/* * Copyright (C) 2020, Samsung Electronics Co. Ltd. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include "../sensorhub/shub_device.h" #include "../utility/shub_wakelock.h" #include "../utility/shub_utility.h" #include "../sensormanager/shub_sensor_type.h" #include "../sensormanager/shub_sensor.h" #include "../sensormanager/shub_sensor_manager.h" #include "shub_kfifo_buf.h" #define SCONTEXT_DATA_LEN 56 #define SCONTEXT_HEADER_LEN 8 #define IIO_CHANNEL -1 #define IIO_SCAN_INDEX 0 #define IIO_SIGN 's' #define IIO_SHIFT 0 struct iio_probe_device { int type; char *name; int report_event_size; }; static struct iio_probe_device iio_probe_list[] = { {SENSOR_TYPE_ACCELEROMETER, "accelerometer_sensor", 6 }, {SENSOR_TYPE_GEOMAGNETIC_FIELD, "geomagnetic_sensor", 13 }, {SENSOR_TYPE_GYROSCOPE, "gyro_sensor", 6 }, {SENSOR_TYPE_LIGHT, "light_sensor", 4 }, {SENSOR_TYPE_PRESSURE, "pressure_sensor", 14 }, {SENSOR_TYPE_PROXIMITY, "proximity_sensor", 1 }, {SENSOR_TYPE_ROTATION_VECTOR, "rotation_vector_sensor", 17 }, {SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED, "uncal_geomagnetic_sensor", 24 }, {SENSOR_TYPE_GAME_ROTATION_VECTOR, "game_rotation_vector_sensor", 17 }, {SENSOR_TYPE_GYROSCOPE_UNCALIBRATED, "uncal_gyro_sensor", 12 }, {SENSOR_TYPE_SIGNIFICANT_MOTION, "sig_motion_sensor", 1 }, {SENSOR_TYPE_STEP_DETECTOR, "step_det_sensor", 1 }, {SENSOR_TYPE_STEP_COUNTER, "step_cnt_sensor", 12 }, {SENSOR_TYPE_TILT_DETECTOR, "tilt_detector", 1 }, {SENSOR_TYPE_PICK_UP_GESTURE, "pickup_gesture", 1 }, {SENSOR_TYPE_DEVICE_ORIENTATION, "device_orientation", 1 }, {SENSOR_TYPE_GEOMAGNETIC_POWER, "geomagnetic_power", 6 }, {SENSOR_TYPE_INTERRUPT_GYRO, "interrupt_gyro_sensor", 6 }, {SENSOR_TYPE_SCONTEXT, "scontext_iio", 64 }, {SENSOR_TYPE_SENSORHUB, "sensorhub_sensor", 3 }, {SENSOR_TYPE_LIGHT_CCT, "light_cct_sensor", 14 }, {SENSOR_TYPE_CALL_GESTURE, "call_gesture", 1 }, {SENSOR_TYPE_WAKE_UP_MOTION, "wake_up_motion", 1 }, {SENSOR_TYPE_LIGHT_AUTOBRIGHTNESS, "auto_brightness", 5 }, {SENSOR_TYPE_VDIS_GYROSCOPE, "vdis_gyro_sensor", 6 }, {SENSOR_TYPE_POCKET_MODE_LITE, "pocket_mode_lite", 5 }, {SENSOR_TYPE_POCKET_MODE, "pocket_mode", 58 }, {SENSOR_TYPE_POCKET_POS_MODE, "pocket_pos_mode", 15 }, {SENSOR_TYPE_PROTOS_MOTION, "protos_motion", 1 }, {SENSOR_TYPE_FLIP_COVER_DETECTOR, "flip_cover_detector", 24 }, {SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED, "uncal_accel_sensor", 12 }, {SENSOR_TYPE_AOIS, "aois_sensor", 0 }, {SENSOR_TYPE_SUPER_STEADY_GYROSCOPE, "super_steady_gyro_sensor", 6 }, {SENSOR_TYPE_DEVICE_ORIENTATION_WU, "device_orientation_wu", 1 }, {SENSOR_TYPE_SAR_BACKOFF_MOTION, "sar_backoff_motion", 1 }, {SENSOR_TYPE_LIGHT_SEAMLESS, "light_seamless_sensor", 4 }, {SENSOR_TYPE_LED_COVER_EVENT, "led_cover_event_sensor", 1 }, {SENSOR_TYPE_LIGHT_IR, "light_ir_sensor", 24 }, {SENSOR_TYPE_DROP_CLASSIFIER, "drop_classifier", 25 }, {SENSOR_TYPE_SEQUENTIAL_STEP, "sequential_step", 4 }, }; struct shub_iio_device { int type; struct iio_chan_spec iio_channel; struct iio_dev* indio_dev; }; static struct shub_iio_device *iio_list[SENSOR_TYPE_LEGACY_MAX]; static struct iio_dev* get_iio_device(int type) { if (type < 0 || type >= SENSOR_TYPE_LEGACY_MAX) return NULL; return iio_list[type] ? iio_list[type]->indio_dev : NULL; } static int shub_preenable(struct iio_dev *indio_dev) { return 0; } static int shub_predisable(struct iio_dev *indio_dev) { return 0; } static const struct iio_buffer_setup_ops shub_iio_buffer_setup_ops = { .preenable = &shub_preenable, .predisable = &shub_predisable, }; static int shub_iio_configure_buffer(struct iio_dev *indio_dev, int bytes) { struct iio_buffer *buffer; buffer = shub_iio_kfifo_allocate(); if (!buffer) return -ENOMEM; buffer->scan_timestamp = true; buffer->bytes_per_datum = bytes; buffer->scan_mask = bitmap_zalloc(1, GFP_KERNEL); set_bit(0, buffer->scan_mask); iio_device_attach_buffer(indio_dev, buffer); indio_dev->setup_ops = &shub_iio_buffer_setup_ops; indio_dev->modes |= INDIO_BUFFER_SOFTWARE; return 0; } static void *init_indio_device(struct device *dev, const struct iio_info *info, const struct iio_chan_spec *channels, const char *device_name, const int bytes) { struct iio_dev *indio_dev; int ret = 0; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 9, 0)) indio_dev = iio_device_alloc(dev, sizeof(*dev)); #else indio_dev = iio_device_alloc(0); #endif if (!indio_dev) goto err_alloc; indio_dev->name = device_name; indio_dev->dev.parent = dev; indio_dev->info = info; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 15, 0)) && (LINUX_VERSION_CODE < KERNEL_VERSION(5, 14, 0)) indio_dev->driver_module = THIS_MODULE; #endif indio_dev->channels = channels; indio_dev->num_channels = 1; indio_dev->modes = INDIO_DIRECT_MODE; #if (LINUX_VERSION_CODE < KERNEL_VERSION(6, 1, 0)) indio_dev->currentmode = INDIO_DIRECT_MODE; #endif ret = shub_iio_configure_buffer(indio_dev, bytes); if (ret) { goto err_config_ring; } ret = iio_device_register(indio_dev); if (ret) { goto err_register_device; } return indio_dev; err_register_device: shub_errf("fail to register %s device", device_name); shub_iio_kfifo_free(indio_dev->buffer); err_config_ring: shub_errf("failed to configure %s buffer", indio_dev->name); iio_device_unregister(indio_dev); err_alloc: shub_errf("fail to allocate memory for iio %s device", device_name); return NULL; } #if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0)) static const struct iio_info indio_info = { .driver_module = THIS_MODULE, }; #else static const struct iio_info indio_info; #endif void remove_indio_dev(void) { int i; for (i = 0 ; i < SENSOR_TYPE_LEGACY_MAX ; i++) { if (iio_list[i]) { iio_device_unregister(iio_list[i]->indio_dev); kfree(iio_list[i]); } } } static inline void set_channel_spec(struct iio_chan_spec *iio_channel, int realbits_size, int repeat_size) { iio_channel->type = IIO_TIMESTAMP; iio_channel->channel = IIO_CHANNEL; iio_channel->scan_index = IIO_SCAN_INDEX; iio_channel->scan_type.sign = IIO_SIGN; iio_channel->scan_type.realbits = realbits_size; iio_channel->scan_type.storagebits = realbits_size; iio_channel->scan_type.shift = IIO_SHIFT; iio_channel->scan_type.repeat = repeat_size; } /* this function should be called when sensor list of sensor manager is existed */ int initialize_indio_dev(struct device *dev) { int timestamp_len = sizeof(u64); int type; int iter; int realbits_size = 0; int repeat_size = 0; int bytes = 0; struct iio_probe_device iio_dev_probe; for (iter = 0 ; iter < (sizeof(iio_probe_list)/sizeof(iio_dev_probe)); iter++) { iio_dev_probe = iio_probe_list[iter]; shub_infof("type : %d name : %s size : %d", iio_dev_probe.type, iio_dev_probe.name, iio_dev_probe.report_event_size); type = iio_dev_probe.type; bytes = iio_dev_probe.report_event_size + timestamp_len; realbits_size = bytes * BITS_PER_BYTE; repeat_size = 1; while ((realbits_size / repeat_size > 255) && (realbits_size % repeat_size == 0)) repeat_size++; realbits_size /= repeat_size; iio_list[type] = (struct shub_iio_device *)kzalloc(sizeof(struct shub_iio_device), GFP_KERNEL); if (!iio_list[type]) { shub_errf("fail to malloc %s iio dev", iio_dev_probe.name); continue; } set_channel_spec(&iio_list[type]->iio_channel, realbits_size, repeat_size); iio_list[type]->indio_dev = (struct iio_dev *)init_indio_device(dev, &indio_info, &iio_list[type]->iio_channel, iio_dev_probe.name, bytes); if (!iio_list[type]->indio_dev) { shub_errf("fail to init_indio_device %s", iio_dev_probe.name); kfree(iio_list[type]); iio_list[type] = NULL; } } return 0; } void shub_report_sensordata(int type, u64 timestamp, char *data, int data_len) { struct iio_dev *indio_dev = get_iio_device(type); struct shub_sensor *sensor = get_sensor(type); char *buf; if (!sensor || !indio_dev) return; buf = kzalloc(sensor->report_event_size + sizeof(timestamp), GFP_KERNEL); if (!buf) { shub_errf("fail to alloc memory"); return; } if (data && data_len > 0) memcpy(buf, data, data_len); if (sensor->spec.is_wake_up) shub_wake_lock_timeout(300); memcpy(buf + data_len, ×tamp, sizeof(timestamp)); mutex_lock(&indio_dev->mlock); iio_push_to_buffers(indio_dev, buf); mutex_unlock(&indio_dev->mlock); kfree(buf); } void remove_empty_dev(void) { int i; for (i = 0 ; i < SENSOR_TYPE_LEGACY_MAX ; i++) { if (iio_list[i] && get_sensor(i) == NULL) { iio_device_unregister(iio_list[i]->indio_dev); shub_infof("type %d", i); kfree(iio_list[i]); iio_list[i] = NULL; } } }