######################################################################## # Implement fast SHA-512 with AVX2 instructions. (x86_64) # # Copyright (C) 2013 Intel Corporation. # # Authors: # James Guilford # Kirk Yap # David Cote # Tim Chen # # This software is available to you under a choice of one of two # licenses. You may choose to be licensed under the terms of the GNU # General Public License (GPL) Version 2, available from the file # COPYING in the main directory of this source tree, or the # OpenIB.org BSD license below: # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # - Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # - Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials # provided with the distribution. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ######################################################################## # # This code is described in an Intel White-Paper: # "Fast SHA-512 Implementations on Intel Architecture Processors" # # To find it, surf to http://www.intel.com/p/en_US/embedded # and search for that title. # ######################################################################## # This code schedules 1 blocks at a time, with 4 lanes per block ######################################################################## #ifdef CONFIG_AS_AVX2 #include .text # Virtual Registers Y_0 = %ymm4 Y_1 = %ymm5 Y_2 = %ymm6 Y_3 = %ymm7 YTMP0 = %ymm0 YTMP1 = %ymm1 YTMP2 = %ymm2 YTMP3 = %ymm3 YTMP4 = %ymm8 XFER = YTMP0 BYTE_FLIP_MASK = %ymm9 # 1st arg is %rdi, which is saved to the stack and accessed later via %r12 CTX1 = %rdi CTX2 = %r12 # 2nd arg INP = %rsi # 3rd arg NUM_BLKS = %rdx c = %rcx d = %r8 e = %rdx y3 = %rsi TBL = %rdi # clobbers CTX1 a = %rax b = %rbx f = %r9 g = %r10 h = %r11 old_h = %r11 T1 = %r12 # clobbers CTX2 y0 = %r13 y1 = %r14 y2 = %r15 # Local variables (stack frame) XFER_SIZE = 4*8 SRND_SIZE = 1*8 INP_SIZE = 1*8 INPEND_SIZE = 1*8 CTX_SIZE = 1*8 RSPSAVE_SIZE = 1*8 GPRSAVE_SIZE = 5*8 frame_XFER = 0 frame_SRND = frame_XFER + XFER_SIZE frame_INP = frame_SRND + SRND_SIZE frame_INPEND = frame_INP + INP_SIZE frame_CTX = frame_INPEND + INPEND_SIZE frame_RSPSAVE = frame_CTX + CTX_SIZE frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE frame_size = frame_GPRSAVE + GPRSAVE_SIZE ## assume buffers not aligned #define VMOVDQ vmovdqu # addm [mem], reg # Add reg to mem using reg-mem add and store .macro addm p1 p2 add \p1, \p2 mov \p2, \p1 .endm # COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask # Load ymm with mem and byte swap each dword .macro COPY_YMM_AND_BSWAP p1 p2 p3 VMOVDQ \p2, \p1 vpshufb \p3, \p1, \p1 .endm # rotate_Ys # Rotate values of symbols Y0...Y3 .macro rotate_Ys Y_ = Y_0 Y_0 = Y_1 Y_1 = Y_2 Y_2 = Y_3 Y_3 = Y_ .endm # RotateState .macro RotateState # Rotate symbols a..h right old_h = h TMP_ = h h = g g = f f = e e = d d = c c = b b = a a = TMP_ .endm # macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL # YDST = {YSRC1, YSRC2} >> RVAL*8 .macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI} vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8 .endm .macro FOUR_ROUNDS_AND_SCHED ################################### RND N + 0 ######################################### # Extract w[t-7] MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7] # Calculate w[t-16] + w[t-7] vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16] # Extract w[t-15] MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15] # Calculate sigma0 # Calculate w[t-15] ror 1 vpsrlq $1, YTMP1, YTMP2 vpsllq $(64-1), YTMP1, YTMP3 vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 # Calculate w[t-15] shr 7 vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7 mov a, y3 # y3 = a # MAJA rorx $41, e, y0 # y0 = e >> 41 # S1A rorx $18, e, y1 # y1 = e >> 18 # S1B add frame_XFER(%rsp),h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA mov f, y2 # y2 = f # CH rorx $34, a, T1 # T1 = a >> 34 # S0B xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 xor g, y2 # y2 = f^g # CH rorx $14, e, y1 # y1 = (e >> 14) # S1 and e, y2 # y2 = (f^g)&e # CH xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 rorx $39, a, y1 # y1 = a >> 39 # S0A add h, d # d = k + w + h + d # -- and b, y3 # y3 = (a|c)&b # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 rorx $28, a, T1 # T1 = (a >> 28) # S0 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 mov a, T1 # T1 = a # MAJB and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- RotateState ################################### RND N + 1 ######################################### # Calculate w[t-15] ror 8 vpsrlq $8, YTMP1, YTMP2 vpsllq $(64-8), YTMP1, YTMP1 vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8 # XOR the three components vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7 vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0 # Add three components, w[t-16], w[t-7] and sigma0 vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 # Move to appropriate lanes for calculating w[16] and w[17] vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA} # Move to appropriate lanes for calculating w[18] and w[19] vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00} # Calculate w[16] and w[17] in both 128 bit lanes # Calculate sigma1 for w[16] and w[17] on both 128 bit lanes vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA} vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA} mov a, y3 # y3 = a # MAJA rorx $41, e, y0 # y0 = e >> 41 # S1A rorx $18, e, y1 # y1 = e >> 18 # S1B add 1*8+frame_XFER(%rsp), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA mov f, y2 # y2 = f # CH rorx $34, a, T1 # T1 = a >> 34 # S0B xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 xor g, y2 # y2 = f^g # CH rorx $14, e, y1 # y1 = (e >> 14) # S1 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 rorx $39, a, y1 # y1 = a >> 39 # S0A and e, y2 # y2 = (f^g)&e # CH add h, d # d = k + w + h + d # -- and b, y3 # y3 = (a|c)&b # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 rorx $28, a, T1 # T1 = (a >> 28) # S0 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 mov a, T1 # T1 = a # MAJB and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- RotateState ################################### RND N + 2 ######################################### vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA} vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA} vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA} vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA} vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA} vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA} vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA} vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^ # (W[-2] ror 61) ^ (W[-2] >> 6) {BABA} # Add sigma1 to the other compunents to get w[16] and w[17] vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]} # Calculate sigma1 for w[18] and w[19] for upper 128 bit lane vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--} mov a, y3 # y3 = a # MAJA rorx $41, e, y0 # y0 = e >> 41 # S1A add 2*8+frame_XFER(%rsp), h # h = k + w + h # -- rorx $18, e, y1 # y1 = e >> 18 # S1B or c, y3 # y3 = a|c # MAJA mov f, y2 # y2 = f # CH xor g, y2 # y2 = f^g # CH rorx $34, a, T1 # T1 = a >> 34 # S0B xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 and e, y2 # y2 = (f^g)&e # CH rorx $14, e, y1 # y1 = (e >> 14) # S1 add h, d # d = k + w + h + d # -- and b, y3 # y3 = (a|c)&b # MAJA xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 rorx $39, a, y1 # y1 = a >> 39 # S0A xor g, y2 # y2 = CH = ((f^g)&e)^g # CH xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 rorx $28, a, T1 # T1 = (a >> 28) # S0 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 mov a, T1 # T1 = a # MAJB and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- RotateState ################################### RND N + 3 ######################################### vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--} vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--} vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--} vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--} vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--} vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--} vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--} vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^ # (W[-2] ror 61) ^ (W[-2] >> 6) {DC--} # Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19] # to newly calculated sigma1 to get w[18] and w[19] vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --} # Form w[19, w[18], w17], w[16] vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]} mov a, y3 # y3 = a # MAJA rorx $41, e, y0 # y0 = e >> 41 # S1A rorx $18, e, y1 # y1 = e >> 18 # S1B add 3*8+frame_XFER(%rsp), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA mov f, y2 # y2 = f # CH rorx $34, a, T1 # T1 = a >> 34 # S0B xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 xor g, y2 # y2 = f^g # CH rorx $14, e, y1 # y1 = (e >> 14) # S1 and e, y2 # y2 = (f^g)&e # CH add h, d # d = k + w + h + d # -- and b, y3 # y3 = (a|c)&b # MAJA xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $39, a, y1 # y1 = a >> 39 # S0A add y0, y2 # y2 = S1 + CH # -- xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- rorx $28, a, T1 # T1 = (a >> 28) # S0 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 mov a, T1 # T1 = a # MAJB and c, T1 # T1 = a&c # MAJB or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- RotateState rotate_Ys .endm .macro DO_4ROUNDS ################################### RND N + 0 ######################################### mov f, y2 # y2 = f # CH rorx $41, e, y0 # y0 = e >> 41 # S1A rorx $18, e, y1 # y1 = e >> 18 # S1B xor g, y2 # y2 = f^g # CH xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 rorx $14, e, y1 # y1 = (e >> 14) # S1 and e, y2 # y2 = (f^g)&e # CH xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 rorx $34, a, T1 # T1 = a >> 34 # S0B xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $39, a, y1 # y1 = a >> 39 # S0A mov a, y3 # y3 = a # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 rorx $28, a, T1 # T1 = (a >> 28) # S0 add frame_XFER(%rsp), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 mov a, T1 # T1 = a # MAJB and b, y3 # y3 = (a|c)&b # MAJA and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- add h, d # d = k + w + h + d # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- RotateState ################################### RND N + 1 ######################################### add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- mov f, y2 # y2 = f # CH rorx $41, e, y0 # y0 = e >> 41 # S1A rorx $18, e, y1 # y1 = e >> 18 # S1B xor g, y2 # y2 = f^g # CH xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 rorx $14, e, y1 # y1 = (e >> 14) # S1 and e, y2 # y2 = (f^g)&e # CH add y3, old_h # h = t1 + S0 + MAJ # -- xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 rorx $34, a, T1 # T1 = a >> 34 # S0B xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $39, a, y1 # y1 = a >> 39 # S0A mov a, y3 # y3 = a # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 rorx $28, a, T1 # T1 = (a >> 28) # S0 add 8*1+frame_XFER(%rsp), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 mov a, T1 # T1 = a # MAJB and b, y3 # y3 = (a|c)&b # MAJA and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- add h, d # d = k + w + h + d # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- RotateState ################################### RND N + 2 ######################################### add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- mov f, y2 # y2 = f # CH rorx $41, e, y0 # y0 = e >> 41 # S1A rorx $18, e, y1 # y1 = e >> 18 # S1B xor g, y2 # y2 = f^g # CH xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 rorx $14, e, y1 # y1 = (e >> 14) # S1 and e, y2 # y2 = (f^g)&e # CH add y3, old_h # h = t1 + S0 + MAJ # -- xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 rorx $34, a, T1 # T1 = a >> 34 # S0B xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $39, a, y1 # y1 = a >> 39 # S0A mov a, y3 # y3 = a # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 rorx $28, a, T1 # T1 = (a >> 28) # S0 add 8*2+frame_XFER(%rsp), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 mov a, T1 # T1 = a # MAJB and b, y3 # y3 = (a|c)&b # MAJA and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- add h, d # d = k + w + h + d # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- RotateState ################################### RND N + 3 ######################################### add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- mov f, y2 # y2 = f # CH rorx $41, e, y0 # y0 = e >> 41 # S1A rorx $18, e, y1 # y1 = e >> 18 # S1B xor g, y2 # y2 = f^g # CH xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 rorx $14, e, y1 # y1 = (e >> 14) # S1 and e, y2 # y2 = (f^g)&e # CH add y3, old_h # h = t1 + S0 + MAJ # -- xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 rorx $34, a, T1 # T1 = a >> 34 # S0B xor g, y2 # y2 = CH = ((f^g)&e)^g # CH rorx $39, a, y1 # y1 = a >> 39 # S0A mov a, y3 # y3 = a # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 rorx $28, a, T1 # T1 = (a >> 28) # S0 add 8*3+frame_XFER(%rsp), h # h = k + w + h # -- or c, y3 # y3 = a|c # MAJA xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 mov a, T1 # T1 = a # MAJB and b, y3 # y3 = (a|c)&b # MAJA and c, T1 # T1 = a&c # MAJB add y0, y2 # y2 = S1 + CH # -- add h, d # d = k + w + h + d # -- or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ add y1, h # h = k + w + h + S0 # -- add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- add y3, h # h = t1 + S0 + MAJ # -- RotateState .endm ######################################################################## # void sha512_transform_rorx(sha512_state *state, const u8 *data, int blocks) # Purpose: Updates the SHA512 digest stored at "state" with the message # stored in "data". # The size of the message pointed to by "data" must be an integer multiple # of SHA512 message blocks. # "blocks" is the message length in SHA512 blocks ######################################################################## ENTRY(sha512_transform_rorx) # Allocate Stack Space mov %rsp, %rax sub $frame_size, %rsp and $~(0x20 - 1), %rsp mov %rax, frame_RSPSAVE(%rsp) # Save GPRs mov %rbx, 8*0+frame_GPRSAVE(%rsp) mov %r12, 8*1+frame_GPRSAVE(%rsp) mov %r13, 8*2+frame_GPRSAVE(%rsp) mov %r14, 8*3+frame_GPRSAVE(%rsp) mov %r15, 8*4+frame_GPRSAVE(%rsp) shl $7, NUM_BLKS # convert to bytes jz done_hash add INP, NUM_BLKS # pointer to end of data mov NUM_BLKS, frame_INPEND(%rsp) ## load initial digest mov 8*0(CTX1), a mov 8*1(CTX1), b mov 8*2(CTX1), c mov 8*3(CTX1), d mov 8*4(CTX1), e mov 8*5(CTX1), f mov 8*6(CTX1), g mov 8*7(CTX1), h # save %rdi (CTX) before it gets clobbered mov %rdi, frame_CTX(%rsp) vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK loop0: lea K512(%rip), TBL ## byte swap first 16 dwords COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK mov INP, frame_INP(%rsp) ## schedule 64 input dwords, by doing 12 rounds of 4 each movq $4, frame_SRND(%rsp) .align 16 loop1: vpaddq (TBL), Y_0, XFER vmovdqa XFER, frame_XFER(%rsp) FOUR_ROUNDS_AND_SCHED vpaddq 1*32(TBL), Y_0, XFER vmovdqa XFER, frame_XFER(%rsp) FOUR_ROUNDS_AND_SCHED vpaddq 2*32(TBL), Y_0, XFER vmovdqa XFER, frame_XFER(%rsp) FOUR_ROUNDS_AND_SCHED vpaddq 3*32(TBL), Y_0, XFER vmovdqa XFER, frame_XFER(%rsp) add $(4*32), TBL FOUR_ROUNDS_AND_SCHED subq $1, frame_SRND(%rsp) jne loop1 movq $2, frame_SRND(%rsp) loop2: vpaddq (TBL), Y_0, XFER vmovdqa XFER, frame_XFER(%rsp) DO_4ROUNDS vpaddq 1*32(TBL), Y_1, XFER vmovdqa XFER, frame_XFER(%rsp) add $(2*32), TBL DO_4ROUNDS vmovdqa Y_2, Y_0 vmovdqa Y_3, Y_1 subq $1, frame_SRND(%rsp) jne loop2 mov frame_CTX(%rsp), CTX2 addm 8*0(CTX2), a addm 8*1(CTX2), b addm 8*2(CTX2), c addm 8*3(CTX2), d addm 8*4(CTX2), e addm 8*5(CTX2), f addm 8*6(CTX2), g addm 8*7(CTX2), h mov frame_INP(%rsp), INP add $128, INP cmp frame_INPEND(%rsp), INP jne loop0 done_hash: # Restore GPRs mov 8*0+frame_GPRSAVE(%rsp), %rbx mov 8*1+frame_GPRSAVE(%rsp), %r12 mov 8*2+frame_GPRSAVE(%rsp), %r13 mov 8*3+frame_GPRSAVE(%rsp), %r14 mov 8*4+frame_GPRSAVE(%rsp), %r15 # Restore Stack Pointer mov frame_RSPSAVE(%rsp), %rsp ret ENDPROC(sha512_transform_rorx) ######################################################################## ### Binary Data # Mergeable 640-byte rodata section. This allows linker to merge the table # with other, exactly the same 640-byte fragment of another rodata section # (if such section exists). .section .rodata.cst640.K512, "aM", @progbits, 640 .align 64 # K[t] used in SHA512 hashing K512: .quad 0x428a2f98d728ae22,0x7137449123ef65cd .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc .quad 0x3956c25bf348b538,0x59f111f1b605d019 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 .quad 0xd807aa98a3030242,0x12835b0145706fbe .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 .quad 0x06ca6351e003826f,0x142929670a0e6e70 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 .quad 0x81c2c92e47edaee6,0x92722c851482353b .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 .quad 0xd192e819d6ef5218,0xd69906245565a910 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec .quad 0x90befffa23631e28,0xa4506cebde82bde9 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b .quad 0xca273eceea26619c,0xd186b8c721c0c207 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 .quad 0x113f9804bef90dae,0x1b710b35131c471b .quad 0x28db77f523047d84,0x32caab7b40c72493 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 .section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32 .align 32 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. PSHUFFLE_BYTE_FLIP_MASK: .octa 0x08090a0b0c0d0e0f0001020304050607 .octa 0x18191a1b1c1d1e1f1011121314151617 .section .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32 .align 32 MASK_YMM_LO: .octa 0x00000000000000000000000000000000 .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF #endif