// SPDX-License-Identifier: GPL-2.0 // // MediaTek ALSA SoC Audio DAI ADDA Control // // Copyright (c) 2018 MediaTek Inc. // Author: Michael Hsiao #include #include #include "mt6768-afe-common.h" #include "mt6768-afe-gpio.h" #include "mt6768-interconnection.h" enum { UL_IIR_SW = 0, UL_IIR_5HZ, UL_IIR_10HZ, UL_IIR_25HZ, UL_IIR_50HZ, UL_IIR_75HZ, }; enum { AUDIO_SDM_LEVEL_MUTE = 0, AUDIO_SDM_LEVEL_NORMAL = 0x1d, /* if you change level normal */ /* you need to change formula of hp impedance and dc trim too */ }; enum { AUDIO_SDM_2ND = 0, AUDIO_SDM_3RD, }; enum { DELAY_DATA_MISO1 = 0, DELAY_DATA_MISO2, }; enum { MTK_AFE_ADDA_DL_RATE_8K = 0, MTK_AFE_ADDA_DL_RATE_11K = 1, MTK_AFE_ADDA_DL_RATE_12K = 2, MTK_AFE_ADDA_DL_RATE_16K = 3, MTK_AFE_ADDA_DL_RATE_22K = 4, MTK_AFE_ADDA_DL_RATE_24K = 5, MTK_AFE_ADDA_DL_RATE_32K = 6, MTK_AFE_ADDA_DL_RATE_44K = 7, MTK_AFE_ADDA_DL_RATE_48K = 8, MTK_AFE_ADDA_DL_RATE_96K = 9, MTK_AFE_ADDA_DL_RATE_192K = 10, }; enum { MTK_AFE_ADDA_UL_RATE_8K = 0, MTK_AFE_ADDA_UL_RATE_16K = 1, MTK_AFE_ADDA_UL_RATE_32K = 2, MTK_AFE_ADDA_UL_RATE_48K = 3, MTK_AFE_ADDA_UL_RATE_96K = 4, MTK_AFE_ADDA_UL_RATE_192K = 5, MTK_AFE_ADDA_UL_RATE_48K_HD = 6, }; static unsigned int adda_dl_rate_transform(struct mtk_base_afe *afe, unsigned int rate) { switch (rate) { case 8000: return MTK_AFE_ADDA_DL_RATE_8K; case 11025: return MTK_AFE_ADDA_DL_RATE_11K; case 12000: return MTK_AFE_ADDA_DL_RATE_12K; case 16000: return MTK_AFE_ADDA_DL_RATE_16K; case 22050: return MTK_AFE_ADDA_DL_RATE_22K; case 24000: return MTK_AFE_ADDA_DL_RATE_24K; case 32000: return MTK_AFE_ADDA_DL_RATE_32K; case 44100: return MTK_AFE_ADDA_DL_RATE_44K; case 48000: return MTK_AFE_ADDA_DL_RATE_48K; case 96000: return MTK_AFE_ADDA_DL_RATE_96K; case 192000: return MTK_AFE_ADDA_DL_RATE_192K; default: dev_warn(afe->dev, "%s(), rate %d invalid, use 48kHz!!!\n", __func__, rate); return MTK_AFE_ADDA_DL_RATE_48K; } } static unsigned int adda_ul_rate_transform(struct mtk_base_afe *afe, unsigned int rate) { switch (rate) { case 8000: return MTK_AFE_ADDA_UL_RATE_8K; case 16000: return MTK_AFE_ADDA_UL_RATE_16K; case 32000: return MTK_AFE_ADDA_UL_RATE_32K; case 48000: return MTK_AFE_ADDA_UL_RATE_48K; case 96000: return MTK_AFE_ADDA_UL_RATE_96K; case 192000: return MTK_AFE_ADDA_UL_RATE_192K; default: dev_warn(afe->dev, "%s(), rate %d invalid, use 48kHz!!!\n", __func__, rate); return MTK_AFE_ADDA_UL_RATE_48K; } } /* dai component */ static const struct snd_kcontrol_new mtk_adda_dl_ch1_mix[] = { SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH1", AFE_CONN3, I_DL1_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL12_CH1", AFE_CONN3, I_DL12_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH1", AFE_CONN3, I_DL2_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH1", AFE_CONN3, I_DL3_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH2", AFE_CONN3, I_ADDA_UL_CH2, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH1", AFE_CONN3, I_ADDA_UL_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("GAIN1_OUT_CH1", AFE_CONN3, I_GAIN1_OUT_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH1", AFE_CONN3, I_PCM_2_CAP_CH1, 1, 0), }; static const struct snd_kcontrol_new mtk_adda_dl_ch2_mix[] = { SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH1", AFE_CONN4, I_DL1_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH2", AFE_CONN4, I_DL1_CH2, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL12_CH2", AFE_CONN4, I_DL12_CH2, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH1", AFE_CONN4, I_DL2_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH2", AFE_CONN4, I_DL2_CH2, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH1", AFE_CONN4, I_DL3_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH2", AFE_CONN4, I_DL3_CH2, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH2", AFE_CONN4, I_ADDA_UL_CH2, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH1", AFE_CONN4, I_ADDA_UL_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("GAIN1_OUT_CH2", AFE_CONN4, I_GAIN1_OUT_CH2, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH1", AFE_CONN4, I_PCM_2_CAP_CH1, 1, 0), SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH2", AFE_CONN4, I_PCM_2_CAP_CH2, 1, 0), }; enum { SUPPLY_SEQ_ADDA_AFE_ON, SUPPLY_SEQ_ADDA_DL_ON, SUPPLY_SEQ_ADDA_UL_ON, }; static int mtk_adda_ul_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm); struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt); struct mt6768_afe_private *afe_priv = afe->platform_priv; int mtkaif_dmic = afe_priv->mtkaif_dmic; dev_info(afe->dev, "%s(), name %s, event 0x%x, mtkaif_dmic %d\n", __func__, w->name, event, mtkaif_dmic); switch (event) { case SND_SOC_DAPM_PRE_PMU: mt6768_afe_gpio_request(afe, true, MT6768_DAI_ADDA, 1); /* update setting to dmic */ if (mtkaif_dmic) { /* mtkaif_rxif_data_mode = 1, dmic */ regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG0, 0x1, 0x1); /* dmic mode, 3.25M*/ regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG0, 0xf << 20, 0x0); regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0, 0x1 << 5, 0x0); regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0, 0x3 << 14, 0x0); /* turn on dmic, ch1, ch2 */ regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0, 0x1 << 1, 0x1 << 1); regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0, 0x3 << 21, 0x3 << 21); } break; case SND_SOC_DAPM_POST_PMD: /* should delayed 1/fs(smallest is 8k) = 125us before afe off */ udelay(125); mt6768_afe_gpio_request(afe, false, MT6768_DAI_ADDA, 1); /* reset dmic */ afe_priv->mtkaif_dmic = 0; break; default: break; } return 0; } static int mtk_adda_dl_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm); struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt); dev_info(afe->dev, "%s(), name %s, event 0x%x\n", __func__, w->name, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: mt6768_afe_gpio_request(afe, true, MT6768_DAI_ADDA, 0); break; case SND_SOC_DAPM_POST_PMD: /* should delayed 1/fs(smallest is 8k) = 125us before afe off */ udelay(125); mt6768_afe_gpio_request(afe, false, MT6768_DAI_ADDA, 0); break; default: break; } return 0; } /* stf */ static int stf_positive_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt); struct mt6768_afe_private *afe_priv = afe->platform_priv; ucontrol->value.integer.value[0] = afe_priv->stf_positive_gain_db; return 0; } static int stf_positive_gain_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt); struct mt6768_afe_private *afe_priv = afe->platform_priv; int gain_db = ucontrol->value.integer.value[0]; afe_priv->stf_positive_gain_db = gain_db; if (gain_db >= 0 && gain_db <= 24) { regmap_update_bits(afe->regmap, AFE_SIDETONE_GAIN, POSITIVE_GAIN_MASK_SFT, (gain_db / 6) << POSITIVE_GAIN_SFT); } else { dev_warn(afe->dev, "%s(), gain_db %d invalid\n", __func__, gain_db); } return 0; } /* mtkaif dmic */ static const char * const mt6768_adda_off_on_str[] = { "Off", "On" }; static const struct soc_enum mt6768_adda_enum[] = { SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(mt6768_adda_off_on_str), mt6768_adda_off_on_str), }; static int mt6768_adda_dmic_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt); struct mt6768_afe_private *afe_priv = afe->platform_priv; ucontrol->value.integer.value[0] = afe_priv->mtkaif_dmic; return 0; } static int mt6768_adda_dmic_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt); struct mt6768_afe_private *afe_priv = afe->platform_priv; struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; int dmic_on; if (ucontrol->value.enumerated.item[0] >= e->items) return -EINVAL; dmic_on = ucontrol->value.integer.value[0]; dev_info(afe->dev, "%s(), kcontrol name %s, dmic_on %d\n", __func__, kcontrol->id.name, dmic_on); afe_priv->mtkaif_dmic = dmic_on; return 0; } static const struct snd_kcontrol_new mtk_adda_controls[] = { SOC_SINGLE("Sidetone_Gain", AFE_SIDETONE_GAIN, SIDE_TONE_GAIN_SFT, SIDE_TONE_GAIN_MASK, 0), SOC_SINGLE_EXT("Sidetone_Positive_Gain_dB", SND_SOC_NOPM, 0, 100, 0, stf_positive_gain_get, stf_positive_gain_set), SOC_SINGLE("ADDA_DL_GAIN", AFE_ADDA_DL_SRC2_CON1, DL_2_GAIN_CTL_PRE_SFT, DL_2_GAIN_CTL_PRE_MASK, 0), SOC_ENUM_EXT("MTKAIF_DMIC", mt6768_adda_enum[0], mt6768_adda_dmic_get, mt6768_adda_dmic_set), }; static const struct snd_kcontrol_new stf_ctl = SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0); static const uint16_t stf_coeff_table_16k[] = { 0x049C, 0x09E8, 0x09E0, 0x089C, 0xFF54, 0xF488, 0xEAFC, 0xEBAC, 0xfA40, 0x17AC, 0x3D1C, 0x6028, 0x7538 }; static const uint16_t stf_coeff_table_32k[] = { 0xFE52, 0x0042, 0x00C5, 0x0194, 0x029A, 0x03B7, 0x04BF, 0x057D, 0x05BE, 0x0555, 0x0426, 0x0230, 0xFF92, 0xFC89, 0xF973, 0xF6C6, 0xF500, 0xF49D, 0xF603, 0xF970, 0xFEF3, 0x065F, 0x0F4F, 0x1928, 0x2329, 0x2C80, 0x345E, 0x3A0D, 0x3D08 }; static const uint16_t stf_coeff_table_48k[] = { 0x0401, 0xFFB0, 0xFF5A, 0xFECE, 0xFE10, 0xFD28, 0xFC21, 0xFB08, 0xF9EF, 0xF8E8, 0xF80A, 0xF76C, 0xF724, 0xF746, 0xF7E6, 0xF90F, 0xFACC, 0xFD1E, 0xFFFF, 0x0364, 0x0737, 0x0B62, 0x0FC1, 0x1431, 0x188A, 0x1CA4, 0x2056, 0x237D, 0x25F9, 0x27B0, 0x2890 }; static int mtk_stf_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm); struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt); size_t half_tap_num = 0; const uint16_t *stf_coeff_table = NULL; unsigned int ul_rate = 0; uint32_t reg_value = 0; size_t coef_addr = 0; regmap_read(afe->regmap, AFE_ADDA_UL_SRC_CON0, &ul_rate); ul_rate = ul_rate >> UL_VOICE_MODE_CH1_CH2_CTL_SFT; ul_rate = ul_rate & UL_VOICE_MODE_CH1_CH2_CTL_MASK; if (ul_rate == MTK_AFE_ADDA_UL_RATE_48K) { half_tap_num = ARRAY_SIZE(stf_coeff_table_48k); stf_coeff_table = stf_coeff_table_48k; } else if (ul_rate == MTK_AFE_ADDA_UL_RATE_32K) { half_tap_num = ARRAY_SIZE(stf_coeff_table_32k); stf_coeff_table = stf_coeff_table_32k; } else { half_tap_num = ARRAY_SIZE(stf_coeff_table_16k); stf_coeff_table = stf_coeff_table_16k; } regmap_read(afe->regmap, AFE_SIDETONE_CON1, ®_value); dev_info(afe->dev, "%s(), name %s, event 0x%x, ul_rate 0x%x, AFE_SIDETONE_CON1 0x%x\n", __func__, w->name, event, ul_rate, reg_value); switch (event) { case SND_SOC_DAPM_PRE_PMU: /* set side tone gain = 0 */ regmap_update_bits(afe->regmap, AFE_SIDETONE_GAIN, SIDE_TONE_GAIN_MASK_SFT, 0); regmap_update_bits(afe->regmap, AFE_SIDETONE_GAIN, POSITIVE_GAIN_MASK_SFT, 0); /* don't bypass stf */ regmap_update_bits(afe->regmap, AFE_SIDETONE_CON1, 0xf << 28, 0x0); /* set stf half tap num */ regmap_update_bits(afe->regmap, AFE_SIDETONE_CON1, SIDE_TONE_HALF_TAP_NUM_MASK_SFT, half_tap_num << SIDE_TONE_HALF_TAP_NUM_SFT); break; case SND_SOC_DAPM_POST_PMU: /* set side tone coefficient */ regmap_read(afe->regmap, AFE_SIDETONE_CON0, ®_value); for (coef_addr = 0; coef_addr < half_tap_num; coef_addr++) { bool old_w_ready = (reg_value >> W_RDY_SFT) & 0x1; bool new_w_ready = 0; int try_cnt = 0; regmap_update_bits(afe->regmap, AFE_SIDETONE_CON0, 0x39FFFFF, (1 << R_W_EN_SFT) | (1 << R_W_SEL_SFT) | (0 << SEL_CH2_SFT) | (coef_addr << SIDE_TONE_COEFFICIENT_ADDR_SFT) | stf_coeff_table[coef_addr]); /* wait until flag write_ready changed */ for (try_cnt = 0; try_cnt < 10; try_cnt++) { regmap_read(afe->regmap, AFE_SIDETONE_CON0, ®_value); new_w_ready = (reg_value >> W_RDY_SFT) & 0x1; /* flip => ok */ if (new_w_ready == old_w_ready) { udelay(3); if (try_cnt == 9) { dev_warn(afe->dev, "%s(), write coeff not ready", __func__); } } else { break; } } } break; case SND_SOC_DAPM_POST_PMD: /* bypass stf */ regmap_update_bits(afe->regmap, AFE_SIDETONE_CON1, 0xf << 28, 0xf << 28); /* set side tone gain = 0 */ regmap_update_bits(afe->regmap, AFE_SIDETONE_GAIN, SIDE_TONE_GAIN_MASK_SFT, 0); regmap_update_bits(afe->regmap, AFE_SIDETONE_GAIN, POSITIVE_GAIN_MASK_SFT, 0); break; default: break; } return 0; } static const struct snd_soc_dapm_widget mtk_dai_adda_widgets[] = { /* inter-connections */ SND_SOC_DAPM_MIXER("ADDA_DL_CH1", SND_SOC_NOPM, 0, 0, mtk_adda_dl_ch1_mix, ARRAY_SIZE(mtk_adda_dl_ch1_mix)), SND_SOC_DAPM_MIXER("ADDA_DL_CH2", SND_SOC_NOPM, 0, 0, mtk_adda_dl_ch2_mix, ARRAY_SIZE(mtk_adda_dl_ch2_mix)), SND_SOC_DAPM_SUPPLY_S("ADDA Enable", SUPPLY_SEQ_ADDA_AFE_ON, AFE_ADDA_UL_DL_CON0, ADDA_AFE_ON_SFT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("ADDA Playback Enable", SUPPLY_SEQ_ADDA_DL_ON, AFE_ADDA_DL_SRC2_CON0, DL_2_SRC_ON_TMP_CTL_PRE_SFT, 0, mtk_adda_dl_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY_S("ADDA Capture Enable", SUPPLY_SEQ_ADDA_UL_ON, AFE_ADDA_UL_SRC_CON0, UL_SRC_ON_TMP_CTL_SFT, 0, mtk_adda_ul_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SWITCH_E("Sidetone Filter", AFE_SIDETONE_CON1, SIDE_TONE_ON_SFT, 0, &stf_ctl, mtk_stf_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_OUTPUT("STF_OUTPUT"), SND_SOC_DAPM_CLOCK_SUPPLY("aud_dac_clk"), SND_SOC_DAPM_CLOCK_SUPPLY("aud_dac_predis_clk"), SND_SOC_DAPM_CLOCK_SUPPLY("aud_adc_clk"), }; static const struct snd_soc_dapm_route mtk_dai_adda_routes[] = { /* playback */ {"ADDA_DL_CH1", "DL1_CH1", "DL1"}, {"ADDA_DL_CH2", "DL1_CH1", "DL1"}, {"ADDA_DL_CH2", "DL1_CH2", "DL1"}, {"ADDA_DL_CH1", "DL12_CH1", "DL12"}, {"ADDA_DL_CH2", "DL12_CH2", "DL12"}, {"ADDA_DL_CH1", "DL2_CH1", "DL2"}, {"ADDA_DL_CH2", "DL2_CH1", "DL2"}, {"ADDA_DL_CH2", "DL2_CH2", "DL2"}, {"ADDA_DL_CH1", "DL3_CH1", "DL3"}, {"ADDA_DL_CH2", "DL3_CH1", "DL3"}, {"ADDA_DL_CH2", "DL3_CH2", "DL3"}, {"ADDA_DL_CH1", "GAIN1_OUT_CH1", "HW Gain 1 Out"}, {"ADDA_DL_CH2", "GAIN1_OUT_CH2", "HW Gain 1 Out"}, {"ADDA Playback", NULL, "ADDA_DL_CH1"}, {"ADDA Playback", NULL, "ADDA_DL_CH2"}, /* adda enable */ {"ADDA Playback", NULL, "ADDA Enable"}, {"ADDA Playback", NULL, "ADDA Playback Enable"}, {"ADDA Capture", NULL, "ADDA Enable"}, {"ADDA Capture", NULL, "ADDA Capture Enable"}, /* sidetone filter */ {"Sidetone Filter", "Switch", "ADDA Capture"}, {"STF_OUTPUT", NULL, "Sidetone Filter"}, {"ADDA Playback", NULL, "Sidetone Filter"}, /* clk */ {"ADDA Playback", NULL, "aud_dac_clk"}, {"ADDA Playback", NULL, "aud_dac_predis_clk"}, {"ADDA Capture", NULL, "aud_adc_clk"}, }; static int set_mtkaif_rx(struct mtk_base_afe *afe) { struct mt6768_afe_private *afe_priv = afe->platform_priv; unsigned int delay_data = 0; int delay_cycle = 0; if (afe_priv->mtkaif_protocol == MTKAIF_PROTOCOL_2_CLK_P2) { regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x38); regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x39); /* mtkaif_rxif_clkinv_adc inverse for calibration */ regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0, 0x80010000); if (afe_priv->mtkaif_phase_cycle[0] >= afe_priv->mtkaif_phase_cycle[1]) { delay_data = DELAY_DATA_MISO1; delay_cycle = afe_priv->mtkaif_phase_cycle[0] - afe_priv->mtkaif_phase_cycle[1]; } else { delay_data = DELAY_DATA_MISO2; delay_cycle = afe_priv->mtkaif_phase_cycle[1] - afe_priv->mtkaif_phase_cycle[0]; } regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG2, MTKAIF_RXIF_DELAY_DATA_MASK_SFT, delay_data << MTKAIF_RXIF_DELAY_DATA_SFT); regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG2, MTKAIF_RXIF_DELAY_CYCLE_MASK_SFT, delay_cycle << MTKAIF_RXIF_DELAY_CYCLE_SFT); } else if (afe_priv->mtkaif_protocol == MTKAIF_PROTOCOL_2) { regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x31); regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0, 0x00010000); } else { regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x31); regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0, 0x0); } return 0; } /* dai ops */ static int mtk_dai_adda_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct mtk_base_afe *afe = snd_soc_dai_get_drvdata(dai); unsigned int rate = params_rate(params); dev_info(afe->dev, "%s(), id %d, stream %d, rate %d\n", __func__, dai->id, substream->stream, rate); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { unsigned int dl_src2_con0 = 0; unsigned int dl_src2_con1 = 0; /* clean predistortion */ regmap_write(afe->regmap, AFE_ADDA_PREDIS_CON0, 0); regmap_write(afe->regmap, AFE_ADDA_PREDIS_CON1, 0); /* set sampling rate */ dl_src2_con0 = adda_dl_rate_transform(afe, rate) << 28; /* set output mode */ switch (rate) { case 192000: dl_src2_con0 |= (0x1 << 24); /* UP_SAMPLING_RATE_X2 */ dl_src2_con0 |= 1 << 14; break; case 96000: dl_src2_con0 |= (0x2 << 24); /* UP_SAMPLING_RATE_X4 */ dl_src2_con0 |= 1 << 14; break; default: dl_src2_con0 |= (0x3 << 24); /* UP_SAMPLING_RATE_X8 */ break; } /* turn off mute function */ dl_src2_con0 |= (0x03 << 11); /* set voice input data if input sample rate is 8k or 16k */ if (rate == 8000 || rate == 16000) dl_src2_con0 |= 0x01 << 5; /* SA suggest apply -0.3db to audio/speech path */ dl_src2_con1 = MTK_AFE_ADDA_DL_GAIN_NORMAL << DL_2_GAIN_CTL_PRE_SFT; /* turn on down-link gain */ dl_src2_con0 = dl_src2_con0 | (0x01 << 1); regmap_write(afe->regmap, AFE_ADDA_DL_SRC2_CON0, dl_src2_con0); regmap_write(afe->regmap, AFE_ADDA_DL_SRC2_CON1, dl_src2_con1); /* set sdm gain */ regmap_update_bits(afe->regmap, AFE_ADDA_DL_SDM_DCCOMP_CON, ATTGAIN_CTL_MASK_SFT, AUDIO_SDM_LEVEL_NORMAL << ATTGAIN_CTL_SFT); } else { unsigned int voice_mode = 0; unsigned int ul_src_con0 = 0; /* default value */ /* set mtkaif protocol */ set_mtkaif_rx(afe); voice_mode = adda_ul_rate_transform(afe, rate); ul_src_con0 |= (voice_mode << 17) & (0x7 << 17); /* enable iir */ ul_src_con0 |= (1 << UL_IIR_ON_TMP_CTL_SFT) & UL_IIR_ON_TMP_CTL_MASK_SFT; ul_src_con0 |= (UL_IIR_SW << UL_IIRMODE_CTL_SFT) & UL_IIRMODE_CTL_MASK_SFT; /* 35Hz @ 48k */ regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_02_01, 0x00000000); regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_04_03, 0x00003FB8); regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_06_05, 0x3FB80000); regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_08_07, 0x3FB80000); regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_10_09, 0x0000C048); regmap_write(afe->regmap, AFE_ADDA_UL_SRC_CON0, ul_src_con0); /* Using Internal ADC */ regmap_update_bits(afe->regmap, AFE_ADDA_TOP_CON0, 0x1 << 0, 0x0 << 0); /* mtkaif_rxif_data_mode = 0, amic */ regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG0, 0x1 << 0, 0x0 << 0); } return 0; } static const struct snd_soc_dai_ops mtk_dai_adda_ops = { .hw_params = mtk_dai_adda_hw_params, }; /* dai driver */ #define MTK_ADDA_PLAYBACK_RATES (SNDRV_PCM_RATE_8000_48000 |\ SNDRV_PCM_RATE_96000 |\ SNDRV_PCM_RATE_192000) #define MTK_ADDA_CAPTURE_RATES (SNDRV_PCM_RATE_8000 |\ SNDRV_PCM_RATE_16000 |\ SNDRV_PCM_RATE_32000 |\ SNDRV_PCM_RATE_48000) #define MTK_ADDA_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S24_LE |\ SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_driver mtk_dai_adda_driver[] = { { .name = "ADDA", .id = MT6768_DAI_ADDA, .playback = { .stream_name = "ADDA Playback", .channels_min = 1, .channels_max = 2, .rates = MTK_ADDA_PLAYBACK_RATES, .formats = MTK_ADDA_FORMATS, }, .capture = { .stream_name = "ADDA Capture", .channels_min = 1, .channels_max = 2, .rates = MTK_ADDA_CAPTURE_RATES, .formats = MTK_ADDA_FORMATS, }, .ops = &mtk_dai_adda_ops, }, }; int mt6768_dai_adda_register(struct mtk_base_afe *afe) { struct mtk_base_afe_dai *dai = NULL; dev_info(afe->dev, "%s()\n", __func__); dai = devm_kzalloc(afe->dev, sizeof(*dai), GFP_KERNEL); if (!dai) return -ENOMEM; list_add(&dai->list, &afe->sub_dais); dai->dai_drivers = mtk_dai_adda_driver; dai->num_dai_drivers = ARRAY_SIZE(mtk_dai_adda_driver); dai->controls = mtk_adda_controls; dai->num_controls = ARRAY_SIZE(mtk_adda_controls); dai->dapm_widgets = mtk_dai_adda_widgets; dai->num_dapm_widgets = ARRAY_SIZE(mtk_dai_adda_widgets); dai->dapm_routes = mtk_dai_adda_routes; dai->num_dapm_routes = ARRAY_SIZE(mtk_dai_adda_routes); return 0; }