlock(&mn->lock);
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
/* The mmu_object is released late when destroying the
|
||
|
* GEM object so it is entirely possible to gain a
|
||
|
* reference on an object in the process of being freed
|
||
|
* since our serialisation is via the spinlock and not
|
||
|
* the struct_mutex - and consequently use it after it
|
||
|
* is freed and then double free it. To prevent that
|
||
|
* use-after-free we only acquire a reference on the
|
||
|
* object if it is not in the process of being destroyed.
|
||
|
*/
|
||
|
mo = container_of(it, struct i915_mmu_object, it);
|
||
|
if (kref_get_unless_zero(&mo->obj->base.refcount))
|
||
|
queue_work(mn->wq, &mo->work);
|
||
|
|
||
|
list_add(&mo->link, &cancelled);
|
||
|
it = interval_tree_iter_next(it, start, end);
|
||
|
}
|
||
|
list_for_each_entry(mo, &cancelled, link)
|
||
|
del_object(mo);
|
||
|
spin_unlock(&mn->lock);
|
||
|
|
||
|
if (!list_empty(&cancelled))
|
||
|
flush_workqueue(mn->wq);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
|
||
|
.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
|
||
|
};
|
||
|
|
||
|
static struct i915_mmu_notifier *
|
||
|
i915_mmu_notifier_create(struct mm_struct *mm)
|
||
|
{
|
||
|
struct i915_mmu_notifier *mn;
|
||
|
|
||
|
mn = kmalloc(sizeof(*mn), GFP_KERNEL);
|
||
|
if (mn == NULL)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
spin_lock_init(&mn->lock);
|
||
|
mn->mn.ops = &i915_gem_userptr_notifier;
|
||
|
mn->objects = RB_ROOT_CACHED;
|
||
|
mn->wq = alloc_workqueue("i915-userptr-release",
|
||
|
WQ_UNBOUND | WQ_MEM_RECLAIM,
|
||
|
0);
|
||
|
if (mn->wq == NULL) {
|
||
|
kfree(mn);
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
}
|
||
|
|
||
|
return mn;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
|
||
|
{
|
||
|
struct i915_mmu_object *mo;
|
||
|
|
||
|
mo = obj->userptr.mmu_object;
|
||
|
if (mo == NULL)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&mo->mn->lock);
|
||
|
del_object(mo);
|
||
|
spin_unlock(&mo->mn->lock);
|
||
|
kfree(mo);
|
||
|
|
||
|
obj->userptr.mmu_object = NULL;
|
||
|
}
|
||
|
|
||
|
static struct i915_mmu_notifier *
|
||
|
i915_mmu_notifier_find(struct i915_mm_struct *mm)
|
||
|
{
|
||
|
struct i915_mmu_notifier *mn;
|
||
|
int err = 0;
|
||
|
|
||
|
mn = mm->mn;
|
||
|
if (mn)
|
||
|
return mn;
|
||
|
|
||
|
mn = i915_mmu_notifier_create(mm->mm);
|
||
|
if (IS_ERR(mn))
|
||
|
err = PTR_ERR(mn);
|
||
|
|
||
|
down_write(&mm->mm->mmap_sem);
|
||
|
mutex_lock(&mm->i915->mm_lock);
|
||
|
if (mm->mn == NULL && !err) {
|
||
|
/* Protected by mmap_sem (write-lock) */
|
||
|
err = __mmu_notifier_register(&mn->mn, mm->mm);
|
||
|
if (!err) {
|
||
|
/* Protected by mm_lock */
|
||
|
mm->mn = fetch_and_zero(&mn);
|
||
|
}
|
||
|
} else if (mm->mn) {
|
||
|
/*
|
||
|
* Someone else raced and successfully installed the mmu
|
||
|
* notifier, we can cancel our own errors.
|
||
|
*/
|
||
|
err = 0;
|
||
|
}
|
||
|
mutex_unlock(&mm->i915->mm_lock);
|
||
|
up_write(&mm->mm->mmap_sem);
|
||
|
|
||
|
if (mn && !IS_ERR(mn)) {
|
||
|
destroy_workqueue(mn->wq);
|
||
|
kfree(mn);
|
||
|
}
|
||
|
|
||
|
return err ? ERR_PTR(err) : mm->mn;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
|
||
|
unsigned flags)
|
||
|
{
|
||
|
struct i915_mmu_notifier *mn;
|
||
|
struct i915_mmu_object *mo;
|
||
|
|
||
|
if (flags & I915_USERPTR_UNSYNCHRONIZED)
|
||
|
return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
|
||
|
|
||
|
if (WARN_ON(obj->userptr.mm == NULL))
|
||
|
return -EINVAL;
|
||
|
|
||
|
mn = i915_mmu_notifier_find(obj->userptr.mm);
|
||
|
if (IS_ERR(mn))
|
||
|
return PTR_ERR(mn);
|
||
|
|
||
|
mo = kzalloc(sizeof(*mo), GFP_KERNEL);
|
||
|
if (mo == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
mo->mn = mn;
|
||
|
mo->obj = obj;
|
||
|
mo->it.start = obj->userptr.ptr;
|
||
|
mo->it.last = obj->userptr.ptr + obj->base.size - 1;
|
||
|
INIT_WORK(&mo->work, cancel_userptr);
|
||
|
|
||
|
obj->userptr.mmu_object = mo;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
|
||
|
struct mm_struct *mm)
|
||
|
{
|
||
|
if (mn == NULL)
|
||
|
return;
|
||
|
|
||
|
mmu_notifier_unregister(&mn->mn, mm);
|
||
|
destroy_workqueue(mn->wq);
|
||
|
kfree(mn);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
static void
|
||
|
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
|
||
|
unsigned flags)
|
||
|
{
|
||
|
if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (!capable(CAP_SYS_ADMIN))
|
||
|
return -EPERM;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
|
||
|
struct mm_struct *mm)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static struct i915_mm_struct *
|
||
|
__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
|
||
|
{
|
||
|
struct i915_mm_struct *mm;
|
||
|
|
||
|
/* Protected by dev_priv->mm_lock */
|
||
|
hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
|
||
|
if (mm->mm == real)
|
||
|
return mm;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
||
|
struct i915_mm_struct *mm;
|
||
|
int ret = 0;
|
||
|
|
||
|
/* During release of the GEM object we hold the struct_mutex. This
|
||
|
* precludes us from calling mmput() at that time as that may be
|
||
|
* the last reference and so call exit_mmap(). exit_mmap() will
|
||
|
* attempt to reap the vma, and if we were holding a GTT mmap
|
||
|
* would then call drm_gem_vm_close() and attempt to reacquire
|
||
|
* the struct mutex. So in order to avoid that recursion, we have
|
||
|
* to defer releasing the mm reference until after we drop the
|
||
|
* struct_mutex, i.e. we need to schedule a worker to do the clean
|
||
|
* up.
|
||
|
*/
|
||
|
mutex_lock(&dev_priv->mm_lock);
|
||
|
mm = __i915_mm_struct_find(dev_priv, current->mm);
|
||
|
if (mm == NULL) {
|
||
|
mm = kmalloc(sizeof(*mm), GFP_KERNEL);
|
||
|
if (mm == NULL) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
kref_init(&mm->kref);
|
||
|
mm->i915 = to_i915(obj->base.dev);
|
||
|
|
||
|
mm->mm = current->mm;
|
||
|
mmgrab(current->mm);
|
||
|
|
||
|
mm->mn = NULL;
|
||
|
|
||
|
/* Protected by dev_priv->mm_lock */
|
||
|
hash_add(dev_priv->mm_structs,
|
||
|
&mm->node, (unsigned long)mm->mm);
|
||
|
} else
|
||
|
kref_get(&mm->kref);
|
||
|
|
||
|
obj->userptr.mm = mm;
|
||
|
out:
|
||
|
mutex_unlock(&dev_priv->mm_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
__i915_mm_struct_free__worker(struct work_struct *work)
|
||
|
{
|
||
|
struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
|
||
|
i915_mmu_notifier_free(mm->mn, mm->mm);
|
||
|
mmdrop(mm->mm);
|
||
|
kfree(mm);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
__i915_mm_struct_free(struct kref *kref)
|
||
|
{
|
||
|
struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
|
||
|
|
||
|
/* Protected by dev_priv->mm_lock */
|
||
|
hash_del(&mm->node);
|
||
|
mutex_unlock(&mm->i915->mm_lock);
|
||
|
|
||
|
INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
|
||
|
queue_work(mm->i915->mm.userptr_wq, &mm->work);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
|
||
|
{
|
||
|
if (obj->userptr.mm == NULL)
|
||
|
return;
|
||
|
|
||
|
kref_put_mutex(&obj->userptr.mm->kref,
|
||
|
__i915_mm_struct_free,
|
||
|
&to_i915(obj->base.dev)->mm_lock);
|
||
|
obj->userptr.mm = NULL;
|
||
|
}
|
||
|
|
||
|
struct get_pages_work {
|
||
|
struct work_struct work;
|
||
|
struct drm_i915_gem_object *obj;
|
||
|
struct task_struct *task;
|
||
|
};
|
||
|
|
||
|
static struct sg_table *
|
||
|
__i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
|
||
|
struct page **pvec, int num_pages)
|
||
|
{
|
||
|
unsigned int max_segment = i915_sg_segment_size();
|
||
|
struct sg_table *st;
|
||
|
unsigned int sg_page_sizes;
|
||
|
int ret;
|
||
|
|
||
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
||
|
if (!st)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
alloc_table:
|
||
|
ret = __sg_alloc_table_from_pages(st, pvec, num_pages,
|
||
|
0, num_pages << PAGE_SHIFT,
|
||
|
max_segment,
|
||
|
GFP_KERNEL);
|
||
|
if (ret) {
|
||
|
kfree(st);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
ret = i915_gem_gtt_prepare_pages(obj, st);
|
||
|
if (ret) {
|
||
|
sg_free_table(st);
|
||
|
|
||
|
if (max_segment > PAGE_SIZE) {
|
||
|
max_segment = PAGE_SIZE;
|
||
|
goto alloc_table;
|
||
|
}
|
||
|
|
||
|
kfree(st);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
sg_page_sizes = i915_sg_page_sizes(st->sgl);
|
||
|
|
||
|
__i915_gem_object_set_pages(obj, st, sg_page_sizes);
|
||
|
|
||
|
return st;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
|
||
|
bool value)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
/* During mm_invalidate_range we need to cancel any userptr that
|
||
|
* overlaps the range being invalidated. Doing so requires the
|
||
|
* struct_mutex, and that risks recursion. In order to cause
|
||
|
* recursion, the user must alias the userptr address space with
|
||
|
* a GTT mmapping (possible with a MAP_FIXED) - then when we have
|
||
|
* to invalidate that mmaping, mm_invalidate_range is called with
|
||
|
* the userptr address *and* the struct_mutex held. To prevent that
|
||
|
* we set a flag under the i915_mmu_notifier spinlock to indicate
|
||
|
* whether this object is valid.
|
||
|
*/
|
||
|
#if defined(CONFIG_MMU_NOTIFIER)
|
||
|
if (obj->userptr.mmu_object == NULL)
|
||
|
return 0;
|
||
|
|
||
|
spin_lock(&obj->userptr.mmu_object->mn->lock);
|
||
|
/* In order to serialise get_pages with an outstanding
|
||
|
* cancel_userptr, we must drop the struct_mutex and try again.
|
||
|
*/
|
||
|
if (!value)
|
||
|
del_object(obj->userptr.mmu_object);
|
||
|
else if (!work_pending(&obj->userptr.mmu_object->work))
|
||
|
add_object(obj->userptr.mmu_object);
|
||
|
else
|
||
|
ret = -EAGAIN;
|
||
|
spin_unlock(&obj->userptr.mmu_object->mn->lock);
|
||
|
#endif
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
|
||
|
{
|
||
|
struct get_pages_work *work = container_of(_work, typeof(*work), work);
|
||
|
struct drm_i915_gem_object *obj = work->obj;
|
||
|
const int npages = obj->base.size >> PAGE_SHIFT;
|
||
|
struct page **pvec;
|
||
|
int pinned, ret;
|
||
|
|
||
|
ret = -ENOMEM;
|
||
|
pinned = 0;
|
||
|
|
||
|
pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
|
||
|
if (pvec != NULL) {
|
||
|
struct mm_struct *mm = obj->userptr.mm->mm;
|
||
|
unsigned int flags = 0;
|
||
|
|
||
|
if (!i915_gem_object_is_readonly(obj))
|
||
|
flags |= FOLL_WRITE;
|
||
|
|
||
|
ret = -EFAULT;
|
||
|
if (mmget_not_zero(mm)) {
|
||
|
down_read(&mm->mmap_sem);
|
||
|
while (pinned < npages) {
|
||
|
ret = get_user_pages_remote
|
||
|
(work->task, mm,
|
||
|
obj->userptr.ptr + pinned * PAGE_SIZE,
|
||
|
npages - pinned,
|
||
|
flags,
|
||
|
pvec + pinned, NULL, NULL);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
|
||
|
pinned += ret;
|
||
|
}
|
||
|
up_read(&mm->mmap_sem);
|
||
|
mmput(mm);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mutex_lock(&obj->mm.lock);
|
||
|
if (obj->userptr.work == &work->work) {
|
||
|
struct sg_table *pages = ERR_PTR(ret);
|
||
|
|
||
|
if (pinned == npages) {
|
||
|
pages = __i915_gem_userptr_alloc_pages(obj, pvec,
|
||
|
npages);
|
||
|
if (!IS_ERR(pages)) {
|
||
|
pinned = 0;
|
||
|
pages = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
obj->userptr.work = ERR_CAST(pages);
|
||
|
if (IS_ERR(pages))
|
||
|
__i915_gem_userptr_set_active(obj, false);
|
||
|
}
|
||
|
mutex_unlock(&obj->mm.lock);
|
||
|
|
||
|
release_pages(pvec, pinned);
|
||
|
kvfree(pvec);
|
||
|
|
||
|
i915_gem_object_put(obj);
|
||
|
put_task_struct(work->task);
|
||
|
kfree(work);
|
||
|
}
|
||
|
|
||
|
static struct sg_table *
|
||
|
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
|
||
|
{
|
||
|
struct get_pages_work *work;
|
||
|
|
||
|
/* Spawn a worker so that we can acquire the
|
||
|
* user pages without holding our mutex. Access
|
||
|
* to the user pages requires mmap_sem, and we have
|
||
|
* a strict lock ordering of mmap_sem, struct_mutex -
|
||
|
* we already hold struct_mutex here and so cannot
|
||
|
* call gup without encountering a lock inversion.
|
||
|
*
|
||
|
* Userspace will keep on repeating the operation
|
||
|
* (thanks to EAGAIN) until either we hit the fast
|
||
|
* path or the worker completes. If the worker is
|
||
|
* cancelled or superseded, the task is still run
|
||
|
* but the results ignored. (This leads to
|
||
|
* complications that we may have a stray object
|
||
|
* refcount that we need to be wary of when
|
||
|
* checking for existing objects during creation.)
|
||
|
* If the worker encounters an error, it reports
|
||
|
* that error back to this function through
|
||
|
* obj->userptr.work = ERR_PTR.
|
||
|
*/
|
||
|
work = kmalloc(sizeof(*work), GFP_KERNEL);
|
||
|
if (work == NULL)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
obj->userptr.work = &work->work;
|
||
|
|
||
|
work->obj = i915_gem_object_get(obj);
|
||
|
|
||
|
work->task = current;
|
||
|
get_task_struct(work->task);
|
||
|
|
||
|
INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
|
||
|
queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
|
||
|
|
||
|
return ERR_PTR(-EAGAIN);
|
||
|
}
|
||
|
|
||
|
static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
|
||
|
{
|
||
|
const int num_pages = obj->base.size >> PAGE_SHIFT;
|
||
|
struct mm_struct *mm = obj->userptr.mm->mm;
|
||
|
struct page **pvec;
|
||
|
struct sg_table *pages;
|
||
|
bool active;
|
||
|
int pinned;
|
||
|
|
||
|
/* If userspace should engineer that these pages are replaced in
|
||
|
* the vma between us binding this page into the GTT and completion
|
||
|
* of rendering... Their loss. If they change the mapping of their
|
||
|
* pages they need to create a new bo to point to the new vma.
|
||
|
*
|
||
|
* However, that still leaves open the possibility of the vma
|
||
|
* being copied upon fork. Which falls under the same userspace
|
||
|
* synchronisation issue as a regular bo, except that this time
|
||
|
* the process may not be expecting that a particular piece of
|
||
|
* memory is tied to the GPU.
|
||
|
*
|
||
|
* Fortunately, we can hook into the mmu_notifier in order to
|
||
|
* discard the page references prior to anything nasty happening
|
||
|
* to the vma (discard or cloning) which should prevent the more
|
||
|
* egregious cases from causing harm.
|
||
|
*/
|
||
|
|
||
|
if (obj->userptr.work) {
|
||
|
/* active flag should still be held for the pending work */
|
||
|
if (IS_ERR(obj->userptr.work))
|
||
|
return PTR_ERR(obj->userptr.work);
|
||
|
else
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
pvec = NULL;
|
||
|
pinned = 0;
|
||
|
|
||
|
if (mm == current->mm) {
|
||
|
pvec = kvmalloc_array(num_pages, sizeof(struct page *),
|
||
|
GFP_KERNEL |
|
||
|
__GFP_NORETRY |
|
||
|
__GFP_NOWARN);
|
||
|
if (pvec) /* defer to worker if malloc fails */
|
||
|
pinned = __get_user_pages_fast(obj->userptr.ptr,
|
||
|
num_pages,
|
||
|
!i915_gem_object_is_readonly(obj),
|
||
|
pvec);
|
||
|
}
|
||
|
|
||
|
active = false;
|
||
|
if (pinned < 0) {
|
||
|
pages = ERR_PTR(pinned);
|
||
|
pinned = 0;
|
||
|
} else if (pinned < num_pages) {
|
||
|
pages = __i915_gem_userptr_get_pages_schedule(obj);
|
||
|
active = pages == ERR_PTR(-EAGAIN);
|
||
|
} else {
|
||
|
pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
|
||
|
active = !IS_ERR(pages);
|
||
|
}
|
||
|
if (active)
|
||
|
__i915_gem_userptr_set_active(obj, true);
|
||
|
|
||
|
if (IS_ERR(pages))
|
||
|
release_pages(pvec, pinned);
|
||
|
kvfree(pvec);
|
||
|
|
||
|
return PTR_ERR_OR_ZERO(pages);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
|
||
|
struct sg_table *pages)
|
||
|
{
|
||
|
struct sgt_iter sgt_iter;
|
||
|
struct page *page;
|
||
|
|
||
|
BUG_ON(obj->userptr.work != NULL);
|
||
|
__i915_gem_userptr_set_active(obj, false);
|
||
|
|
||
|
if (obj->mm.madv != I915_MADV_WILLNEED)
|
||
|
obj->mm.dirty = false;
|
||
|
|
||
|
i915_gem_gtt_finish_pages(obj, pages);
|
||
|
|
||
|
for_each_sgt_page(page, sgt_iter, pages) {
|
||
|
if (obj->mm.dirty && trylock_page(page)) {
|
||
|
/*
|
||
|
* As this may not be anonymous memory (e.g. shmem)
|
||
|
* but exist on a real mapping, we have to lock
|
||
|
* the page in order to dirty it -- holding
|
||
|
* the page reference is not sufficient to
|
||
|
* prevent the inode from being truncated.
|
||
|
* Play safe and take the lock.
|
||
|
*
|
||
|
* However...!
|
||
|
*
|
||
|
* The mmu-notifier can be invalidated for a
|
||
|
* migrate_page, that is alreadying holding the lock
|
||
|
* on the page. Such a try_to_unmap() will result
|
||
|
* in us calling put_pages() and so recursively try
|
||
|
* to lock the page. We avoid that deadlock with
|
||
|
* a trylock_page() and in exchange we risk missing
|
||
|
* some page dirtying.
|
||
|
*/
|
||
|
set_page_dirty(page);
|
||
|
unlock_page(page);
|
||
|
}
|
||
|
|
||
|
mark_page_accessed(page);
|
||
|
put_page(page);
|
||
|
}
|
||
|
obj->mm.dirty = false;
|
||
|
|
||
|
sg_free_table(pages);
|
||
|
kfree(pages);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
|
||
|
{
|
||
|
i915_gem_userptr_release__mmu_notifier(obj);
|
||
|
i915_gem_userptr_release__mm_struct(obj);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
|
||
|
{
|
||
|
if (obj->userptr.mmu_object)
|
||
|
return 0;
|
||
|
|
||
|
return i915_gem_userptr_init__mmu_notifier(obj, 0);
|
||
|
}
|
||
|
|
||
|
static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
|
||
|
.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
|
||
|
I915_GEM_OBJECT_IS_SHRINKABLE,
|
||
|
.get_pages = i915_gem_userptr_get_pages,
|
||
|
.put_pages = i915_gem_userptr_put_pages,
|
||
|
.dmabuf_export = i915_gem_userptr_dmabuf_export,
|
||
|
.release = i915_gem_userptr_release,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Creates a new mm object that wraps some normal memory from the process
|
||
|
* context - user memory.
|
||
|
*
|
||
|
* We impose several restrictions upon the memory being mapped
|
||
|
* into the GPU.
|
||
|
* 1. It must be page aligned (both start/end addresses, i.e ptr and size).
|
||
|
* 2. It must be normal system memory, not a pointer into another map of IO
|
||
|
* space (e.g. it must not be a GTT mmapping of another object).
|
||
|
* 3. We only allow a bo as large as we could in theory map into the GTT,
|
||
|
* that is we limit the size to the total size of the GTT.
|
||
|
* 4. The bo is marked as being snoopable. The backing pages are left
|
||
|
* accessible directly by the CPU, but reads and writes by the GPU may
|
||
|
* incur the cost of a snoop (unless you have an LLC architecture).
|
||
|
*
|
||
|
* Synchronisation between multiple users and the GPU is left to userspace
|
||
|
* through the normal set-domain-ioctl. The kernel will enforce that the
|
||
|
* GPU relinquishes the VMA before it is returned back to the system
|
||
|
* i.e. upon free(), munmap() or process termination. However, the userspace
|
||
|
* malloc() library may not immediately relinquish the VMA after free() and
|
||
|
* instead reuse it whilst the GPU is still reading and writing to the VMA.
|
||
|
* Caveat emptor.
|
||
|
*
|
||
|
* Also note, that the object created here is not currently a "first class"
|
||
|
* object, in that several ioctls are banned. These are the CPU access
|
||
|
* ioctls: mmap(), pwrite and pread. In practice, you are expected to use
|
||
|
* direct access via your pointer rather than use those ioctls. Another
|
||
|
* restriction is that we do not allow userptr surfaces to be pinned to the
|
||
|
* hardware and so we reject any attempt to create a framebuffer out of a
|
||
|
* userptr.
|
||
|
*
|
||
|
* If you think this is a good interface to use to pass GPU memory between
|
||
|
* drivers, please use dma-buf instead. In fact, wherever possible use
|
||
|
* dma-buf instead.
|
||
|
*/
|
||
|
int
|
||
|
i915_gem_userptr_ioctl(struct drm_device *dev,
|
||
|
void *data,
|
||
|
struct drm_file *file)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
||
|
struct drm_i915_gem_userptr *args = data;
|
||
|
struct drm_i915_gem_object *obj;
|
||
|
int ret;
|
||
|
u32 handle;
|
||
|
|
||
|
if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
|
||
|
/* We cannot support coherent userptr objects on hw without
|
||
|
* LLC and broken snooping.
|
||
|
*/
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
if (args->flags & ~(I915_USERPTR_READ_ONLY |
|
||
|
I915_USERPTR_UNSYNCHRONIZED))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!args->user_size)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (offset_in_page(args->user_ptr | args->user_size))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
|
||
|
(char __user *)(unsigned long)args->user_ptr, args->user_size))
|
||
|
return -EFAULT;
|
||
|
|
||
|
if (args->flags & I915_USERPTR_READ_ONLY) {
|
||
|
struct i915_hw_ppgtt *ppgtt;
|
||
|
|
||
|
/*
|
||
|
* On almost all of the older hw, we cannot tell the GPU that
|
||
|
* a page is readonly.
|
||
|
*/
|
||
|
ppgtt = dev_priv->kernel_context->ppgtt;
|
||
|
if (!ppgtt || !ppgtt->vm.has_read_only)
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
obj = i915_gem_object_alloc(dev_priv);
|
||
|
if (obj == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
drm_gem_private_object_init(dev, &obj->base, args->user_size);
|
||
|
i915_gem_object_init(obj, &i915_gem_userptr_ops);
|
||
|
obj->read_domains = I915_GEM_DOMAIN_CPU;
|
||
|
obj->write_domain = I915_GEM_DOMAIN_CPU;
|
||
|
i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
|
||
|
|
||
|
obj->userptr.ptr = args->user_ptr;
|
||
|
if (args->flags & I915_USERPTR_READ_ONLY)
|
||
|
i915_gem_object_set_readonly(obj);
|
||
|
|
||
|
/* And keep a pointer to the current->mm for resolving the user pages
|
||
|
* at binding. This means that we need to hook into the mmu_notifier
|
||
|
* in order to detect if the mmu is destroyed.
|
||
|
*/
|
||
|
ret = i915_gem_userptr_init__mm_struct(obj);
|
||
|
if (ret == 0)
|
||
|
ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
|
||
|
if (ret == 0)
|
||
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
||
|
|
||
|
/* drop reference from allocate - handle holds it now */
|
||
|
i915_gem_object_put(obj);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
args->handle = handle;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
|
||
|
{
|
||
|
mutex_init(&dev_priv->mm_lock);
|
||
|
hash_init(dev_priv->mm_structs);
|
||
|
|
||
|
dev_priv->mm.userptr_wq =
|
||
|
alloc_workqueue("i915-userptr-acquire",
|
||
|
WQ_HIGHPRI | WQ_UNBOUND,
|
||
|
0);
|
||
|
if (!dev_priv->mm.userptr_wq)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
|
||
|
{
|
||
|
destroy_workqueue(dev_priv->mm.userptr_wq);
|
||
|
}
|