// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2019 MediaTek Inc. */ #define pr_fmt(fmt) "Barometer " fmt #include "inc/barometer.h" struct baro_context *baro_context_obj /* = NULL*/; static void initTimer(struct hrtimer *timer, enum hrtimer_restart (*callback)(struct hrtimer *)) { hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); timer->function = callback; } static void startTimer(struct hrtimer *timer, int delay_ms, bool first) { struct baro_context *obj = (struct baro_context *)container_of(timer, struct baro_context, hrTimer); if (obj == NULL) { pr_err("NULL pointer\n"); return; } if (first) { obj->target_ktime = ktime_add_ns(ktime_get(), (int64_t)delay_ms * 1000000); /* pr_debug("cur_ns = %lld, first_target_ns = %lld\n", * ktime_to_ns(ktime_get()), * ktime_to_ns(obj->target_ktime)); */ } else { do { obj->target_ktime = ktime_add_ns( obj->target_ktime, (int64_t)delay_ms * 1000000); } while (ktime_to_ns(obj->target_ktime) < ktime_to_ns(ktime_get())); /* pr_debug("cur_ns = %lld, target_ns = %lld\n", * ktime_to_ns(ktime_get()), * ktime_to_ns(obj->target_ktime)); */ } hrtimer_start(timer, obj->target_ktime, HRTIMER_MODE_ABS); } #if !defined(CONFIG_NANOHUB) || !defined(CONFIG_MTK_BAROHUB) static void stopTimer(struct hrtimer *timer) { hrtimer_cancel(timer); } #endif static struct baro_init_info *barometer_init_list[MAX_CHOOSE_BARO_NUM] = {0}; static void baro_work_func(struct work_struct *work) { struct baro_context *cxt = NULL; /* hwm_sensor_data sensor_data; */ int value, status; int64_t pre_ns, cur_ns; int64_t delay_ms; struct timespec time; int err; cxt = baro_context_obj; delay_ms = atomic_read(&cxt->delay); if (cxt->baro_data.get_data == NULL) { pr_debug("baro driver not register data path\n"); goto baro_loop; } time.tv_sec = time.tv_nsec = 0; get_monotonic_boottime(&time); cur_ns = time.tv_sec * 1000000000LL + time.tv_nsec; /* add wake lock to make sure data can be read before system suspend */ err = cxt->baro_data.get_data(&value, &status); if (err) { pr_err("get baro data fails!!\n"); goto baro_loop; } else { { cxt->drv_data.baro_data.values[0] = value; cxt->drv_data.baro_data.status = status; pre_ns = cxt->drv_data.baro_data.time; cxt->drv_data.baro_data.time = cur_ns; } } if (true == cxt->is_first_data_after_enable) { pre_ns = cur_ns; cxt->is_first_data_after_enable = false; /* filter -1 value */ if (cxt->drv_data.baro_data.values[0] == BARO_INVALID_VALUE) { pr_debug(" read invalid data\n"); goto baro_loop; } } /* report data to input device */ /*pr_debug("new baro work run....\n"); */ /*pr_debug("baro data[%d].\n", cxt->drv_data.baro_data.values[0]); */ while ((cur_ns - pre_ns) >= delay_ms * 1800000LL) { pre_ns += delay_ms * 1000000LL; baro_data_report(cxt->drv_data.baro_data.values[0], cxt->drv_data.baro_data.status, pre_ns); } baro_data_report(cxt->drv_data.baro_data.values[0], cxt->drv_data.baro_data.status, cxt->drv_data.baro_data.time); baro_loop: if (true == cxt->is_polling_run) { { startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), false); } } } enum hrtimer_restart baro_poll(struct hrtimer *timer) { struct baro_context *obj = (struct baro_context *)container_of(timer, struct baro_context, hrTimer); queue_work(obj->baro_workqueue, &obj->report); return HRTIMER_NORESTART; } static struct baro_context *baro_context_alloc_object(void) { struct baro_context *obj = kzalloc(sizeof(*obj), GFP_KERNEL); pr_debug("%s start\n", __func__); if (!obj) { pr_err("Alloc baro object error!\n"); return NULL; } atomic_set(&obj->delay, 200); /*5Hz set work queue delay time 200 ms */ atomic_set(&obj->wake, 0); INIT_WORK(&obj->report, baro_work_func); obj->baro_workqueue = NULL; obj->baro_workqueue = create_workqueue("baro_polling"); if (!obj->baro_workqueue) { kfree(obj); return NULL; } initTimer(&obj->hrTimer, baro_poll); obj->is_first_data_after_enable = false; obj->is_polling_run = false; mutex_init(&obj->baro_op_mutex); obj->is_batch_enable = false; /* for batch mode init */ obj->power = 0; obj->enable = 0; obj->delay_ns = -1; obj->latency_ns = -1; pr_debug("%s end\n", __func__); return obj; } #if !defined(CONFIG_NANOHUB) || !defined(CONFIG_MTK_BAROHUB) static int baro_enable_and_batch(void) { struct baro_context *cxt = baro_context_obj; int err; /* power on -> power off */ if (cxt->power == 1 && cxt->enable == 0) { pr_debug("BARO disable\n"); /* stop polling firstly, if needed */ if (cxt->baro_ctl.is_report_input_direct == false && cxt->is_polling_run == true) { smp_mb(); /* for memory barrier */ stopTimer(&cxt->hrTimer); smp_mb(); /* for memory barrier */ cancel_work_sync(&cxt->report); cxt->drv_data.baro_data.values[0] = BARO_INVALID_VALUE; cxt->is_polling_run = false; pr_debug("baro stop polling done\n"); } /* turn off the power */ err = cxt->baro_ctl.enable_nodata(0); if (err) { pr_err("baro turn off power err = %d\n", err); return -1; } pr_debug("baro turn off power done\n"); cxt->power = 0; cxt->delay_ns = -1; pr_debug("BARO disable done\n"); return 0; } /* power off -> power on */ if (cxt->power == 0 && cxt->enable == 1) { pr_debug("BARO power on\n"); err = cxt->baro_ctl.enable_nodata(1); if (err) { pr_err("baro turn on power err = %d\n", err); return -1; } pr_debug("baro turn on power done\n"); cxt->power = 1; pr_debug("BARO power on done\n"); } /* rate change */ if (cxt->power == 1 && cxt->delay_ns >= 0) { pr_debug("BARO set batch\n"); /* set ODR, fifo timeout latency */ if (cxt->baro_ctl.is_support_batch) err = cxt->baro_ctl.batch(0, cxt->delay_ns, cxt->latency_ns); else err = cxt->baro_ctl.batch(0, cxt->delay_ns, 0); if (err) { pr_err("baro set batch(ODR) err %d\n", err); return -1; } pr_debug("baro set ODR, fifo latency done\n"); /* start polling, if needed */ if (cxt->baro_ctl.is_report_input_direct == false) { uint64_t mdelay = cxt->delay_ns; do_div(mdelay, 1000000); atomic_set(&cxt->delay, mdelay); /* the first sensor start polling timer */ if (cxt->is_polling_run == false) { cxt->is_polling_run = true; cxt->is_first_data_after_enable = true; startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), true); } pr_debug("baro set polling delay %d ms\n", atomic_read(&cxt->delay)); } pr_debug("BARO batch done\n"); } return 0; } #endif static ssize_t baroactive_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct baro_context *cxt = baro_context_obj; int err = 0; pr_debug("%s buf=%s\n", __func__, buf); mutex_lock(&baro_context_obj->baro_op_mutex); if (!strncmp(buf, "1", 1)) cxt->enable = 1; else if (!strncmp(buf, "0", 1)) cxt->enable = 0; else { pr_err("%s error !!\n", __func__); err = -1; goto err_out; } #if defined(CONFIG_NANOHUB) && defined(CONFIG_MTK_BAROHUB) err = cxt->baro_ctl.enable_nodata(cxt->enable); if (err) { pr_err("baro turn on power err = %d\n", err); goto err_out; } #else err = baro_enable_and_batch(); #endif err_out: mutex_unlock(&baro_context_obj->baro_op_mutex); pr_debug("%s done\n", __func__); if (err) return err; else return count; } /*----------------------------------------------------------------------------*/ static ssize_t baroactive_show(struct device *dev, struct device_attribute *attr, char *buf) { struct baro_context *cxt = NULL; int div; cxt = baro_context_obj; div = cxt->baro_data.vender_div; pr_debug("baro vender_div value: %d\n", div); return snprintf(buf, PAGE_SIZE, "%d\n", div); } static ssize_t barobatch_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct baro_context *cxt = baro_context_obj; int handle = 0, flag = 0, err = 0; err = sscanf(buf, "%d,%d,%lld,%lld", &handle, &flag, &cxt->delay_ns, &cxt->latency_ns); if (err != 4) { pr_err("grav_store_batch param error: err = %d\n", err); return -1; } mutex_lock(&baro_context_obj->baro_op_mutex); #if defined(CONFIG_NANOHUB) && defined(CONFIG_MTK_BAROHUB) if (cxt->baro_ctl.is_support_batch) err = cxt->baro_ctl.batch(0, cxt->delay_ns, cxt->latency_ns); else err = cxt->baro_ctl.batch(0, cxt->delay_ns, 0); if (err) pr_err("baro set batch(ODR) err %d\n", err); #else err = baro_enable_and_batch(); #endif mutex_unlock(&baro_context_obj->baro_op_mutex); pr_debug("%s done: %d\n", __func__, cxt->is_batch_enable); if (err) return err; else return count; } static ssize_t barobatch_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", 0); } static ssize_t baroflush_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct baro_context *cxt = NULL; int handle = 0, err = 0; err = kstrtoint(buf, 10, &handle); if (err != 0) pr_err("%s param error: err = %d\n", __func__, err); pr_debug("%s param: handle %d\n", __func__, handle); mutex_lock(&baro_context_obj->baro_op_mutex); cxt = baro_context_obj; if (cxt->baro_ctl.flush != NULL) err = cxt->baro_ctl.flush(); else pr_err( "BARO DRIVER OLD ARCHITECTURE DON'T SUPPORT BARO COMMON VERSION FLUSH\n"); if (err < 0) pr_err("baro enable flush err %d\n", err); mutex_unlock(&baro_context_obj->baro_op_mutex); if (err) return err; else return count; } static ssize_t baroflush_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", 0); } static ssize_t barodevnum_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", 0); } static int barometer_remove(struct platform_device *pdev) { pr_debug("%s\n", __func__); return 0; } static int barometer_probe(struct platform_device *pdev) { pr_debug("%s\n", __func__); return 0; } #ifdef CONFIG_OF static const struct of_device_id barometer_of_match[] = { { .compatible = "mediatek,barometer", }, {}, }; #endif static struct platform_driver barometer_driver = { .probe = barometer_probe, .remove = barometer_remove, .driver = { .name = "barometer", #ifdef CONFIG_OF .of_match_table = barometer_of_match, #endif } }; static int baro_real_driver_init(void) { int i = 0; int err = 0; pr_debug("%s start\n", __func__); for (i = 0; i < MAX_CHOOSE_BARO_NUM; i++) { pr_debug(" i=%d\n", i); if (barometer_init_list[i] != 0) { pr_debug(" baro try to init driver %s\n", barometer_init_list[i]->name); err = barometer_init_list[i]->init(); if (err == 0) { pr_debug(" baro real driver %s probe ok\n", barometer_init_list[i]->name); break; } } } if (i == MAX_CHOOSE_BARO_NUM) { pr_debug("%s fail\n", __func__); err = -1; } return err; } int baro_driver_add(struct baro_init_info *obj) { int err = 0; int i = 0; pr_debug("%s\n", __func__); if (!obj) { pr_err("BARO driver add fail, baro_init_info is NULL\n"); return -1; } for (i = 0; i < MAX_CHOOSE_BARO_NUM; i++) { if (i == 0) { pr_debug( "register barometer driver for the first time\n"); if (platform_driver_register(&barometer_driver)) pr_err( "failed to register gensor driver already exist\n"); } if (barometer_init_list[i] == NULL) { obj->platform_diver_addr = &barometer_driver; barometer_init_list[i] = obj; break; } } if (i >= MAX_CHOOSE_BARO_NUM) { pr_err("BARO driver add err\n"); err = -1; } return err; } EXPORT_SYMBOL_GPL(baro_driver_add); static int pressure_open(struct inode *inode, struct file *file) { nonseekable_open(inode, file); return 0; } static ssize_t pressure_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { ssize_t read_cnt = 0; read_cnt = sensor_event_read(baro_context_obj->mdev.minor, file, buffer, count, ppos); return read_cnt; } static unsigned int pressure_poll(struct file *file, poll_table *wait) { return sensor_event_poll(baro_context_obj->mdev.minor, file, wait); } static const struct file_operations pressure_fops = { .owner = THIS_MODULE, .open = pressure_open, .read = pressure_read, .poll = pressure_poll, }; static int baro_misc_init(struct baro_context *cxt) { int err = 0; cxt->mdev.minor = ID_PRESSURE; cxt->mdev.name = BARO_MISC_DEV_NAME; cxt->mdev.fops = &pressure_fops; err = sensor_attr_register(&cxt->mdev); if (err) pr_err("unable to register baro misc device!!\n"); return err; } DEVICE_ATTR_RW(baroactive); DEVICE_ATTR_RW(barobatch); DEVICE_ATTR_RW(baroflush); DEVICE_ATTR_RO(barodevnum); static struct attribute *baro_attributes[] = { &dev_attr_baroactive.attr, &dev_attr_barobatch.attr, &dev_attr_baroflush.attr, &dev_attr_barodevnum.attr, NULL }; static struct attribute_group baro_attribute_group = { .attrs = baro_attributes }; int baro_register_data_path(struct baro_data_path *data) { struct baro_context *cxt = NULL; cxt = baro_context_obj; cxt->baro_data.get_data = data->get_data; cxt->baro_data.vender_div = data->vender_div; cxt->baro_data.get_raw_data = data->get_raw_data; pr_debug("baro register data path vender_div: %d\n", cxt->baro_data.vender_div); if (cxt->baro_data.get_data == NULL) { pr_debug("baro register data path fail\n"); return -1; } return 0; } int baro_register_control_path(struct baro_control_path *ctl) { struct baro_context *cxt = NULL; int err = 0; cxt = baro_context_obj; cxt->baro_ctl.set_delay = ctl->set_delay; cxt->baro_ctl.open_report_data = ctl->open_report_data; cxt->baro_ctl.enable_nodata = ctl->enable_nodata; cxt->baro_ctl.batch = ctl->batch; cxt->baro_ctl.flush = ctl->flush; cxt->baro_ctl.is_support_batch = ctl->is_support_batch; cxt->baro_ctl.is_report_input_direct = ctl->is_report_input_direct; cxt->baro_ctl.is_support_batch = ctl->is_support_batch; cxt->baro_ctl.is_use_common_factory = ctl->is_use_common_factory; if (cxt->baro_ctl.set_delay == NULL || cxt->baro_ctl.open_report_data == NULL || cxt->baro_ctl.enable_nodata == NULL) { pr_debug("baro register control path fail\n"); return -1; } /* add misc dev for sensor hal control cmd */ err = baro_misc_init(baro_context_obj); if (err) { pr_err("unable to register baro misc device!!\n"); return -2; } err = sysfs_create_group(&baro_context_obj->mdev.this_device->kobj, &baro_attribute_group); if (err < 0) { pr_err("unable to create baro attribute file\n"); return -3; } kobject_uevent(&baro_context_obj->mdev.this_device->kobj, KOBJ_ADD); return 0; } int baro_data_report(int value, int status, int64_t nt) { struct sensor_event event; int err = 0; memset(&event, 0, sizeof(struct sensor_event)); event.flush_action = DATA_ACTION; event.time_stamp = nt; event.word[0] = value; event.status = status; err = sensor_input_event(baro_context_obj->mdev.minor, &event); return err; } int baro_flush_report(void) { struct sensor_event event; int err = 0; memset(&event, 0, sizeof(struct sensor_event)); pr_debug_ratelimited("flush\n"); event.flush_action = FLUSH_ACTION; err = sensor_input_event(baro_context_obj->mdev.minor, &event); return err; } static int baro_probe(void) { int err; pr_debug("%s+++!!\n", __func__); baro_context_obj = baro_context_alloc_object(); if (!baro_context_obj) { err = -ENOMEM; pr_err("unable to allocate devobj!\n"); goto exit_alloc_data_failed; } /* init real baro driver */ err = baro_real_driver_init(); if (err) { pr_err("baro real driver init fail\n"); goto real_driver_init_fail; } pr_debug("%s--- OK !!\n", __func__); return 0; real_driver_init_fail: kfree(baro_context_obj); baro_context_obj = NULL; exit_alloc_data_failed: pr_debug("%s----fail !!!\n", __func__); return err; } static int baro_remove(void) { int err = 0; pr_debug("%s\n", __func__); sysfs_remove_group(&baro_context_obj->mdev.this_device->kobj, &baro_attribute_group); err = sensor_attr_deregister(&baro_context_obj->mdev); if (err) pr_err("misc_deregister fail: %d\n", err); kfree(baro_context_obj); platform_driver_unregister(&barometer_driver); return 0; } static int __init baro_init(void) { pr_debug("%s\n", __func__); if (baro_probe()) { pr_err("failed to register baro driver\n"); return -ENODEV; } return 0; } static void __exit baro_exit(void) { baro_remove(); platform_driver_unregister(&barometer_driver); } late_initcall(baro_init); /* module_init(baro_init); */ /* module_exit(baro_exit); */ MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("BAROMETER device driver"); MODULE_AUTHOR("Mediatek");