/* * SMP initialisation and IPI support * Based on arch/arm/kernel/smp.c * * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SEC_DEBUG #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); EXPORT_PER_CPU_SYMBOL(cpu_number); /* * as from 2.5, kernels no longer have an init_tasks structure * so we need some other way of telling a new secondary core * where to place its SVC stack */ struct secondary_data secondary_data; /* Number of CPUs which aren't online, but looping in kernel text. */ int cpus_stuck_in_kernel; enum ipi_msg_type { IPI_RESCHEDULE, IPI_CALL_FUNC, IPI_CPU_STOP, IPI_CPU_CRASH_STOP, IPI_TIMER, IPI_IRQ_WORK, IPI_WAKEUP }; #ifdef CONFIG_HOTPLUG_CPU static int op_cpu_kill(unsigned int cpu); #else static inline int op_cpu_kill(unsigned int cpu) { return -ENOSYS; } #endif /* * Boot a secondary CPU, and assign it the specified idle task. * This also gives us the initial stack to use for this CPU. */ static int boot_secondary(unsigned int cpu, struct task_struct *idle) { if (cpu_ops[cpu]->cpu_boot) return cpu_ops[cpu]->cpu_boot(cpu); return -EOPNOTSUPP; } static DECLARE_COMPLETION(cpu_running); bool va52mismatch __ro_after_init; int __cpu_up(unsigned int cpu, struct task_struct *idle) { int ret; long status; /* * We need to tell the secondary core where to find its stack and the * page tables. */ secondary_data.task = idle; secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; update_cpu_boot_status(CPU_MMU_OFF); __flush_dcache_area(&secondary_data, sizeof(secondary_data)); /* * Now bring the CPU into our world. */ ret = boot_secondary(cpu, idle); if (ret == 0) { /* * CPU was successfully started, wait for it to come online or * time out. */ wait_for_completion_timeout(&cpu_running, msecs_to_jiffies(1000)); if (!cpu_online(cpu)) { pr_crit("CPU%u: failed to come online\n", cpu); if (IS_ENABLED(CONFIG_ARM64_52BIT_VA) && va52mismatch) pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); ret = -EIO; } } else { pr_err("CPU%u: failed to boot: %d\n", cpu, ret); return ret; } secondary_data.task = NULL; secondary_data.stack = NULL; status = READ_ONCE(secondary_data.status); if (ret && status) { if (status == CPU_MMU_OFF) status = READ_ONCE(__early_cpu_boot_status); switch (status) { default: pr_err("CPU%u: failed in unknown state : 0x%lx\n", cpu, status); break; case CPU_KILL_ME: if (!op_cpu_kill(cpu)) { pr_crit("CPU%u: died during early boot\n", cpu); break; } /* Fall through */ pr_crit("CPU%u: may not have shut down cleanly\n", cpu); case CPU_STUCK_IN_KERNEL: pr_crit("CPU%u: is stuck in kernel\n", cpu); cpus_stuck_in_kernel++; break; case CPU_PANIC_KERNEL: panic("CPU%u detected unsupported configuration\n", cpu); } } return ret; } /* * This is the secondary CPU boot entry. We're using this CPUs * idle thread stack, but a set of temporary page tables. */ asmlinkage notrace void secondary_start_kernel(void) { u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; struct mm_struct *mm = &init_mm; unsigned int cpu; cpu = task_cpu(current); set_my_cpu_offset(per_cpu_offset(cpu)); /* * All kernel threads share the same mm context; grab a * reference and switch to it. */ mmgrab(mm); current->active_mm = mm; /* * TTBR0 is only used for the identity mapping at this stage. Make it * point to zero page to avoid speculatively fetching new entries. */ cpu_uninstall_idmap(); preempt_disable(); trace_hardirqs_off(); /* * If the system has established the capabilities, make sure * this CPU ticks all of those. If it doesn't, the CPU will * fail to come online. */ check_local_cpu_capabilities(); if (cpu_ops[cpu]->cpu_postboot) cpu_ops[cpu]->cpu_postboot(); /* * Log the CPU info before it is marked online and might get read. */ cpuinfo_store_cpu(); /* * Enable GIC and timers. */ notify_cpu_starting(cpu); store_cpu_topology(cpu); numa_add_cpu(cpu); /* * OK, now it's safe to let the boot CPU continue. Wait for * the CPU migration code to notice that the CPU is online * before we continue. */ pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", cpu, (unsigned long)mpidr, read_cpuid_id()); update_cpu_boot_status(CPU_BOOT_SUCCESS); set_cpu_online(cpu, true); complete(&cpu_running); local_daif_restore(DAIF_PROCCTX); /* * OK, it's off to the idle thread for us */ cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); } #ifdef CONFIG_HOTPLUG_CPU static int op_cpu_disable(unsigned int cpu) { /* * If we don't have a cpu_die method, abort before we reach the point * of no return. CPU0 may not have an cpu_ops, so test for it. */ if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) return -EOPNOTSUPP; /* * We may need to abort a hot unplug for some other mechanism-specific * reason. */ if (cpu_ops[cpu]->cpu_disable) return cpu_ops[cpu]->cpu_disable(cpu); return 0; } /* * __cpu_disable runs on the processor to be shutdown. */ int __cpu_disable(void) { unsigned int cpu = smp_processor_id(); int ret; ret = op_cpu_disable(cpu); if (ret) return ret; remove_cpu_topology(cpu); numa_remove_cpu(cpu); #ifdef CONFIG_MTK_GIC_TARGET_ALL { unsigned long flags; /* * we disable irq here to ensure target all feature * did not bother this cpu after status as offline */ local_irq_save(flags); } #endif /* * Take this CPU offline. Once we clear this, we can't return, * and we must not schedule until we're ready to give up the cpu. */ set_cpu_online(cpu, false); /* * OK - migrate IRQs away from this CPU */ irq_migrate_all_off_this_cpu(); return 0; } static int op_cpu_kill(unsigned int cpu) { /* * If we have no means of synchronising with the dying CPU, then assume * that it is really dead. We can only wait for an arbitrary length of * time and hope that it's dead, so let's skip the wait and just hope. */ if (!cpu_ops[cpu]->cpu_kill) return 0; return cpu_ops[cpu]->cpu_kill(cpu); } /* * called on the thread which is asking for a CPU to be shutdown - * waits until shutdown has completed, or it is timed out. */ void __cpu_die(unsigned int cpu) { int err; if (!cpu_wait_death(cpu, 5)) { pr_crit("CPU%u: cpu didn't die\n", cpu); return; } pr_notice("CPU%u: shutdown\n", cpu); /* * Now that the dying CPU is beyond the point of no return w.r.t. * in-kernel synchronisation, try to get the firwmare to help us to * verify that it has really left the kernel before we consider * clobbering anything it might still be using. */ err = op_cpu_kill(cpu); if (err) pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); } /* * Called from the idle thread for the CPU which has been shutdown. * */ void cpu_die(void) { unsigned int cpu = smp_processor_id(); /* Save the shadow stack pointer before exiting the idle task */ scs_save(current); idle_task_exit(); local_daif_mask(); /* Tell __cpu_die() that this CPU is now safe to dispose of */ (void)cpu_report_death(); /* * Actually shutdown the CPU. This must never fail. The specific hotplug * mechanism must perform all required cache maintenance to ensure that * no dirty lines are lost in the process of shutting down the CPU. */ cpu_ops[cpu]->cpu_die(cpu); BUG(); } #endif /* * Kill the calling secondary CPU, early in bringup before it is turned * online. */ void cpu_die_early(void) { int cpu = smp_processor_id(); pr_crit("CPU%d: will not boot\n", cpu); /* Mark this CPU absent */ set_cpu_present(cpu, 0); #ifdef CONFIG_HOTPLUG_CPU update_cpu_boot_status(CPU_KILL_ME); /* Check if we can park ourselves */ if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) cpu_ops[cpu]->cpu_die(cpu); #endif update_cpu_boot_status(CPU_STUCK_IN_KERNEL); cpu_park_loop(); } static void __init hyp_mode_check(void) { if (is_hyp_mode_available()) pr_info("CPU: All CPU(s) started at EL2\n"); else if (is_hyp_mode_mismatched()) WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, "CPU: CPUs started in inconsistent modes"); else pr_info("CPU: All CPU(s) started at EL1\n"); } void __init smp_cpus_done(unsigned int max_cpus) { pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); setup_cpu_features(); hyp_mode_check(); apply_alternatives_all(); mark_linear_text_alias_ro(); } void __init smp_prepare_boot_cpu(void) { set_my_cpu_offset(per_cpu_offset(smp_processor_id())); cpuinfo_store_boot_cpu(); } static u64 __init of_get_cpu_mpidr(struct device_node *dn) { const __be32 *cell; u64 hwid; /* * A cpu node with missing "reg" property is * considered invalid to build a cpu_logical_map * entry. */ cell = of_get_property(dn, "reg", NULL); if (!cell) { pr_err("%pOF: missing reg property\n", dn); return INVALID_HWID; } hwid = of_read_number(cell, of_n_addr_cells(dn)); /* * Non affinity bits must be set to 0 in the DT */ if (hwid & ~MPIDR_HWID_BITMASK) { pr_err("%pOF: invalid reg property\n", dn); return INVALID_HWID; } return hwid; } /* * Duplicate MPIDRs are a recipe for disaster. Scan all initialized * entries and check for duplicates. If any is found just ignore the * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid * matching valid MPIDR values. */ static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) { unsigned int i; for (i = 1; (i < cpu) && (i < NR_CPUS); i++) if (cpu_logical_map(i) == hwid) return true; return false; } /* * Initialize cpu operations for a logical cpu and * set it in the possible mask on success */ static int __init smp_cpu_setup(int cpu) { if (cpu_read_ops(cpu)) return -ENODEV; if (cpu_ops[cpu]->cpu_init(cpu)) return -ENODEV; set_cpu_possible(cpu, true); return 0; } static bool bootcpu_valid __initdata; static unsigned int cpu_count = 1; #ifdef CONFIG_ACPI static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) { return &cpu_madt_gicc[cpu]; } /* * acpi_map_gic_cpu_interface - parse processor MADT entry * * Carry out sanity checks on MADT processor entry and initialize * cpu_logical_map on success */ static void __init acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) { u64 hwid = processor->arm_mpidr; if (!(processor->flags & ACPI_MADT_ENABLED)) { pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); return; } if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); return; } if (is_mpidr_duplicate(cpu_count, hwid)) { pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); return; } /* Check if GICC structure of boot CPU is available in the MADT */ if (cpu_logical_map(0) == hwid) { if (bootcpu_valid) { pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", hwid); return; } bootcpu_valid = true; cpu_madt_gicc[0] = *processor; return; } if (cpu_count >= NR_CPUS) return; /* map the logical cpu id to cpu MPIDR */ cpu_logical_map(cpu_count) = hwid; cpu_madt_gicc[cpu_count] = *processor; /* * Set-up the ACPI parking protocol cpu entries * while initializing the cpu_logical_map to * avoid parsing MADT entries multiple times for * nothing (ie a valid cpu_logical_map entry should * contain a valid parking protocol data set to * initialize the cpu if the parking protocol is * the only available enable method). */ acpi_set_mailbox_entry(cpu_count, processor); cpu_count++; } static int __init acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, const unsigned long end) { struct acpi_madt_generic_interrupt *processor; processor = (struct acpi_madt_generic_interrupt *)header; if (BAD_MADT_GICC_ENTRY(processor, end)) return -EINVAL; acpi_table_print_madt_entry(header); acpi_map_gic_cpu_interface(processor); return 0; } static void __init acpi_parse_and_init_cpus(void) { int i; /* * do a walk of MADT to determine how many CPUs * we have including disabled CPUs, and get information * we need for SMP init. */ acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, acpi_parse_gic_cpu_interface, 0); /* * In ACPI, SMP and CPU NUMA information is provided in separate * static tables, namely the MADT and the SRAT. * * Thus, it is simpler to first create the cpu logical map through * an MADT walk and then map the logical cpus to their node ids * as separate steps. */ acpi_map_cpus_to_nodes(); for (i = 0; i < nr_cpu_ids; i++) early_map_cpu_to_node(i, acpi_numa_get_nid(i)); } #else #define acpi_parse_and_init_cpus(...) do { } while (0) #endif /* Dummy vendor field */ DEFINE_PER_CPU(bool, pending_ipi); EXPORT_SYMBOL_GPL(pending_ipi); static void (*__smp_update_ipi_history_cb)(int cpu); /* * Enumerate the possible CPU set from the device tree and build the * cpu logical map array containing MPIDR values related to logical * cpus. Assumes that cpu_logical_map(0) has already been initialized. */ static void __init of_parse_and_init_cpus(void) { struct device_node *dn; for_each_node_by_type(dn, "cpu") { u64 hwid = of_get_cpu_mpidr(dn); if (hwid == INVALID_HWID) goto next; if (is_mpidr_duplicate(cpu_count, hwid)) { pr_err("%pOF: duplicate cpu reg properties in the DT\n", dn); goto next; } /* * The numbering scheme requires that the boot CPU * must be assigned logical id 0. Record it so that * the logical map built from DT is validated and can * be used. */ if (hwid == cpu_logical_map(0)) { if (bootcpu_valid) { pr_err("%pOF: duplicate boot cpu reg property in DT\n", dn); goto next; } bootcpu_valid = true; early_map_cpu_to_node(0, of_node_to_nid(dn)); /* * cpu_logical_map has already been * initialized and the boot cpu doesn't need * the enable-method so continue without * incrementing cpu. */ continue; } if (cpu_count >= NR_CPUS) goto next; pr_debug("cpu logical map 0x%llx\n", hwid); cpu_logical_map(cpu_count) = hwid; early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); next: cpu_count++; } } /* * Enumerate the possible CPU set from the device tree or ACPI and build the * cpu logical map array containing MPIDR values related to logical * cpus. Assumes that cpu_logical_map(0) has already been initialized. */ void __init smp_init_cpus(void) { int i; if (acpi_disabled) of_parse_and_init_cpus(); else acpi_parse_and_init_cpus(); if (cpu_count > nr_cpu_ids) pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", cpu_count, nr_cpu_ids); if (!bootcpu_valid) { pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); return; } /* * We need to set the cpu_logical_map entries before enabling * the cpus so that cpu processor description entries (DT cpu nodes * and ACPI MADT entries) can be retrieved by matching the cpu hwid * with entries in cpu_logical_map while initializing the cpus. * If the cpu set-up fails, invalidate the cpu_logical_map entry. */ for (i = 1; i < nr_cpu_ids; i++) { if (cpu_logical_map(i) != INVALID_HWID) { if (smp_cpu_setup(i)) cpu_logical_map(i) = INVALID_HWID; } } } void __init smp_prepare_cpus(unsigned int max_cpus) { int err; unsigned int cpu; unsigned int this_cpu; init_cpu_topology(); this_cpu = smp_processor_id(); store_cpu_topology(this_cpu); numa_store_cpu_info(this_cpu); numa_add_cpu(this_cpu); /* * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set * secondary CPUs present. */ if (max_cpus == 0) return; /* * Initialise the present map (which describes the set of CPUs * actually populated at the present time) and release the * secondaries from the bootloader. */ for_each_possible_cpu(cpu) { per_cpu(cpu_number, cpu) = cpu; if (cpu == smp_processor_id()) continue; if (!cpu_ops[cpu]) continue; err = cpu_ops[cpu]->cpu_prepare(cpu); if (err) continue; set_cpu_present(cpu, true); numa_store_cpu_info(cpu); } } void (*__smp_cross_call)(const struct cpumask *, unsigned int); void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) { __smp_cross_call = fn; } void set_update_ipi_history_callback(void (*fn)(int)) { __smp_update_ipi_history_cb = fn; } EXPORT_SYMBOL_GPL(set_update_ipi_history_callback); static const char *ipi_types[NR_IPI] __tracepoint_string = { #define S(x,s) [x] = s S(IPI_RESCHEDULE, "Rescheduling interrupts"), S(IPI_CALL_FUNC, "Function call interrupts"), S(IPI_CPU_STOP, "CPU stop interrupts"), S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), S(IPI_TIMER, "Timer broadcast interrupts"), S(IPI_IRQ_WORK, "IRQ work interrupts"), S(IPI_WAKEUP, "CPU wake-up interrupts"), }; static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) { trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); __smp_cross_call(target, ipinr); } void show_ipi_list(struct seq_file *p, int prec) { unsigned int cpu, i; for (i = 0; i < NR_IPI; i++) { seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); for_each_online_cpu(cpu) seq_printf(p, "%10u ", __get_irq_stat(cpu, ipi_irqs[i])); seq_printf(p, " %s\n", ipi_types[i]); } } u64 smp_irq_stat_cpu(unsigned int cpu) { u64 sum = 0; int i; for (i = 0; i < NR_IPI; i++) sum += __get_irq_stat(cpu, ipi_irqs[i]); return sum; } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_cross_call(mask, IPI_CALL_FUNC); } void arch_send_call_function_single_ipi(int cpu) { smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); } #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL void arch_send_wakeup_ipi_mask(const struct cpumask *mask) { smp_cross_call(mask, IPI_WAKEUP); } #endif #ifdef CONFIG_IRQ_WORK void arch_irq_work_raise(void) { if (__smp_cross_call) smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); } #endif /* * ipi_cpu_stop - handle IPI from smp_send_stop() */ #ifdef CONFIG_SEC_DEBUG static void ipi_cpu_stop(unsigned int cpu, struct pt_regs *regs) #else static void ipi_cpu_stop(unsigned int cpu) #endif { set_cpu_online(cpu, false); #ifdef CONFIG_SEC_DEBUG sec_save_context(_THIS_CPU, regs); #endif local_daif_mask(); sdei_mask_local_cpu(); while (1) cpu_relax(); } #ifdef CONFIG_KEXEC_CORE static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); #endif static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) { #ifdef CONFIG_KEXEC_CORE crash_save_cpu(regs, cpu); atomic_dec(&waiting_for_crash_ipi); local_irq_disable(); sdei_mask_local_cpu(); #ifdef CONFIG_HOTPLUG_CPU if (cpu_ops[cpu]->cpu_die) cpu_ops[cpu]->cpu_die(cpu); #endif /* just in case */ cpu_park_loop(); #endif } /* * Main handler for inter-processor interrupts */ void handle_IPI(int ipinr, struct pt_regs *regs) { unsigned int cpu = smp_processor_id(); struct pt_regs *old_regs = set_irq_regs(regs); unsigned long long ts = 0; int count = 0; if ((unsigned)ipinr < NR_IPI) { check_start_time_preempt(ipi_note, count, ts, ipinr); trace_ipi_entry_rcuidle(ipi_types[ipinr]); __inc_irq_stat(cpu, ipi_irqs[ipinr]); } switch (ipinr) { case IPI_RESCHEDULE: scheduler_ipi(); break; case IPI_CALL_FUNC: irq_enter(); generic_smp_call_function_interrupt(); irq_exit(); break; case IPI_CPU_STOP: irq_enter(); #ifdef CONFIG_SEC_DEBUG ipi_cpu_stop(cpu, regs); #else ipi_cpu_stop(cpu); #endif irq_exit(); break; case IPI_CPU_CRASH_STOP: if (IS_ENABLED(CONFIG_KEXEC_CORE)) { irq_enter(); ipi_cpu_crash_stop(cpu, regs); unreachable(); } break; #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST case IPI_TIMER: irq_enter(); tick_receive_broadcast(); irq_exit(); break; #endif #ifdef CONFIG_IRQ_WORK case IPI_IRQ_WORK: irq_enter(); irq_work_run(); irq_exit(); break; #endif #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL case IPI_WAKEUP: WARN_ONCE(!acpi_parking_protocol_valid(cpu), "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", cpu); break; #endif default: pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); break; } if ((unsigned int)ipinr < NR_IPI) { trace_ipi_exit_rcuidle(ipi_types[ipinr]); check_process_time_preempt(ipi_note, count, "ipi %d %s", ts, ipinr, ipi_types[ipinr]); } set_irq_regs(old_regs); } void smp_send_reschedule(int cpu) { if (__smp_update_ipi_history_cb) __smp_update_ipi_history_cb(cpu); smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); } #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST void tick_broadcast(const struct cpumask *mask) { smp_cross_call(mask, IPI_TIMER); } #endif /* * The number of CPUs online, not counting this CPU (which may not be * fully online and so not counted in num_online_cpus()). */ static inline unsigned int num_other_online_cpus(void) { unsigned int this_cpu_online = cpu_online(smp_processor_id()); return num_online_cpus() - this_cpu_online; } void smp_send_stop(void) { unsigned long timeout; if (num_other_online_cpus()) { cpumask_t mask; cpumask_copy(&mask, cpu_online_mask); cpumask_clear_cpu(smp_processor_id(), &mask); if (system_state <= SYSTEM_RUNNING) pr_crit("SMP: stopping secondary CPUs\n"); smp_cross_call(&mask, IPI_CPU_STOP); } /* Wait up to one second for other CPUs to stop */ timeout = USEC_PER_SEC; while (num_other_online_cpus() && timeout--) udelay(1); if (num_other_online_cpus()) pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", cpumask_pr_args(cpu_online_mask)); sdei_mask_local_cpu(); } #ifdef CONFIG_KEXEC_CORE void crash_smp_send_stop(void) { static int cpus_stopped; cpumask_t mask; unsigned long timeout; /* * This function can be called twice in panic path, but obviously * we execute this only once. */ if (cpus_stopped) return; cpus_stopped = 1; /* * If this cpu is the only one alive at this point in time, online or * not, there are no stop messages to be sent around, so just back out. */ if (num_other_online_cpus() == 0) { sdei_mask_local_cpu(); return; } cpumask_copy(&mask, cpu_online_mask); cpumask_clear_cpu(smp_processor_id(), &mask); atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); pr_crit("SMP: stopping secondary CPUs\n"); smp_cross_call(&mask, IPI_CPU_CRASH_STOP); /* Wait up to one second for other CPUs to stop */ timeout = USEC_PER_SEC; while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) udelay(1); if (atomic_read(&waiting_for_crash_ipi) > 0) pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", cpumask_pr_args(&mask)); sdei_mask_local_cpu(); } bool smp_crash_stop_failed(void) { return (atomic_read(&waiting_for_crash_ipi) > 0); } #endif /* * not supported here */ int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } static bool have_cpu_die(void) { #ifdef CONFIG_HOTPLUG_CPU int any_cpu = raw_smp_processor_id(); if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) return true; #endif return false; } bool cpus_are_stuck_in_kernel(void) { bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); return !!cpus_stuck_in_kernel || smp_spin_tables; }