/* * Copyright 2014 Linaro Ltd. * Copyright (C) 2014 ZTE Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "clk.h" #define to_clk_zx_pll(_hw) container_of(_hw, struct clk_zx_pll, hw) #define to_clk_zx_audio(_hw) container_of(_hw, struct clk_zx_audio, hw) #define CFG0_CFG1_OFFSET 4 #define LOCK_FLAG 30 #define POWER_DOWN 31 static int rate_to_idx(struct clk_zx_pll *zx_pll, unsigned long rate) { const struct zx_pll_config *config = zx_pll->lookup_table; int i; for (i = 0; i < zx_pll->count; i++) { if (config[i].rate > rate) return i > 0 ? i - 1 : 0; if (config[i].rate == rate) return i; } return i - 1; } static int hw_to_idx(struct clk_zx_pll *zx_pll) { const struct zx_pll_config *config = zx_pll->lookup_table; u32 hw_cfg0, hw_cfg1; int i; hw_cfg0 = readl_relaxed(zx_pll->reg_base); hw_cfg1 = readl_relaxed(zx_pll->reg_base + CFG0_CFG1_OFFSET); /* For matching the value in lookup table */ hw_cfg0 &= ~BIT(zx_pll->lock_bit); /* Check availability of pd_bit */ if (zx_pll->pd_bit < 32) hw_cfg0 |= BIT(zx_pll->pd_bit); for (i = 0; i < zx_pll->count; i++) { if (hw_cfg0 == config[i].cfg0 && hw_cfg1 == config[i].cfg1) return i; } return -EINVAL; } static unsigned long zx_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw); int idx; idx = hw_to_idx(zx_pll); if (unlikely(idx == -EINVAL)) return 0; return zx_pll->lookup_table[idx].rate; } static long zx_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw); int idx; idx = rate_to_idx(zx_pll, rate); return zx_pll->lookup_table[idx].rate; } static int zx_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { /* Assume current cpu is not running on current PLL */ struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw); const struct zx_pll_config *config; int idx; idx = rate_to_idx(zx_pll, rate); config = &zx_pll->lookup_table[idx]; writel_relaxed(config->cfg0, zx_pll->reg_base); writel_relaxed(config->cfg1, zx_pll->reg_base + CFG0_CFG1_OFFSET); return 0; } static int zx_pll_enable(struct clk_hw *hw) { struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw); u32 reg; /* If pd_bit is not available, simply return success. */ if (zx_pll->pd_bit > 31) return 0; reg = readl_relaxed(zx_pll->reg_base); writel_relaxed(reg & ~BIT(zx_pll->pd_bit), zx_pll->reg_base); return readl_relaxed_poll_timeout(zx_pll->reg_base, reg, reg & BIT(zx_pll->lock_bit), 0, 100); } static void zx_pll_disable(struct clk_hw *hw) { struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw); u32 reg; if (zx_pll->pd_bit > 31) return; reg = readl_relaxed(zx_pll->reg_base); writel_relaxed(reg | BIT(zx_pll->pd_bit), zx_pll->reg_base); } static int zx_pll_is_enabled(struct clk_hw *hw) { struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw); u32 reg; reg = readl_relaxed(zx_pll->reg_base); return !(reg & BIT(zx_pll->pd_bit)); } const struct clk_ops zx_pll_ops = { .recalc_rate = zx_pll_recalc_rate, .round_rate = zx_pll_round_rate, .set_rate = zx_pll_set_rate, .enable = zx_pll_enable, .disable = zx_pll_disable, .is_enabled = zx_pll_is_enabled, }; EXPORT_SYMBOL(zx_pll_ops); struct clk *clk_register_zx_pll(const char *name, const char *parent_name, unsigned long flags, void __iomem *reg_base, const struct zx_pll_config *lookup_table, int count, spinlock_t *lock) { struct clk_zx_pll *zx_pll; struct clk *clk; struct clk_init_data init = {}; zx_pll = kzalloc(sizeof(*zx_pll), GFP_KERNEL); if (!zx_pll) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &zx_pll_ops; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; zx_pll->reg_base = reg_base; zx_pll->lookup_table = lookup_table; zx_pll->count = count; zx_pll->lock_bit = LOCK_FLAG; zx_pll->pd_bit = POWER_DOWN; zx_pll->lock = lock; zx_pll->hw.init = &init; clk = clk_register(NULL, &zx_pll->hw); if (IS_ERR(clk)) kfree(zx_pll); return clk; } #define BPAR 1000000 static u32 calc_reg(u32 parent_rate, u32 rate) { u32 sel, integ, fra_div, tmp; u64 tmp64 = (u64)parent_rate * BPAR; do_div(tmp64, rate); integ = (u32)tmp64 / BPAR; integ = integ >> 1; tmp = (u32)tmp64 % BPAR; sel = tmp / BPAR; tmp = tmp % BPAR; fra_div = tmp * 0xff / BPAR; tmp = (sel << 24) | (integ << 16) | (0xff << 8) | fra_div; /* Set I2S integer divider as 1. This bit is reserved for SPDIF * and do no harm. */ tmp |= BIT(28); return tmp; } static u32 calc_rate(u32 reg, u32 parent_rate) { u32 sel, integ, fra_div, tmp; u64 tmp64 = (u64)parent_rate * BPAR; tmp = reg; sel = (tmp >> 24) & BIT(0); integ = (tmp >> 16) & 0xff; fra_div = tmp & 0xff; tmp = fra_div * BPAR; tmp = tmp / 0xff; tmp += sel * BPAR; tmp += 2 * integ * BPAR; do_div(tmp64, tmp); return (u32)tmp64; } static unsigned long zx_audio_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw); u32 reg; reg = readl_relaxed(zx_audio->reg_base); return calc_rate(reg, parent_rate); } static long zx_audio_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { u32 reg; if (rate * 2 > *prate) return -EINVAL; reg = calc_reg(*prate, rate); return calc_rate(reg, *prate); } static int zx_audio_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw); u32 reg; reg = calc_reg(parent_rate, rate); writel_relaxed(reg, zx_audio->reg_base); return 0; } #define ZX_AUDIO_EN BIT(25) static int zx_audio_enable(struct clk_hw *hw) { struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw); u32 reg; reg = readl_relaxed(zx_audio->reg_base); writel_relaxed(reg & ~ZX_AUDIO_EN, zx_audio->reg_base); return 0; } static void zx_audio_disable(struct clk_hw *hw) { struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw); u32 reg; reg = readl_relaxed(zx_audio->reg_base); writel_relaxed(reg | ZX_AUDIO_EN, zx_audio->reg_base); } static const struct clk_ops zx_audio_ops = { .recalc_rate = zx_audio_recalc_rate, .round_rate = zx_audio_round_rate, .set_rate = zx_audio_set_rate, .enable = zx_audio_enable, .disable = zx_audio_disable, }; struct clk *clk_register_zx_audio(const char *name, const char * const parent_name, unsigned long flags, void __iomem *reg_base) { struct clk_zx_audio *zx_audio; struct clk *clk; struct clk_init_data init = {}; zx_audio = kzalloc(sizeof(*zx_audio), GFP_KERNEL); if (!zx_audio) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &zx_audio_ops; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; zx_audio->reg_base = reg_base; zx_audio->hw.init = &init; clk = clk_register(NULL, &zx_audio->hw); if (IS_ERR(clk)) kfree(zx_audio); return clk; } #define CLK_AUDIO_DIV_FRAC BIT(0) #define CLK_AUDIO_DIV_INT BIT(1) #define CLK_AUDIO_DIV_UNCOMMON BIT(1) #define CLK_AUDIO_DIV_FRAC_NSHIFT 16 #define CLK_AUDIO_DIV_INT_FRAC_RE BIT(16) #define CLK_AUDIO_DIV_INT_FRAC_MAX (0xffff) #define CLK_AUDIO_DIV_INT_FRAC_MIN (0x2) #define CLK_AUDIO_DIV_INT_INT_SHIFT 24 #define CLK_AUDIO_DIV_INT_INT_WIDTH 4 struct zx_clk_audio_div_table { unsigned long rate; unsigned int int_reg; unsigned int frac_reg; }; #define to_clk_zx_audio_div(_hw) container_of(_hw, struct clk_zx_audio_divider, hw) static unsigned long audio_calc_rate(struct clk_zx_audio_divider *audio_div, u32 reg_frac, u32 reg_int, unsigned long parent_rate) { unsigned long rate, m, n; m = reg_frac & 0xffff; n = (reg_frac >> 16) & 0xffff; m = (reg_int & 0xffff) * n + m; rate = (parent_rate * n) / m; return rate; } static void audio_calc_reg(struct clk_zx_audio_divider *audio_div, struct zx_clk_audio_div_table *div_table, unsigned long rate, unsigned long parent_rate) { unsigned int reg_int, reg_frac; unsigned long m, n, div; reg_int = parent_rate / rate; if (reg_int > CLK_AUDIO_DIV_INT_FRAC_MAX) reg_int = CLK_AUDIO_DIV_INT_FRAC_MAX; else if (reg_int < CLK_AUDIO_DIV_INT_FRAC_MIN) reg_int = 0; m = parent_rate - rate * reg_int; n = rate; div = gcd(m, n); m = m / div; n = n / div; if ((m >> 16) || (n >> 16)) { if (m > n) { n = n * 0xffff / m; m = 0xffff; } else { m = m * 0xffff / n; n = 0xffff; } } reg_frac = m | (n << 16); div_table->rate = parent_rate * n / (reg_int * n + m); div_table->int_reg = reg_int; div_table->frac_reg = reg_frac; } static unsigned long zx_audio_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw); u32 reg_frac, reg_int; reg_frac = readl_relaxed(zx_audio_div->reg_base); reg_int = readl_relaxed(zx_audio_div->reg_base + 0x4); return audio_calc_rate(zx_audio_div, reg_frac, reg_int, parent_rate); } static long zx_audio_div_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw); struct zx_clk_audio_div_table divt; audio_calc_reg(zx_audio_div, &divt, rate, *prate); return audio_calc_rate(zx_audio_div, divt.frac_reg, divt.int_reg, *prate); } static int zx_audio_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw); struct zx_clk_audio_div_table divt; unsigned int val; audio_calc_reg(zx_audio_div, &divt, rate, parent_rate); if (divt.rate != rate) pr_debug("the real rate is:%ld", divt.rate); writel_relaxed(divt.frac_reg, zx_audio_div->reg_base); val = readl_relaxed(zx_audio_div->reg_base + 0x4); val &= ~0xffff; val |= divt.int_reg | CLK_AUDIO_DIV_INT_FRAC_RE; writel_relaxed(val, zx_audio_div->reg_base + 0x4); mdelay(1); val = readl_relaxed(zx_audio_div->reg_base + 0x4); val &= ~CLK_AUDIO_DIV_INT_FRAC_RE; writel_relaxed(val, zx_audio_div->reg_base + 0x4); return 0; } const struct clk_ops zx_audio_div_ops = { .recalc_rate = zx_audio_div_recalc_rate, .round_rate = zx_audio_div_round_rate, .set_rate = zx_audio_div_set_rate, };