kernel_samsung_a34x-permissive/drivers/net/wireless/mediatek/mt76/mt76x0/init.c

722 lines
17 KiB
C
Raw Normal View History

/*
* (c) Copyright 2002-2010, Ralink Technology, Inc.
* Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "mt76x0.h"
#include "eeprom.h"
#include "trace.h"
#include "mcu.h"
#include "usb.h"
#include "initvals.h"
static void
mt76x0_set_wlan_state(struct mt76x0_dev *dev, u32 val, bool enable)
{
int i;
/* Note: we don't turn off WLAN_CLK because that makes the device
* not respond properly on the probe path.
* In case anyone (PSM?) wants to use this function we can
* bring the clock stuff back and fixup the probe path.
*/
if (enable)
val |= (MT_WLAN_FUN_CTRL_WLAN_EN |
MT_WLAN_FUN_CTRL_WLAN_CLK_EN);
else
val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN);
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
if (!enable)
return;
for (i = 200; i; i--) {
val = mt76_rr(dev, MT_CMB_CTRL);
if (val & MT_CMB_CTRL_XTAL_RDY && val & MT_CMB_CTRL_PLL_LD)
break;
udelay(20);
}
/* Note: vendor driver tries to disable/enable wlan here and retry
* but the code which does it is so buggy it must have never
* triggered, so don't bother.
*/
if (!i)
dev_err(dev->mt76.dev, "Error: PLL and XTAL check failed!\n");
}
void mt76x0_chip_onoff(struct mt76x0_dev *dev, bool enable, bool reset)
{
u32 val;
mutex_lock(&dev->hw_atomic_mutex);
val = mt76_rr(dev, MT_WLAN_FUN_CTRL);
if (reset) {
val |= MT_WLAN_FUN_CTRL_GPIO_OUT_EN;
val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL;
if (val & MT_WLAN_FUN_CTRL_WLAN_EN) {
val |= (MT_WLAN_FUN_CTRL_WLAN_RESET |
MT_WLAN_FUN_CTRL_WLAN_RESET_RF);
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
val &= ~(MT_WLAN_FUN_CTRL_WLAN_RESET |
MT_WLAN_FUN_CTRL_WLAN_RESET_RF);
}
}
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
mt76x0_set_wlan_state(dev, val, enable);
mutex_unlock(&dev->hw_atomic_mutex);
}
static void mt76x0_reset_csr_bbp(struct mt76x0_dev *dev)
{
u32 val;
val = mt76_rr(dev, MT_PBF_SYS_CTRL);
val &= ~0x2000;
mt76_wr(dev, MT_PBF_SYS_CTRL, val);
mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR |
MT_MAC_SYS_CTRL_RESET_BBP);
msleep(200);
}
static void mt76x0_init_usb_dma(struct mt76x0_dev *dev)
{
u32 val;
val = mt76_rr(dev, MT_USB_DMA_CFG);
val |= FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, MT_USB_AGGR_TIMEOUT) |
FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_LMT, MT_USB_AGGR_SIZE_LIMIT) |
MT_USB_DMA_CFG_RX_BULK_EN |
MT_USB_DMA_CFG_TX_BULK_EN;
if (dev->in_max_packet == 512)
val |= MT_USB_DMA_CFG_RX_BULK_AGG_EN;
mt76_wr(dev, MT_USB_DMA_CFG, val);
val = mt76_rr(dev, MT_COM_REG0);
if (val & 1)
dev_dbg(dev->mt76.dev, "MCU not ready\n");
val = mt76_rr(dev, MT_USB_DMA_CFG);
val |= MT_USB_DMA_CFG_RX_DROP_OR_PADDING;
mt76_wr(dev, MT_USB_DMA_CFG, val);
val &= ~MT_USB_DMA_CFG_RX_DROP_OR_PADDING;
mt76_wr(dev, MT_USB_DMA_CFG, val);
}
#define RANDOM_WRITE(dev, tab) \
mt76x0_write_reg_pairs(dev, MT_MCU_MEMMAP_WLAN, tab, ARRAY_SIZE(tab));
static int mt76x0_init_bbp(struct mt76x0_dev *dev)
{
int ret, i;
ret = mt76x0_wait_bbp_ready(dev);
if (ret)
return ret;
RANDOM_WRITE(dev, mt76x0_bbp_init_tab);
for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) {
const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i];
const struct mt76_reg_pair *pair = &item->reg_pair;
if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20))
mt76_wr(dev, pair->reg, pair->value);
}
RANDOM_WRITE(dev, mt76x0_dcoc_tab);
return 0;
}
static void
mt76_init_beacon_offsets(struct mt76x0_dev *dev)
{
u16 base = MT_BEACON_BASE;
u32 regs[4] = {};
int i;
for (i = 0; i < 16; i++) {
u16 addr = dev->beacon_offsets[i];
regs[i / 4] |= ((addr - base) / 64) << (8 * (i % 4));
}
for (i = 0; i < 4; i++)
mt76_wr(dev, MT_BCN_OFFSET(i), regs[i]);
}
static void mt76x0_init_mac_registers(struct mt76x0_dev *dev)
{
u32 reg;
RANDOM_WRITE(dev, common_mac_reg_table);
mt76_init_beacon_offsets(dev);
/* Enable PBF and MAC clock SYS_CTRL[11:10] = 0x3 */
RANDOM_WRITE(dev, mt76x0_mac_reg_table);
/* Release BBP and MAC reset MAC_SYS_CTRL[1:0] = 0x0 */
reg = mt76_rr(dev, MT_MAC_SYS_CTRL);
reg &= ~0x3;
mt76_wr(dev, MT_MAC_SYS_CTRL, reg);
if (is_mt7610e(dev)) {
/* Disable COEX_EN */
reg = mt76_rr(dev, MT_COEXCFG0);
reg &= 0xFFFFFFFE;
mt76_wr(dev, MT_COEXCFG0, reg);
}
/* Set 0x141C[15:12]=0xF */
reg = mt76_rr(dev, MT_EXT_CCA_CFG);
reg |= 0x0000F000;
mt76_wr(dev, MT_EXT_CCA_CFG, reg);
mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN);
/*
TxRing 9 is for Mgmt frame.
TxRing 8 is for In-band command frame.
WMM_RG0_TXQMA: This register setting is for FCE to define the rule of TxRing 9.
WMM_RG1_TXQMA: This register setting is for FCE to define the rule of TxRing 8.
*/
reg = mt76_rr(dev, MT_WMM_CTRL);
reg &= ~0x000003FF;
reg |= 0x00000201;
mt76_wr(dev, MT_WMM_CTRL, reg);
/* TODO: Probably not needed */
mt76_wr(dev, 0x7028, 0);
mt76_wr(dev, 0x7010, 0);
mt76_wr(dev, 0x7024, 0);
msleep(10);
}
static int mt76x0_init_wcid_mem(struct mt76x0_dev *dev)
{
u32 *vals;
int i, ret;
vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL);
if (!vals)
return -ENOMEM;
for (i = 0; i < N_WCIDS; i++) {
vals[i * 2] = 0xffffffff;
vals[i * 2 + 1] = 0x00ffffff;
}
ret = mt76x0_burst_write_regs(dev, MT_WCID_ADDR_BASE,
vals, N_WCIDS * 2);
kfree(vals);
return ret;
}
static int mt76x0_init_key_mem(struct mt76x0_dev *dev)
{
u32 vals[4] = {};
return mt76x0_burst_write_regs(dev, MT_SKEY_MODE_BASE_0,
vals, ARRAY_SIZE(vals));
}
static int mt76x0_init_wcid_attr_mem(struct mt76x0_dev *dev)
{
u32 *vals;
int i, ret;
vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL);
if (!vals)
return -ENOMEM;
for (i = 0; i < N_WCIDS * 2; i++)
vals[i] = 1;
ret = mt76x0_burst_write_regs(dev, MT_WCID_ATTR_BASE,
vals, N_WCIDS * 2);
kfree(vals);
return ret;
}
static void mt76x0_reset_counters(struct mt76x0_dev *dev)
{
mt76_rr(dev, MT_RX_STA_CNT0);
mt76_rr(dev, MT_RX_STA_CNT1);
mt76_rr(dev, MT_RX_STA_CNT2);
mt76_rr(dev, MT_TX_STA_CNT0);
mt76_rr(dev, MT_TX_STA_CNT1);
mt76_rr(dev, MT_TX_STA_CNT2);
}
int mt76x0_mac_start(struct mt76x0_dev *dev)
{
mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);
if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 200000))
return -ETIMEDOUT;
dev->rxfilter = MT_RX_FILTR_CFG_CRC_ERR |
MT_RX_FILTR_CFG_PHY_ERR | MT_RX_FILTR_CFG_PROMISC |
MT_RX_FILTR_CFG_VER_ERR | MT_RX_FILTR_CFG_DUP |
MT_RX_FILTR_CFG_CFACK | MT_RX_FILTR_CFG_CFEND |
MT_RX_FILTR_CFG_ACK | MT_RX_FILTR_CFG_CTS |
MT_RX_FILTR_CFG_RTS | MT_RX_FILTR_CFG_PSPOLL |
MT_RX_FILTR_CFG_BA | MT_RX_FILTR_CFG_CTRL_RSV;
mt76_wr(dev, MT_RX_FILTR_CFG, dev->rxfilter);
mt76_wr(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_TX | MT_MAC_SYS_CTRL_ENABLE_RX);
if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 50))
return -ETIMEDOUT;
return 0;
}
static void mt76x0_mac_stop_hw(struct mt76x0_dev *dev)
{
int i, ok;
if (test_bit(MT76_REMOVED, &dev->mt76.state))
return;
mt76_clear(dev, MT_BEACON_TIME_CFG, MT_BEACON_TIME_CFG_TIMER_EN |
MT_BEACON_TIME_CFG_SYNC_MODE | MT_BEACON_TIME_CFG_TBTT_EN |
MT_BEACON_TIME_CFG_BEACON_TX);
if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_TX_BUSY, 0, 1000))
dev_warn(dev->mt76.dev, "Warning: TX DMA did not stop!\n");
/* Page count on TxQ */
i = 200;
while (i-- && ((mt76_rr(dev, 0x0438) & 0xffffffff) ||
(mt76_rr(dev, 0x0a30) & 0x000000ff) ||
(mt76_rr(dev, 0x0a34) & 0x00ff00ff)))
msleep(10);
if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_TX, 0, 1000))
dev_warn(dev->mt76.dev, "Warning: MAC TX did not stop!\n");
mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_RX |
MT_MAC_SYS_CTRL_ENABLE_TX);
/* Page count on RxQ */
ok = 0;
i = 200;
while (i--) {
if (!(mt76_rr(dev, MT_RXQ_STA) & 0x00ff0000) &&
!mt76_rr(dev, 0x0a30) &&
!mt76_rr(dev, 0x0a34)) {
if (ok++ > 5)
break;
continue;
}
msleep(1);
}
if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_RX, 0, 1000))
dev_warn(dev->mt76.dev, "Warning: MAC RX did not stop!\n");
if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_RX_BUSY, 0, 1000))
dev_warn(dev->mt76.dev, "Warning: RX DMA did not stop!\n");
}
void mt76x0_mac_stop(struct mt76x0_dev *dev)
{
mt76x0_mac_stop_hw(dev);
flush_delayed_work(&dev->stat_work);
cancel_delayed_work_sync(&dev->stat_work);
}
static void mt76x0_stop_hardware(struct mt76x0_dev *dev)
{
mt76x0_chip_onoff(dev, false, false);
}
int mt76x0_init_hardware(struct mt76x0_dev *dev, bool reset)
{
static const u16 beacon_offsets[16] = {
/* 512 byte per beacon */
0xc000, 0xc200, 0xc400, 0xc600,
0xc800, 0xca00, 0xcc00, 0xce00,
0xd000, 0xd200, 0xd400, 0xd600,
0xd800, 0xda00, 0xdc00, 0xde00
};
int ret;
dev->beacon_offsets = beacon_offsets;
mt76x0_chip_onoff(dev, true, reset);
ret = mt76x0_wait_asic_ready(dev);
if (ret)
goto err;
ret = mt76x0_mcu_init(dev);
if (ret)
goto err;
if (!mt76_poll_msec(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 100)) {
ret = -EIO;
goto err;
}
/* Wait for ASIC ready after FW load. */
ret = mt76x0_wait_asic_ready(dev);
if (ret)
goto err;
mt76x0_reset_csr_bbp(dev);
mt76x0_init_usb_dma(dev);
mt76_wr(dev, MT_HEADER_TRANS_CTRL_REG, 0x0);
mt76_wr(dev, MT_TSO_CTRL, 0x0);
ret = mt76x0_mcu_cmd_init(dev);
if (ret)
goto err;
ret = mt76x0_dma_init(dev);
if (ret)
goto err_mcu;
mt76x0_init_mac_registers(dev);
if (!mt76_poll_msec(dev, MT_MAC_STATUS,
MT_MAC_STATUS_TX | MT_MAC_STATUS_RX, 0, 1000)) {
ret = -EIO;
goto err_rx;
}
ret = mt76x0_init_bbp(dev);
if (ret)
goto err_rx;
ret = mt76x0_init_wcid_mem(dev);
if (ret)
goto err_rx;
ret = mt76x0_init_key_mem(dev);
if (ret)
goto err_rx;
ret = mt76x0_init_wcid_attr_mem(dev);
if (ret)
goto err_rx;
mt76_clear(dev, MT_BEACON_TIME_CFG, (MT_BEACON_TIME_CFG_TIMER_EN |
MT_BEACON_TIME_CFG_SYNC_MODE |
MT_BEACON_TIME_CFG_TBTT_EN |
MT_BEACON_TIME_CFG_BEACON_TX));
mt76x0_reset_counters(dev);
mt76_rmw(dev, MT_US_CYC_CFG, MT_US_CYC_CNT, 0x1e);
mt76_wr(dev, MT_TXOP_CTRL_CFG,
FIELD_PREP(MT_TXOP_TRUN_EN, 0x3f) |
FIELD_PREP(MT_TXOP_EXT_CCA_DLY, 0x58));
ret = mt76x0_eeprom_init(dev);
if (ret)
goto err_rx;
mt76x0_phy_init(dev);
return 0;
err_rx:
mt76x0_dma_cleanup(dev);
err_mcu:
mt76x0_mcu_cmd_deinit(dev);
err:
mt76x0_chip_onoff(dev, false, false);
return ret;
}
void mt76x0_cleanup(struct mt76x0_dev *dev)
{
if (!test_and_clear_bit(MT76_STATE_INITIALIZED, &dev->mt76.state))
return;
mt76x0_stop_hardware(dev);
mt76x0_dma_cleanup(dev);
mt76x0_mcu_cmd_deinit(dev);
}
struct mt76x0_dev *mt76x0_alloc_device(struct device *pdev)
{
struct ieee80211_hw *hw;
struct mt76x0_dev *dev;
hw = ieee80211_alloc_hw(sizeof(*dev), &mt76x0_ops);
if (!hw)
return NULL;
dev = hw->priv;
dev->mt76.dev = pdev;
dev->mt76.hw = hw;
mutex_init(&dev->usb_ctrl_mtx);
mutex_init(&dev->reg_atomic_mutex);
mutex_init(&dev->hw_atomic_mutex);
mutex_init(&dev->mutex);
spin_lock_init(&dev->tx_lock);
spin_lock_init(&dev->rx_lock);
spin_lock_init(&dev->mt76.lock);
spin_lock_init(&dev->mac_lock);
spin_lock_init(&dev->con_mon_lock);
atomic_set(&dev->avg_ampdu_len, 1);
skb_queue_head_init(&dev->tx_skb_done);
dev->stat_wq = alloc_workqueue("mt76x0", WQ_UNBOUND, 0);
if (!dev->stat_wq) {
ieee80211_free_hw(hw);
return NULL;
}
return dev;
}
#define CHAN2G(_idx, _freq) { \
.band = NL80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 30, \
}
static const struct ieee80211_channel mt76_channels_2ghz[] = {
CHAN2G(1, 2412),
CHAN2G(2, 2417),
CHAN2G(3, 2422),
CHAN2G(4, 2427),
CHAN2G(5, 2432),
CHAN2G(6, 2437),
CHAN2G(7, 2442),
CHAN2G(8, 2447),
CHAN2G(9, 2452),
CHAN2G(10, 2457),
CHAN2G(11, 2462),
CHAN2G(12, 2467),
CHAN2G(13, 2472),
CHAN2G(14, 2484),
};
#define CHAN5G(_idx, _freq) { \
.band = NL80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 30, \
}
static const struct ieee80211_channel mt76_channels_5ghz[] = {
CHAN5G(36, 5180),
CHAN5G(40, 5200),
CHAN5G(44, 5220),
CHAN5G(46, 5230),
CHAN5G(48, 5240),
CHAN5G(52, 5260),
CHAN5G(56, 5280),
CHAN5G(60, 5300),
CHAN5G(64, 5320),
CHAN5G(100, 5500),
CHAN5G(104, 5520),
CHAN5G(108, 5540),
CHAN5G(112, 5560),
CHAN5G(116, 5580),
CHAN5G(120, 5600),
CHAN5G(124, 5620),
CHAN5G(128, 5640),
CHAN5G(132, 5660),
CHAN5G(136, 5680),
CHAN5G(140, 5700),
};
#define CCK_RATE(_idx, _rate) { \
.bitrate = _rate, \
.flags = IEEE80211_RATE_SHORT_PREAMBLE, \
.hw_value = (MT_PHY_TYPE_CCK << 8) | _idx, \
.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + _idx), \
}
#define OFDM_RATE(_idx, _rate) { \
.bitrate = _rate, \
.hw_value = (MT_PHY_TYPE_OFDM << 8) | _idx, \
.hw_value_short = (MT_PHY_TYPE_OFDM << 8) | _idx, \
}
static struct ieee80211_rate mt76_rates[] = {
CCK_RATE(0, 10),
CCK_RATE(1, 20),
CCK_RATE(2, 55),
CCK_RATE(3, 110),
OFDM_RATE(0, 60),
OFDM_RATE(1, 90),
OFDM_RATE(2, 120),
OFDM_RATE(3, 180),
OFDM_RATE(4, 240),
OFDM_RATE(5, 360),
OFDM_RATE(6, 480),
OFDM_RATE(7, 540),
};
static int
mt76_init_sband(struct mt76x0_dev *dev, struct ieee80211_supported_band *sband,
const struct ieee80211_channel *chan, int n_chan,
struct ieee80211_rate *rates, int n_rates)
{
struct ieee80211_sta_ht_cap *ht_cap;
void *chanlist;
int size;
size = n_chan * sizeof(*chan);
chanlist = devm_kmemdup(dev->mt76.dev, chan, size, GFP_KERNEL);
if (!chanlist)
return -ENOMEM;
sband->channels = chanlist;
sband->n_channels = n_chan;
sband->bitrates = rates;
sband->n_bitrates = n_rates;
ht_cap = &sband->ht_cap;
ht_cap->ht_supported = true;
ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_GRN_FLD |
IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_SGI_40 |
(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
ht_cap->mcs.rx_mask[0] = 0xff;
ht_cap->mcs.rx_mask[4] = 0x1;
ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
return 0;
}
static int
mt76_init_sband_2g(struct mt76x0_dev *dev)
{
dev->mt76.hw->wiphy->bands[NL80211_BAND_2GHZ] = &dev->mt76.sband_2g.sband;
WARN_ON(dev->ee->reg.start - 1 + dev->ee->reg.num >
ARRAY_SIZE(mt76_channels_2ghz));
return mt76_init_sband(dev, &dev->mt76.sband_2g.sband,
mt76_channels_2ghz, ARRAY_SIZE(mt76_channels_2ghz),
mt76_rates, ARRAY_SIZE(mt76_rates));
}
static int
mt76_init_sband_5g(struct mt76x0_dev *dev)
{
dev->mt76.hw->wiphy->bands[NL80211_BAND_5GHZ] = &dev->mt76.sband_5g.sband;
return mt76_init_sband(dev, &dev->mt76.sband_5g.sband,
mt76_channels_5ghz, ARRAY_SIZE(mt76_channels_5ghz),
mt76_rates + 4, ARRAY_SIZE(mt76_rates) - 4);
}
int mt76x0_register_device(struct mt76x0_dev *dev)
{
struct ieee80211_hw *hw = dev->mt76.hw;
struct wiphy *wiphy = hw->wiphy;
int ret;
/* Reserve WCID 0 for mcast - thanks to this APs WCID will go to
* entry no. 1 like it does in the vendor driver.
*/
dev->wcid_mask[0] |= 1;
/* init fake wcid for monitor interfaces */
dev->mon_wcid = devm_kmalloc(dev->mt76.dev, sizeof(*dev->mon_wcid),
GFP_KERNEL);
if (!dev->mon_wcid)
return -ENOMEM;
dev->mon_wcid->idx = 0xff;
dev->mon_wcid->hw_key_idx = -1;
SET_IEEE80211_DEV(hw, dev->mt76.dev);
hw->queues = 4;
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
ieee80211_hw_set(hw, MFP_CAPABLE);
hw->max_rates = 1;
hw->max_report_rates = 7;
hw->max_rate_tries = 1;
hw->sta_data_size = sizeof(struct mt76_sta);
hw->vif_data_size = sizeof(struct mt76_vif);
SET_IEEE80211_PERM_ADDR(hw, dev->macaddr);
wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
if (dev->ee->has_2ghz) {
ret = mt76_init_sband_2g(dev);
if (ret)
return ret;
}
if (dev->ee->has_5ghz) {
ret = mt76_init_sband_5g(dev);
if (ret)
return ret;
}
dev->mt76.chandef.chan = &dev->mt76.sband_2g.sband.channels[0];
INIT_DELAYED_WORK(&dev->mac_work, mt76x0_mac_work);
INIT_DELAYED_WORK(&dev->stat_work, mt76x0_tx_stat);
ret = ieee80211_register_hw(hw);
if (ret)
return ret;
mt76x0_init_debugfs(dev);
return 0;
}