// SPDX-License-Identifier: GPL-2.0+ /* * drivers/of/property.c - Procedures for accessing and interpreting * Devicetree properties and graphs. * * Initially created by copying procedures from drivers/of/base.c. This * file contains the OF property as well as the OF graph interface * functions. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net * * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and * Grant Likely. */ #define pr_fmt(fmt) "OF: " fmt #include #include #include #include #include #include "of_private.h" /** * of_property_count_elems_of_size - Count the number of elements in a property * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @elem_size: size of the individual element * * Search for a property in a device node and count the number of elements of * size elem_size in it. Returns number of elements on sucess, -EINVAL if the * property does not exist or its length does not match a multiple of elem_size * and -ENODATA if the property does not have a value. */ int of_property_count_elems_of_size(const struct device_node *np, const char *propname, int elem_size) { struct property *prop = of_find_property(np, propname, NULL); if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; if (prop->length % elem_size != 0) { pr_err("size of %s in node %pOF is not a multiple of %d\n", propname, np, elem_size); return -EINVAL; } return prop->length / elem_size; } EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); /** * of_find_property_value_of_size * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @min: minimum allowed length of property value * @max: maximum allowed length of property value (0 means unlimited) * @len: if !=NULL, actual length is written to here * * Search for a property in a device node and valid the requested size. * Returns the property value on success, -EINVAL if the property does not * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the * property data is too small or too large. * */ static void *of_find_property_value_of_size(const struct device_node *np, const char *propname, u32 min, u32 max, size_t *len) { struct property *prop = of_find_property(np, propname, NULL); if (!prop) return ERR_PTR(-EINVAL); if (!prop->value) return ERR_PTR(-ENODATA); if (prop->length < min) return ERR_PTR(-EOVERFLOW); if (max && prop->length > max) return ERR_PTR(-EOVERFLOW); if (len) *len = prop->length; return prop->value; } /** * of_property_read_u32_index - Find and read a u32 from a multi-value property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @index: index of the u32 in the list of values * @out_value: pointer to return value, modified only if no error. * * Search for a property in a device node and read nth 32-bit value from * it. Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid u32 value can be decoded. */ int of_property_read_u32_index(const struct device_node *np, const char *propname, u32 index, u32 *out_value) { const u32 *val = of_find_property_value_of_size(np, propname, ((index + 1) * sizeof(*out_value)), 0, NULL); if (IS_ERR(val)) return PTR_ERR(val); *out_value = be32_to_cpup(((__be32 *)val) + index); return 0; } EXPORT_SYMBOL_GPL(of_property_read_u32_index); /** * of_property_read_u64_index - Find and read a u64 from a multi-value property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @index: index of the u64 in the list of values * @out_value: pointer to return value, modified only if no error. * * Search for a property in a device node and read nth 64-bit value from * it. Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid u64 value can be decoded. */ int of_property_read_u64_index(const struct device_node *np, const char *propname, u32 index, u64 *out_value) { const u64 *val = of_find_property_value_of_size(np, propname, ((index + 1) * sizeof(*out_value)), 0, NULL); if (IS_ERR(val)) return PTR_ERR(val); *out_value = be64_to_cpup(((__be64 *)val) + index); return 0; } EXPORT_SYMBOL_GPL(of_property_read_u64_index); /** * of_property_read_variable_u8_array - Find and read an array of u8 from a * property, with bounds on the minimum and maximum array size. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return value, modified only if return value is 0. * @sz_min: minimum number of array elements to read * @sz_max: maximum number of array elements to read, if zero there is no * upper limit on the number of elements in the dts entry but only * sz_min will be read. * * Search for a property in a device node and read 8-bit value(s) from * it. Returns number of elements read on success, -EINVAL if the property * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW * if the property data is smaller than sz_min or longer than sz_max. * * dts entry of array should be like: * property = /bits/ 8 <0x50 0x60 0x70>; * * The out_values is modified only if a valid u8 value can be decoded. */ int of_property_read_variable_u8_array(const struct device_node *np, const char *propname, u8 *out_values, size_t sz_min, size_t sz_max) { size_t sz, count; const u8 *val = of_find_property_value_of_size(np, propname, (sz_min * sizeof(*out_values)), (sz_max * sizeof(*out_values)), &sz); if (IS_ERR(val)) return PTR_ERR(val); if (!sz_max) sz = sz_min; else sz /= sizeof(*out_values); count = sz; while (count--) *out_values++ = *val++; return sz; } EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); /** * of_property_read_variable_u16_array - Find and read an array of u16 from a * property, with bounds on the minimum and maximum array size. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return value, modified only if return value is 0. * @sz_min: minimum number of array elements to read * @sz_max: maximum number of array elements to read, if zero there is no * upper limit on the number of elements in the dts entry but only * sz_min will be read. * * Search for a property in a device node and read 16-bit value(s) from * it. Returns number of elements read on success, -EINVAL if the property * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW * if the property data is smaller than sz_min or longer than sz_max. * * dts entry of array should be like: * property = /bits/ 16 <0x5000 0x6000 0x7000>; * * The out_values is modified only if a valid u16 value can be decoded. */ int of_property_read_variable_u16_array(const struct device_node *np, const char *propname, u16 *out_values, size_t sz_min, size_t sz_max) { size_t sz, count; const __be16 *val = of_find_property_value_of_size(np, propname, (sz_min * sizeof(*out_values)), (sz_max * sizeof(*out_values)), &sz); if (IS_ERR(val)) return PTR_ERR(val); if (!sz_max) sz = sz_min; else sz /= sizeof(*out_values); count = sz; while (count--) *out_values++ = be16_to_cpup(val++); return sz; } EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); /** * of_property_read_variable_u32_array - Find and read an array of 32 bit * integers from a property, with bounds on the minimum and maximum array size. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return value, modified only if return value is 0. * @sz_min: minimum number of array elements to read * @sz_max: maximum number of array elements to read, if zero there is no * upper limit on the number of elements in the dts entry but only * sz_min will be read. * * Search for a property in a device node and read 32-bit value(s) from * it. Returns number of elements read on success, -EINVAL if the property * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW * if the property data is smaller than sz_min or longer than sz_max. * * The out_values is modified only if a valid u32 value can be decoded. */ int of_property_read_variable_u32_array(const struct device_node *np, const char *propname, u32 *out_values, size_t sz_min, size_t sz_max) { size_t sz, count; const __be32 *val = of_find_property_value_of_size(np, propname, (sz_min * sizeof(*out_values)), (sz_max * sizeof(*out_values)), &sz); if (IS_ERR(val)) return PTR_ERR(val); if (!sz_max) sz = sz_min; else sz /= sizeof(*out_values); count = sz; while (count--) *out_values++ = be32_to_cpup(val++); return sz; } EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); /** * of_property_read_u64 - Find and read a 64 bit integer from a property * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_value: pointer to return value, modified only if return value is 0. * * Search for a property in a device node and read a 64-bit value from * it. Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid u64 value can be decoded. */ int of_property_read_u64(const struct device_node *np, const char *propname, u64 *out_value) { const __be32 *val = of_find_property_value_of_size(np, propname, sizeof(*out_value), 0, NULL); if (IS_ERR(val)) return PTR_ERR(val); *out_value = of_read_number(val, 2); return 0; } EXPORT_SYMBOL_GPL(of_property_read_u64); /** * of_property_read_variable_u64_array - Find and read an array of 64 bit * integers from a property, with bounds on the minimum and maximum array size. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return value, modified only if return value is 0. * @sz_min: minimum number of array elements to read * @sz_max: maximum number of array elements to read, if zero there is no * upper limit on the number of elements in the dts entry but only * sz_min will be read. * * Search for a property in a device node and read 64-bit value(s) from * it. Returns number of elements read on success, -EINVAL if the property * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW * if the property data is smaller than sz_min or longer than sz_max. * * The out_values is modified only if a valid u64 value can be decoded. */ int of_property_read_variable_u64_array(const struct device_node *np, const char *propname, u64 *out_values, size_t sz_min, size_t sz_max) { size_t sz, count; const __be32 *val = of_find_property_value_of_size(np, propname, (sz_min * sizeof(*out_values)), (sz_max * sizeof(*out_values)), &sz); if (IS_ERR(val)) return PTR_ERR(val); if (!sz_max) sz = sz_min; else sz /= sizeof(*out_values); count = sz; while (count--) { *out_values++ = of_read_number(val, 2); val += 2; } return sz; } EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); /** * of_property_read_string - Find and read a string from a property * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_string: pointer to null terminated return string, modified only if * return value is 0. * * Search for a property in a device tree node and retrieve a null * terminated string value (pointer to data, not a copy). Returns 0 on * success, -EINVAL if the property does not exist, -ENODATA if property * does not have a value, and -EILSEQ if the string is not null-terminated * within the length of the property data. * * The out_string pointer is modified only if a valid string can be decoded. */ int of_property_read_string(const struct device_node *np, const char *propname, const char **out_string) { const struct property *prop = of_find_property(np, propname, NULL); if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; if (strnlen(prop->value, prop->length) >= prop->length) return -EILSEQ; *out_string = prop->value; return 0; } EXPORT_SYMBOL_GPL(of_property_read_string); /** * of_property_match_string() - Find string in a list and return index * @np: pointer to node containing string list property * @propname: string list property name * @string: pointer to string to search for in string list * * This function searches a string list property and returns the index * of a specific string value. */ int of_property_match_string(const struct device_node *np, const char *propname, const char *string) { const struct property *prop = of_find_property(np, propname, NULL); size_t l; int i; const char *p, *end; if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; p = prop->value; end = p + prop->length; for (i = 0; p < end; i++, p += l) { l = strnlen(p, end - p) + 1; if (p + l > end) return -EILSEQ; pr_debug("comparing %s with %s\n", string, p); if (strcmp(string, p) == 0) return i; /* Found it; return index */ } return -ENODATA; } EXPORT_SYMBOL_GPL(of_property_match_string); /** * of_property_read_string_helper() - Utility helper for parsing string properties * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_strs: output array of string pointers. * @sz: number of array elements to read. * @skip: Number of strings to skip over at beginning of list. * * Don't call this function directly. It is a utility helper for the * of_property_read_string*() family of functions. */ int of_property_read_string_helper(const struct device_node *np, const char *propname, const char **out_strs, size_t sz, int skip) { const struct property *prop = of_find_property(np, propname, NULL); int l = 0, i = 0; const char *p, *end; if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; p = prop->value; end = p + prop->length; for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { l = strnlen(p, end - p) + 1; if (p + l > end) return -EILSEQ; if (out_strs && i >= skip) *out_strs++ = p; } i -= skip; return i <= 0 ? -ENODATA : i; } EXPORT_SYMBOL_GPL(of_property_read_string_helper); const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, u32 *pu) { const void *curv = cur; if (!prop) return NULL; if (!cur) { curv = prop->value; goto out_val; } curv += sizeof(*cur); if (curv >= prop->value + prop->length) return NULL; out_val: *pu = be32_to_cpup(curv); return curv; } EXPORT_SYMBOL_GPL(of_prop_next_u32); const char *of_prop_next_string(struct property *prop, const char *cur) { const void *curv = cur; if (!prop) return NULL; if (!cur) return prop->value; curv += strlen(cur) + 1; if (curv >= prop->value + prop->length) return NULL; return curv; } EXPORT_SYMBOL_GPL(of_prop_next_string); /** * of_graph_parse_endpoint() - parse common endpoint node properties * @node: pointer to endpoint device_node * @endpoint: pointer to the OF endpoint data structure * * The caller should hold a reference to @node. */ int of_graph_parse_endpoint(const struct device_node *node, struct of_endpoint *endpoint) { struct device_node *port_node = of_get_parent(node); WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", __func__, node); memset(endpoint, 0, sizeof(*endpoint)); endpoint->local_node = node; /* * It doesn't matter whether the two calls below succeed. * If they don't then the default value 0 is used. */ of_property_read_u32(port_node, "reg", &endpoint->port); of_property_read_u32(node, "reg", &endpoint->id); of_node_put(port_node); return 0; } EXPORT_SYMBOL(of_graph_parse_endpoint); /** * of_graph_get_port_by_id() - get the port matching a given id * @parent: pointer to the parent device node * @id: id of the port * * Return: A 'port' node pointer with refcount incremented. The caller * has to use of_node_put() on it when done. */ struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) { struct device_node *node, *port; node = of_get_child_by_name(parent, "ports"); if (node) parent = node; for_each_child_of_node(parent, port) { u32 port_id = 0; if (of_node_cmp(port->name, "port") != 0) continue; of_property_read_u32(port, "reg", &port_id); if (id == port_id) break; } of_node_put(node); return port; } EXPORT_SYMBOL(of_graph_get_port_by_id); /** * of_graph_get_next_endpoint() - get next endpoint node * @parent: pointer to the parent device node * @prev: previous endpoint node, or NULL to get first * * Return: An 'endpoint' node pointer with refcount incremented. Refcount * of the passed @prev node is decremented. */ struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, struct device_node *prev) { struct device_node *endpoint; struct device_node *port; if (!parent) return NULL; /* * Start by locating the port node. If no previous endpoint is specified * search for the first port node, otherwise get the previous endpoint * parent port node. */ if (!prev) { struct device_node *node; node = of_get_child_by_name(parent, "ports"); if (node) parent = node; port = of_get_child_by_name(parent, "port"); of_node_put(node); if (!port) { pr_err("graph: no port node found in %pOF\n", parent); return NULL; } } else { port = of_get_parent(prev); if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", __func__, prev)) return NULL; } while (1) { /* * Now that we have a port node, get the next endpoint by * getting the next child. If the previous endpoint is NULL this * will return the first child. */ endpoint = of_get_next_child(port, prev); if (endpoint) { of_node_put(port); return endpoint; } /* No more endpoints under this port, try the next one. */ prev = NULL; do { port = of_get_next_child(parent, port); if (!port) return NULL; } while (of_node_cmp(port->name, "port")); } } EXPORT_SYMBOL(of_graph_get_next_endpoint); /** * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers * @parent: pointer to the parent device node * @port_reg: identifier (value of reg property) of the parent port node * @reg: identifier (value of reg property) of the endpoint node * * Return: An 'endpoint' node pointer which is identified by reg and at the same * is the child of a port node identified by port_reg. reg and port_reg are * ignored when they are -1. */ struct device_node *of_graph_get_endpoint_by_regs( const struct device_node *parent, int port_reg, int reg) { struct of_endpoint endpoint; struct device_node *node = NULL; for_each_endpoint_of_node(parent, node) { of_graph_parse_endpoint(node, &endpoint); if (((port_reg == -1) || (endpoint.port == port_reg)) && ((reg == -1) || (endpoint.id == reg))) return node; } return NULL; } EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); /** * of_graph_get_remote_endpoint() - get remote endpoint node * @node: pointer to a local endpoint device_node * * Return: Remote endpoint node associated with remote endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) { /* Get remote endpoint node. */ return of_parse_phandle(node, "remote-endpoint", 0); } EXPORT_SYMBOL(of_graph_get_remote_endpoint); /** * of_graph_get_port_parent() - get port's parent node * @node: pointer to a local endpoint device_node * * Return: device node associated with endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_port_parent(struct device_node *node) { unsigned int depth; if (!node) return NULL; /* * Preserve usecount for passed in node as of_get_next_parent() * will do of_node_put() on it. */ of_node_get(node); /* Walk 3 levels up only if there is 'ports' node. */ for (depth = 3; depth && node; depth--) { node = of_get_next_parent(node); if (depth == 2 && of_node_cmp(node->name, "ports")) break; } return node; } EXPORT_SYMBOL(of_graph_get_port_parent); /** * of_graph_get_remote_port_parent() - get remote port's parent node * @node: pointer to a local endpoint device_node * * Return: Remote device node associated with remote endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_remote_port_parent( const struct device_node *node) { struct device_node *np, *pp; /* Get remote endpoint node. */ np = of_graph_get_remote_endpoint(node); pp = of_graph_get_port_parent(np); of_node_put(np); return pp; } EXPORT_SYMBOL(of_graph_get_remote_port_parent); /** * of_graph_get_remote_port() - get remote port node * @node: pointer to a local endpoint device_node * * Return: Remote port node associated with remote endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_remote_port(const struct device_node *node) { struct device_node *np; /* Get remote endpoint node. */ np = of_graph_get_remote_endpoint(node); if (!np) return NULL; return of_get_next_parent(np); } EXPORT_SYMBOL(of_graph_get_remote_port); int of_graph_get_endpoint_count(const struct device_node *np) { struct device_node *endpoint; int num = 0; for_each_endpoint_of_node(np, endpoint) num++; return num; } EXPORT_SYMBOL(of_graph_get_endpoint_count); /** * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint * @node: pointer to parent device_node containing graph port/endpoint * @port: identifier (value of reg property) of the parent port node * @endpoint: identifier (value of reg property) of the endpoint node * * Return: Remote device node associated with remote endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_remote_node(const struct device_node *node, u32 port, u32 endpoint) { struct device_node *endpoint_node, *remote; endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); if (!endpoint_node) { pr_debug("no valid endpoint (%d, %d) for node %pOF\n", port, endpoint, node); return NULL; } remote = of_graph_get_remote_port_parent(endpoint_node); of_node_put(endpoint_node); if (!remote) { pr_debug("no valid remote node\n"); return NULL; } if (!of_device_is_available(remote)) { pr_debug("not available for remote node\n"); of_node_put(remote); return NULL; } return remote; } EXPORT_SYMBOL(of_graph_get_remote_node); static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) { return of_fwnode_handle(of_node_get(to_of_node(fwnode))); } static void of_fwnode_put(struct fwnode_handle *fwnode) { of_node_put(to_of_node(fwnode)); } static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) { return of_device_is_available(to_of_node(fwnode)); } static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, const char *propname) { return of_property_read_bool(to_of_node(fwnode), propname); } static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, const char *propname, unsigned int elem_size, void *val, size_t nval) { const struct device_node *node = to_of_node(fwnode); if (!val) return of_property_count_elems_of_size(node, propname, elem_size); switch (elem_size) { case sizeof(u8): return of_property_read_u8_array(node, propname, val, nval); case sizeof(u16): return of_property_read_u16_array(node, propname, val, nval); case sizeof(u32): return of_property_read_u32_array(node, propname, val, nval); case sizeof(u64): return of_property_read_u64_array(node, propname, val, nval); } return -ENXIO; } static int of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, const char *propname, const char **val, size_t nval) { const struct device_node *node = to_of_node(fwnode); return val ? of_property_read_string_array(node, propname, val, nval) : of_property_count_strings(node, propname); } static struct fwnode_handle * of_fwnode_get_parent(const struct fwnode_handle *fwnode) { return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); } static struct fwnode_handle * of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), to_of_node(child))); } static struct fwnode_handle * of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, const char *childname) { const struct device_node *node = to_of_node(fwnode); struct device_node *child; for_each_available_child_of_node(node, child) if (!of_node_cmp(child->name, childname)) return of_fwnode_handle(child); return NULL; } static int of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, const char *prop, const char *nargs_prop, unsigned int nargs, unsigned int index, struct fwnode_reference_args *args) { struct of_phandle_args of_args; unsigned int i; int ret; if (nargs_prop) ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, nargs_prop, index, &of_args); else ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, nargs, index, &of_args); if (ret < 0) return ret; if (!args) return 0; args->nargs = of_args.args_count; args->fwnode = of_fwnode_handle(of_args.np); for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; return 0; } static struct fwnode_handle * of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle *prev) { return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), to_of_node(prev))); } static struct fwnode_handle * of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) { return of_fwnode_handle( of_graph_get_remote_endpoint(to_of_node(fwnode))); } static struct fwnode_handle * of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) { struct device_node *np; /* Get the parent of the port */ np = of_get_parent(to_of_node(fwnode)); if (!np) return NULL; /* Is this the "ports" node? If not, it's the port parent. */ if (of_node_cmp(np->name, "ports")) return of_fwnode_handle(np); return of_fwnode_handle(of_get_next_parent(np)); } static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, struct fwnode_endpoint *endpoint) { const struct device_node *node = to_of_node(fwnode); struct device_node *port_node = of_get_parent(node); endpoint->local_fwnode = fwnode; of_property_read_u32(port_node, "reg", &endpoint->port); of_property_read_u32(node, "reg", &endpoint->id); of_node_put(port_node); return 0; } static const void * of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, const struct device *dev) { return of_device_get_match_data(dev); } static bool of_is_ancestor_of(struct device_node *test_ancestor, struct device_node *child) { of_node_get(child); while (child) { if (child == test_ancestor) { of_node_put(child); return true; } child = of_get_next_parent(child); } return false; } /** * of_link_to_phandle - Add device link to supplier from supplier phandle * @dev: consumer device * @sup_np: phandle to supplier device tree node * * Given a phandle to a supplier device tree node (@sup_np), this function * finds the device that owns the supplier device tree node and creates a * device link from @dev consumer device to the supplier device. This function * doesn't create device links for invalid scenarios such as trying to create a * link with a parent device as the consumer of its child device. In such * cases, it returns an error. * * Returns: * - 0 if link successfully created to supplier * - -EAGAIN if linking to the supplier should be reattempted * - -EINVAL if the supplier link is invalid and should not be created * - -ENODEV if there is no device that corresponds to the supplier phandle */ static int of_link_to_phandle(struct device *dev, struct device_node *sup_np, u32 dl_flags) { struct device *sup_dev; int ret = 0; struct device_node *tmp_np = sup_np; int is_populated; of_node_get(sup_np); /* * Find the device node that contains the supplier phandle. It may be * @sup_np or it may be an ancestor of @sup_np. */ while (sup_np) { /* Don't allow linking to a disabled supplier */ if (!of_device_is_available(sup_np)) { of_node_put(sup_np); sup_np = NULL; } if (of_find_property(sup_np, "compatible", NULL)) break; sup_np = of_get_next_parent(sup_np); } if (!sup_np) { dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np); return -ENODEV; } /* * Don't allow linking a device node as a consumer of one of its * descendant nodes. By definition, a child node can't be a functional * dependency for the parent node. */ if (of_is_ancestor_of(dev->of_node, sup_np)) { dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np); of_node_put(sup_np); return -EINVAL; } sup_dev = get_dev_from_fwnode(&sup_np->fwnode); is_populated = of_node_check_flag(sup_np, OF_POPULATED); of_node_put(sup_np); if (!sup_dev && is_populated) { /* Early device without struct device. */ dev_dbg(dev, "Not linking to %pOFP - No struct device\n", sup_np); return -ENODEV; } else if (!sup_dev) { return -EAGAIN; } if (!device_link_add(dev, sup_dev, dl_flags)) ret = -EAGAIN; put_device(sup_dev); return ret; } /** * parse_prop_cells - Property parsing function for suppliers * * @np: Pointer to device tree node containing a list * @prop_name: Name of property to be parsed. Expected to hold phandle values * @index: For properties holding a list of phandles, this is the index * into the list. * @list_name: Property name that is known to contain list of phandle(s) to * supplier(s) * @cells_name: property name that specifies phandles' arguments count * * This is a helper function to parse properties that have a known fixed name * and are a list of phandles and phandle arguments. * * Returns: * - phandle node pointer with refcount incremented. Caller must of_node_put() * on it when done. * - NULL if no phandle found at index */ static struct device_node *parse_prop_cells(struct device_node *np, const char *prop_name, int index, const char *list_name, const char *cells_name) { struct of_phandle_args sup_args; if (strcmp(prop_name, list_name)) return NULL; if (of_parse_phandle_with_args(np, list_name, cells_name, index, &sup_args)) return NULL; return sup_args.np; } #define DEFINE_SIMPLE_PROP(fname, name, cells) \ static struct device_node *parse_##fname(struct device_node *np, \ const char *prop_name, int index) \ { \ return parse_prop_cells(np, prop_name, index, name, cells); \ } static int strcmp_suffix(const char *str, const char *suffix) { unsigned int len, suffix_len; len = strlen(str); suffix_len = strlen(suffix); if (len <= suffix_len) return -1; return strcmp(str + len - suffix_len, suffix); } /** * parse_suffix_prop_cells - Suffix property parsing function for suppliers * * @np: Pointer to device tree node containing a list * @prop_name: Name of property to be parsed. Expected to hold phandle values * @index: For properties holding a list of phandles, this is the index * into the list. * @suffix: Property suffix that is known to contain list of phandle(s) to * supplier(s) * @cells_name: property name that specifies phandles' arguments count * * This is a helper function to parse properties that have a known fixed suffix * and are a list of phandles and phandle arguments. * * Returns: * - phandle node pointer with refcount incremented. Caller must of_node_put() * on it when done. * - NULL if no phandle found at index */ static struct device_node *parse_suffix_prop_cells(struct device_node *np, const char *prop_name, int index, const char *suffix, const char *cells_name) { struct of_phandle_args sup_args; if (strcmp_suffix(prop_name, suffix)) return NULL; if (of_parse_phandle_with_args(np, prop_name, cells_name, index, &sup_args)) return NULL; return sup_args.np; } #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ static struct device_node *parse_##fname(struct device_node *np, \ const char *prop_name, int index) \ { \ return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ } static struct device_node *parse_msm_bus_name(struct device_node *np, const char *prop_name, int index) { static struct device_node *bus_dev_np; if (index || strcmp(prop_name, "qcom,msm-bus,name")) return NULL; if (!bus_dev_np) bus_dev_np = of_find_compatible_node(NULL, NULL, "qcom,msm-bus-device"); return bus_dev_np; } /* Force ignore of any qcom properties. */ static struct device_node *parse_qcom_any(struct device_node *np, const char *prop_name, int index) { if (index || strncmp(prop_name, "qcom,", strlen("qcom,"))) return NULL; /* * Returning np will cause this property to be matched and then * ignored. */ return np; } /** * struct supplier_bindings - Property parsing functions for suppliers * * @parse_prop: function name * parse_prop() finds the node corresponding to a supplier phandle * @parse_prop.np: Pointer to device node holding supplier phandle property * @parse_prop.prop_name: Name of property holding a phandle value * @parse_prop.index: For properties holding a list of phandles, this is the * index into the list * * Returns: * parse_prop() return values are * - phandle node pointer with refcount incremented. Caller must of_node_put() * on it when done. * - NULL if no phandle found at index */ struct supplier_bindings { struct device_node *(*parse_prop)(struct device_node *np, const char *prop_name, int index); }; DEFINE_SIMPLE_PROP(qcom_wrapper_core, "qcom,wrapper-core", NULL) DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells") DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells") static struct device_node *parse_iommu_maps(struct device_node *np, const char *prop_name, int index) { if (strcmp(prop_name, "iommu-map")) return NULL; return of_parse_phandle(np, prop_name, (index * 4) + 1); } static const struct supplier_bindings of_supplier_bindings[] = { { .parse_prop = parse_msm_bus_name, }, { .parse_prop = parse_qcom_wrapper_core, }, { .parse_prop = parse_qcom_any, }, { .parse_prop = parse_clocks, }, { .parse_prop = parse_interconnects, }, { .parse_prop = parse_iommus, }, { .parse_prop = parse_iommu_maps, }, { .parse_prop = parse_mboxes, }, { .parse_prop = parse_io_channels, }, { .parse_prop = parse_interrupt_parent, }, { .parse_prop = parse_dmas, }, { .parse_prop = parse_power_domains, }, { .parse_prop = parse_hwlocks, }, { .parse_prop = parse_extcon, }, { .parse_prop = parse_phys, }, { .parse_prop = parse_pinctrl0, }, { .parse_prop = parse_pinctrl1, }, { .parse_prop = parse_pinctrl2, }, { .parse_prop = parse_pinctrl3, }, { .parse_prop = parse_regulators, }, { .parse_prop = parse_gpio, }, { .parse_prop = parse_gpios, }, {} }; /** * of_link_property - Create device links to suppliers listed in a property * @dev: Consumer device * @con_np: The consumer device tree node which contains the property * @prop_name: Name of property to be parsed * * This function checks if the property @prop_name that is present in the * @con_np device tree node is one of the known common device tree bindings * that list phandles to suppliers. If @prop_name isn't one, this function * doesn't do anything. * * If @prop_name is one, this function attempts to create device links from the * consumer device @dev to all the devices of the suppliers listed in * @prop_name. * * Any failed attempt to create a device link will NOT result in an immediate * return. of_link_property() must create links to all the available supplier * devices even when attempts to create a link to one or more suppliers fail. */ static int of_link_property(struct device *dev, struct device_node *con_np, const char *prop_name) { struct device_node *phandle; const struct supplier_bindings *s = of_supplier_bindings; unsigned int i = 0; bool matched = false; int ret = 0; u32 dl_flags; if (dev->of_node == con_np) dl_flags = 0; else dl_flags = DL_FLAG_SYNC_STATE_ONLY; /* Do not stop at first failed link, link all available suppliers. */ while (!matched && s->parse_prop) { while ((phandle = s->parse_prop(con_np, prop_name, i))) { matched = true; i++; if (of_link_to_phandle(dev, phandle, dl_flags) == -EAGAIN) ret = -EAGAIN; of_node_put(phandle); } s++; } return ret; } static int of_link_to_suppliers(struct device *dev, struct device_node *con_np) { struct device_node *child; struct property *p; int ret = 0; for_each_property_of_node(con_np, p) if (of_link_property(dev, con_np, p->name)) ret = -ENODEV; for_each_available_child_of_node(con_np, child) if (of_link_to_suppliers(dev, child) && !ret) ret = -EAGAIN; return ret; } static bool of_devlink = true; core_param(of_devlink, of_devlink, bool, 0); static int of_fwnode_add_links(const struct fwnode_handle *fwnode, struct device *dev) { if (!of_devlink) return 0; if (unlikely(!is_of_node(fwnode))) return 0; return of_link_to_suppliers(dev, to_of_node(fwnode)); } const struct fwnode_operations of_fwnode_ops = { .get = of_fwnode_get, .put = of_fwnode_put, .device_is_available = of_fwnode_device_is_available, .device_get_match_data = of_fwnode_device_get_match_data, .property_present = of_fwnode_property_present, .property_read_int_array = of_fwnode_property_read_int_array, .property_read_string_array = of_fwnode_property_read_string_array, .get_parent = of_fwnode_get_parent, .get_next_child_node = of_fwnode_get_next_child_node, .get_named_child_node = of_fwnode_get_named_child_node, .get_reference_args = of_fwnode_get_reference_args, .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, .graph_get_port_parent = of_fwnode_graph_get_port_parent, .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, .add_links = of_fwnode_add_links, }; EXPORT_SYMBOL_GPL(of_fwnode_ops);