/* * cs42l42.c -- CS42L42 ALSA SoC audio driver * * Copyright 2016 Cirrus Logic, Inc. * * Author: James Schulman * Author: Brian Austin * Author: Michael White * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cs42l42.h" static const struct reg_default cs42l42_reg_defaults[] = { { CS42L42_FRZ_CTL, 0x00 }, { CS42L42_SRC_CTL, 0x10 }, { CS42L42_MCLK_STATUS, 0x02 }, { CS42L42_MCLK_CTL, 0x02 }, { CS42L42_SFTRAMP_RATE, 0xA4 }, { CS42L42_I2C_DEBOUNCE, 0x88 }, { CS42L42_I2C_STRETCH, 0x03 }, { CS42L42_I2C_TIMEOUT, 0xB7 }, { CS42L42_PWR_CTL1, 0xFF }, { CS42L42_PWR_CTL2, 0x84 }, { CS42L42_PWR_CTL3, 0x20 }, { CS42L42_RSENSE_CTL1, 0x40 }, { CS42L42_RSENSE_CTL2, 0x00 }, { CS42L42_OSC_SWITCH, 0x00 }, { CS42L42_OSC_SWITCH_STATUS, 0x05 }, { CS42L42_RSENSE_CTL3, 0x1B }, { CS42L42_TSENSE_CTL, 0x1B }, { CS42L42_TSRS_INT_DISABLE, 0x00 }, { CS42L42_TRSENSE_STATUS, 0x00 }, { CS42L42_HSDET_CTL1, 0x77 }, { CS42L42_HSDET_CTL2, 0x00 }, { CS42L42_HS_SWITCH_CTL, 0xF3 }, { CS42L42_HS_DET_STATUS, 0x00 }, { CS42L42_HS_CLAMP_DISABLE, 0x00 }, { CS42L42_MCLK_SRC_SEL, 0x00 }, { CS42L42_SPDIF_CLK_CFG, 0x00 }, { CS42L42_FSYNC_PW_LOWER, 0x00 }, { CS42L42_FSYNC_PW_UPPER, 0x00 }, { CS42L42_FSYNC_P_LOWER, 0xF9 }, { CS42L42_FSYNC_P_UPPER, 0x00 }, { CS42L42_ASP_CLK_CFG, 0x00 }, { CS42L42_ASP_FRM_CFG, 0x10 }, { CS42L42_FS_RATE_EN, 0x00 }, { CS42L42_IN_ASRC_CLK, 0x00 }, { CS42L42_OUT_ASRC_CLK, 0x00 }, { CS42L42_PLL_DIV_CFG1, 0x00 }, { CS42L42_ADC_OVFL_STATUS, 0x00 }, { CS42L42_MIXER_STATUS, 0x00 }, { CS42L42_SRC_STATUS, 0x00 }, { CS42L42_ASP_RX_STATUS, 0x00 }, { CS42L42_ASP_TX_STATUS, 0x00 }, { CS42L42_CODEC_STATUS, 0x00 }, { CS42L42_DET_INT_STATUS1, 0x00 }, { CS42L42_DET_INT_STATUS2, 0x00 }, { CS42L42_SRCPL_INT_STATUS, 0x00 }, { CS42L42_VPMON_STATUS, 0x00 }, { CS42L42_PLL_LOCK_STATUS, 0x00 }, { CS42L42_TSRS_PLUG_STATUS, 0x00 }, { CS42L42_ADC_OVFL_INT_MASK, 0x01 }, { CS42L42_MIXER_INT_MASK, 0x0F }, { CS42L42_SRC_INT_MASK, 0x0F }, { CS42L42_ASP_RX_INT_MASK, 0x1F }, { CS42L42_ASP_TX_INT_MASK, 0x0F }, { CS42L42_CODEC_INT_MASK, 0x03 }, { CS42L42_SRCPL_INT_MASK, 0xFF }, { CS42L42_VPMON_INT_MASK, 0x01 }, { CS42L42_PLL_LOCK_INT_MASK, 0x01 }, { CS42L42_TSRS_PLUG_INT_MASK, 0x0F }, { CS42L42_PLL_CTL1, 0x00 }, { CS42L42_PLL_DIV_FRAC0, 0x00 }, { CS42L42_PLL_DIV_FRAC1, 0x00 }, { CS42L42_PLL_DIV_FRAC2, 0x00 }, { CS42L42_PLL_DIV_INT, 0x40 }, { CS42L42_PLL_CTL3, 0x10 }, { CS42L42_PLL_CAL_RATIO, 0x80 }, { CS42L42_PLL_CTL4, 0x03 }, { CS42L42_LOAD_DET_RCSTAT, 0x00 }, { CS42L42_LOAD_DET_DONE, 0x00 }, { CS42L42_LOAD_DET_EN, 0x00 }, { CS42L42_HSBIAS_SC_AUTOCTL, 0x03 }, { CS42L42_WAKE_CTL, 0xC0 }, { CS42L42_ADC_DISABLE_MUTE, 0x00 }, { CS42L42_TIPSENSE_CTL, 0x02 }, { CS42L42_MISC_DET_CTL, 0x03 }, { CS42L42_MIC_DET_CTL1, 0x1F }, { CS42L42_MIC_DET_CTL2, 0x2F }, { CS42L42_DET_STATUS1, 0x00 }, { CS42L42_DET_STATUS2, 0x00 }, { CS42L42_DET_INT1_MASK, 0xE0 }, { CS42L42_DET_INT2_MASK, 0xFF }, { CS42L42_HS_BIAS_CTL, 0xC2 }, { CS42L42_ADC_CTL, 0x00 }, { CS42L42_ADC_VOLUME, 0x00 }, { CS42L42_ADC_WNF_HPF_CTL, 0x71 }, { CS42L42_DAC_CTL1, 0x00 }, { CS42L42_DAC_CTL2, 0x02 }, { CS42L42_HP_CTL, 0x0D }, { CS42L42_CLASSH_CTL, 0x07 }, { CS42L42_MIXER_CHA_VOL, 0x3F }, { CS42L42_MIXER_ADC_VOL, 0x3F }, { CS42L42_MIXER_CHB_VOL, 0x3F }, { CS42L42_EQ_COEF_IN0, 0x22 }, { CS42L42_EQ_COEF_IN1, 0x00 }, { CS42L42_EQ_COEF_IN2, 0x00 }, { CS42L42_EQ_COEF_IN3, 0x00 }, { CS42L42_EQ_COEF_RW, 0x00 }, { CS42L42_EQ_COEF_OUT0, 0x00 }, { CS42L42_EQ_COEF_OUT1, 0x00 }, { CS42L42_EQ_COEF_OUT2, 0x00 }, { CS42L42_EQ_COEF_OUT3, 0x00 }, { CS42L42_EQ_INIT_STAT, 0x00 }, { CS42L42_EQ_START_FILT, 0x00 }, { CS42L42_EQ_MUTE_CTL, 0x00 }, { CS42L42_SP_RX_CH_SEL, 0x04 }, { CS42L42_SP_RX_ISOC_CTL, 0x04 }, { CS42L42_SP_RX_FS, 0x8C }, { CS42l42_SPDIF_CH_SEL, 0x0E }, { CS42L42_SP_TX_ISOC_CTL, 0x04 }, { CS42L42_SP_TX_FS, 0xCC }, { CS42L42_SPDIF_SW_CTL1, 0x3F }, { CS42L42_SRC_SDIN_FS, 0x40 }, { CS42L42_SRC_SDOUT_FS, 0x40 }, { CS42L42_SPDIF_CTL1, 0x01 }, { CS42L42_SPDIF_CTL2, 0x00 }, { CS42L42_SPDIF_CTL3, 0x00 }, { CS42L42_SPDIF_CTL4, 0x42 }, { CS42L42_ASP_TX_SZ_EN, 0x00 }, { CS42L42_ASP_TX_CH_EN, 0x00 }, { CS42L42_ASP_TX_CH_AP_RES, 0x0F }, { CS42L42_ASP_TX_CH1_BIT_MSB, 0x00 }, { CS42L42_ASP_TX_CH1_BIT_LSB, 0x00 }, { CS42L42_ASP_TX_HIZ_DLY_CFG, 0x00 }, { CS42L42_ASP_TX_CH2_BIT_MSB, 0x00 }, { CS42L42_ASP_TX_CH2_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI0_EN, 0x00 }, { CS42L42_ASP_RX_DAI0_CH1_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI0_CH1_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH1_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH2_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI0_CH2_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH2_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH3_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI0_CH3_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH3_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH4_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI0_CH4_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH4_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI1_CH1_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI1_CH1_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI1_CH1_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI1_CH2_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI1_CH2_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI1_CH2_BIT_LSB, 0x00 }, { CS42L42_SUB_REVID, 0x03 }, }; static bool cs42l42_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS42L42_PAGE_REGISTER: case CS42L42_DEVID_AB: case CS42L42_DEVID_CD: case CS42L42_DEVID_E: case CS42L42_FABID: case CS42L42_REVID: case CS42L42_FRZ_CTL: case CS42L42_SRC_CTL: case CS42L42_MCLK_STATUS: case CS42L42_MCLK_CTL: case CS42L42_SFTRAMP_RATE: case CS42L42_I2C_DEBOUNCE: case CS42L42_I2C_STRETCH: case CS42L42_I2C_TIMEOUT: case CS42L42_PWR_CTL1: case CS42L42_PWR_CTL2: case CS42L42_PWR_CTL3: case CS42L42_RSENSE_CTL1: case CS42L42_RSENSE_CTL2: case CS42L42_OSC_SWITCH: case CS42L42_OSC_SWITCH_STATUS: case CS42L42_RSENSE_CTL3: case CS42L42_TSENSE_CTL: case CS42L42_TSRS_INT_DISABLE: case CS42L42_TRSENSE_STATUS: case CS42L42_HSDET_CTL1: case CS42L42_HSDET_CTL2: case CS42L42_HS_SWITCH_CTL: case CS42L42_HS_DET_STATUS: case CS42L42_HS_CLAMP_DISABLE: case CS42L42_MCLK_SRC_SEL: case CS42L42_SPDIF_CLK_CFG: case CS42L42_FSYNC_PW_LOWER: case CS42L42_FSYNC_PW_UPPER: case CS42L42_FSYNC_P_LOWER: case CS42L42_FSYNC_P_UPPER: case CS42L42_ASP_CLK_CFG: case CS42L42_ASP_FRM_CFG: case CS42L42_FS_RATE_EN: case CS42L42_IN_ASRC_CLK: case CS42L42_OUT_ASRC_CLK: case CS42L42_PLL_DIV_CFG1: case CS42L42_ADC_OVFL_STATUS: case CS42L42_MIXER_STATUS: case CS42L42_SRC_STATUS: case CS42L42_ASP_RX_STATUS: case CS42L42_ASP_TX_STATUS: case CS42L42_CODEC_STATUS: case CS42L42_DET_INT_STATUS1: case CS42L42_DET_INT_STATUS2: case CS42L42_SRCPL_INT_STATUS: case CS42L42_VPMON_STATUS: case CS42L42_PLL_LOCK_STATUS: case CS42L42_TSRS_PLUG_STATUS: case CS42L42_ADC_OVFL_INT_MASK: case CS42L42_MIXER_INT_MASK: case CS42L42_SRC_INT_MASK: case CS42L42_ASP_RX_INT_MASK: case CS42L42_ASP_TX_INT_MASK: case CS42L42_CODEC_INT_MASK: case CS42L42_SRCPL_INT_MASK: case CS42L42_VPMON_INT_MASK: case CS42L42_PLL_LOCK_INT_MASK: case CS42L42_TSRS_PLUG_INT_MASK: case CS42L42_PLL_CTL1: case CS42L42_PLL_DIV_FRAC0: case CS42L42_PLL_DIV_FRAC1: case CS42L42_PLL_DIV_FRAC2: case CS42L42_PLL_DIV_INT: case CS42L42_PLL_CTL3: case CS42L42_PLL_CAL_RATIO: case CS42L42_PLL_CTL4: case CS42L42_LOAD_DET_RCSTAT: case CS42L42_LOAD_DET_DONE: case CS42L42_LOAD_DET_EN: case CS42L42_HSBIAS_SC_AUTOCTL: case CS42L42_WAKE_CTL: case CS42L42_ADC_DISABLE_MUTE: case CS42L42_TIPSENSE_CTL: case CS42L42_MISC_DET_CTL: case CS42L42_MIC_DET_CTL1: case CS42L42_MIC_DET_CTL2: case CS42L42_DET_STATUS1: case CS42L42_DET_STATUS2: case CS42L42_DET_INT1_MASK: case CS42L42_DET_INT2_MASK: case CS42L42_HS_BIAS_CTL: case CS42L42_ADC_CTL: case CS42L42_ADC_VOLUME: case CS42L42_ADC_WNF_HPF_CTL: case CS42L42_DAC_CTL1: case CS42L42_DAC_CTL2: case CS42L42_HP_CTL: case CS42L42_CLASSH_CTL: case CS42L42_MIXER_CHA_VOL: case CS42L42_MIXER_ADC_VOL: case CS42L42_MIXER_CHB_VOL: case CS42L42_EQ_COEF_IN0: case CS42L42_EQ_COEF_IN1: case CS42L42_EQ_COEF_IN2: case CS42L42_EQ_COEF_IN3: case CS42L42_EQ_COEF_RW: case CS42L42_EQ_COEF_OUT0: case CS42L42_EQ_COEF_OUT1: case CS42L42_EQ_COEF_OUT2: case CS42L42_EQ_COEF_OUT3: case CS42L42_EQ_INIT_STAT: case CS42L42_EQ_START_FILT: case CS42L42_EQ_MUTE_CTL: case CS42L42_SP_RX_CH_SEL: case CS42L42_SP_RX_ISOC_CTL: case CS42L42_SP_RX_FS: case CS42l42_SPDIF_CH_SEL: case CS42L42_SP_TX_ISOC_CTL: case CS42L42_SP_TX_FS: case CS42L42_SPDIF_SW_CTL1: case CS42L42_SRC_SDIN_FS: case CS42L42_SRC_SDOUT_FS: case CS42L42_SPDIF_CTL1: case CS42L42_SPDIF_CTL2: case CS42L42_SPDIF_CTL3: case CS42L42_SPDIF_CTL4: case CS42L42_ASP_TX_SZ_EN: case CS42L42_ASP_TX_CH_EN: case CS42L42_ASP_TX_CH_AP_RES: case CS42L42_ASP_TX_CH1_BIT_MSB: case CS42L42_ASP_TX_CH1_BIT_LSB: case CS42L42_ASP_TX_HIZ_DLY_CFG: case CS42L42_ASP_TX_CH2_BIT_MSB: case CS42L42_ASP_TX_CH2_BIT_LSB: case CS42L42_ASP_RX_DAI0_EN: case CS42L42_ASP_RX_DAI0_CH1_AP_RES: case CS42L42_ASP_RX_DAI0_CH1_BIT_MSB: case CS42L42_ASP_RX_DAI0_CH1_BIT_LSB: case CS42L42_ASP_RX_DAI0_CH2_AP_RES: case CS42L42_ASP_RX_DAI0_CH2_BIT_MSB: case CS42L42_ASP_RX_DAI0_CH2_BIT_LSB: case CS42L42_ASP_RX_DAI0_CH3_AP_RES: case CS42L42_ASP_RX_DAI0_CH3_BIT_MSB: case CS42L42_ASP_RX_DAI0_CH3_BIT_LSB: case CS42L42_ASP_RX_DAI0_CH4_AP_RES: case CS42L42_ASP_RX_DAI0_CH4_BIT_MSB: case CS42L42_ASP_RX_DAI0_CH4_BIT_LSB: case CS42L42_ASP_RX_DAI1_CH1_AP_RES: case CS42L42_ASP_RX_DAI1_CH1_BIT_MSB: case CS42L42_ASP_RX_DAI1_CH1_BIT_LSB: case CS42L42_ASP_RX_DAI1_CH2_AP_RES: case CS42L42_ASP_RX_DAI1_CH2_BIT_MSB: case CS42L42_ASP_RX_DAI1_CH2_BIT_LSB: case CS42L42_SUB_REVID: return true; default: return false; } } static bool cs42l42_volatile_register(struct device *dev, unsigned int reg) { switch (reg) { case CS42L42_DEVID_AB: case CS42L42_DEVID_CD: case CS42L42_DEVID_E: case CS42L42_MCLK_STATUS: case CS42L42_TRSENSE_STATUS: case CS42L42_HS_DET_STATUS: case CS42L42_ADC_OVFL_STATUS: case CS42L42_MIXER_STATUS: case CS42L42_SRC_STATUS: case CS42L42_ASP_RX_STATUS: case CS42L42_ASP_TX_STATUS: case CS42L42_CODEC_STATUS: case CS42L42_DET_INT_STATUS1: case CS42L42_DET_INT_STATUS2: case CS42L42_SRCPL_INT_STATUS: case CS42L42_VPMON_STATUS: case CS42L42_PLL_LOCK_STATUS: case CS42L42_TSRS_PLUG_STATUS: case CS42L42_LOAD_DET_RCSTAT: case CS42L42_LOAD_DET_DONE: case CS42L42_DET_STATUS1: case CS42L42_DET_STATUS2: return true; default: return false; } } static const struct regmap_range_cfg cs42l42_page_range = { .name = "Pages", .range_min = 0, .range_max = CS42L42_MAX_REGISTER, .selector_reg = CS42L42_PAGE_REGISTER, .selector_mask = 0xff, .selector_shift = 0, .window_start = 0, .window_len = 256, }; static const struct regmap_config cs42l42_regmap = { .reg_bits = 8, .val_bits = 8, .readable_reg = cs42l42_readable_register, .volatile_reg = cs42l42_volatile_register, .ranges = &cs42l42_page_range, .num_ranges = 1, .max_register = CS42L42_MAX_REGISTER, .reg_defaults = cs42l42_reg_defaults, .num_reg_defaults = ARRAY_SIZE(cs42l42_reg_defaults), .cache_type = REGCACHE_RBTREE, }; static DECLARE_TLV_DB_SCALE(adc_tlv, -9600, 100, false); static DECLARE_TLV_DB_SCALE(mixer_tlv, -6300, 100, true); static const char * const cs42l42_hpf_freq_text[] = { "1.86Hz", "120Hz", "235Hz", "466Hz" }; static SOC_ENUM_SINGLE_DECL(cs42l42_hpf_freq_enum, CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_HPF_CF_SHIFT, cs42l42_hpf_freq_text); static const char * const cs42l42_wnf3_freq_text[] = { "160Hz", "180Hz", "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz" }; static SOC_ENUM_SINGLE_DECL(cs42l42_wnf3_freq_enum, CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_WNF_CF_SHIFT, cs42l42_wnf3_freq_text); static const char * const cs42l42_wnf05_freq_text[] = { "280Hz", "315Hz", "350Hz", "385Hz", "420Hz", "455Hz", "490Hz", "525Hz" }; static SOC_ENUM_SINGLE_DECL(cs42l42_wnf05_freq_enum, CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_WNF_CF_SHIFT, cs42l42_wnf05_freq_text); static const struct snd_kcontrol_new cs42l42_snd_controls[] = { /* ADC Volume and Filter Controls */ SOC_SINGLE("ADC Notch Switch", CS42L42_ADC_CTL, CS42L42_ADC_NOTCH_DIS_SHIFT, true, false), SOC_SINGLE("ADC Weak Force Switch", CS42L42_ADC_CTL, CS42L42_ADC_FORCE_WEAK_VCM_SHIFT, true, false), SOC_SINGLE("ADC Invert Switch", CS42L42_ADC_CTL, CS42L42_ADC_INV_SHIFT, true, false), SOC_SINGLE("ADC Boost Switch", CS42L42_ADC_CTL, CS42L42_ADC_DIG_BOOST_SHIFT, true, false), SOC_SINGLE_SX_TLV("ADC Volume", CS42L42_ADC_VOLUME, CS42L42_ADC_VOL_SHIFT, 0xA0, 0x6C, adc_tlv), SOC_SINGLE("ADC WNF Switch", CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_WNF_EN_SHIFT, true, false), SOC_SINGLE("ADC HPF Switch", CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_HPF_EN_SHIFT, true, false), SOC_ENUM("HPF Corner Freq", cs42l42_hpf_freq_enum), SOC_ENUM("WNF 3dB Freq", cs42l42_wnf3_freq_enum), SOC_ENUM("WNF 05dB Freq", cs42l42_wnf05_freq_enum), /* DAC Volume and Filter Controls */ SOC_SINGLE("DACA Invert Switch", CS42L42_DAC_CTL1, CS42L42_DACA_INV_SHIFT, true, false), SOC_SINGLE("DACB Invert Switch", CS42L42_DAC_CTL1, CS42L42_DACB_INV_SHIFT, true, false), SOC_SINGLE("DAC HPF Switch", CS42L42_DAC_CTL2, CS42L42_DAC_HPF_EN_SHIFT, true, false), SOC_DOUBLE_R_TLV("Mixer Volume", CS42L42_MIXER_CHA_VOL, CS42L42_MIXER_CHB_VOL, CS42L42_MIXER_CH_VOL_SHIFT, 0x3f, 1, mixer_tlv) }; static int cs42l42_hpdrv_evt(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); if (event & SND_SOC_DAPM_POST_PMU) { /* Enable the channels */ snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_EN, CS42L42_ASP_RX0_CH_EN_MASK, (CS42L42_ASP_RX0_CH1_EN | CS42L42_ASP_RX0_CH2_EN) << CS42L42_ASP_RX0_CH_EN_SHIFT); /* Power up */ snd_soc_component_update_bits(component, CS42L42_PWR_CTL1, CS42L42_ASP_DAI_PDN_MASK | CS42L42_MIXER_PDN_MASK | CS42L42_HP_PDN_MASK, 0); } else if (event & SND_SOC_DAPM_PRE_PMD) { /* Disable the channels */ snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_EN, CS42L42_ASP_RX0_CH_EN_MASK, 0); /* Power down */ snd_soc_component_update_bits(component, CS42L42_PWR_CTL1, CS42L42_ASP_DAI_PDN_MASK | CS42L42_MIXER_PDN_MASK | CS42L42_HP_PDN_MASK, CS42L42_ASP_DAI_PDN_MASK | CS42L42_MIXER_PDN_MASK | CS42L42_HP_PDN_MASK); } else { dev_err(component->dev, "Invalid event 0x%x\n", event); } return 0; } static const struct snd_soc_dapm_widget cs42l42_dapm_widgets[] = { SND_SOC_DAPM_OUTPUT("HP"), SND_SOC_DAPM_AIF_IN("SDIN", NULL, 0, CS42L42_ASP_CLK_CFG, CS42L42_ASP_SCLK_EN_SHIFT, false), SND_SOC_DAPM_OUT_DRV_E("HPDRV", SND_SOC_NOPM, 0, 0, NULL, 0, cs42l42_hpdrv_evt, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD) }; static const struct snd_soc_dapm_route cs42l42_audio_map[] = { {"SDIN", NULL, "Playback"}, {"HPDRV", NULL, "SDIN"}, {"HP", NULL, "HPDRV"} }; static int cs42l42_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); int ret; switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { regcache_cache_only(cs42l42->regmap, false); regcache_sync(cs42l42->regmap); ret = regulator_bulk_enable( ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); if (ret != 0) { dev_err(component->dev, "Failed to enable regulators: %d\n", ret); return ret; } } break; case SND_SOC_BIAS_OFF: regcache_cache_only(cs42l42->regmap, true); regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); break; } return 0; } static int cs42l42_component_probe(struct snd_soc_component *component) { struct cs42l42_private *cs42l42 = (struct cs42l42_private *)snd_soc_component_get_drvdata(component); cs42l42->component = component; return 0; } static const struct snd_soc_component_driver soc_component_dev_cs42l42 = { .probe = cs42l42_component_probe, .set_bias_level = cs42l42_set_bias_level, .dapm_widgets = cs42l42_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cs42l42_dapm_widgets), .dapm_routes = cs42l42_audio_map, .num_dapm_routes = ARRAY_SIZE(cs42l42_audio_map), .controls = cs42l42_snd_controls, .num_controls = ARRAY_SIZE(cs42l42_snd_controls), .idle_bias_on = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; struct cs42l42_pll_params { u32 sclk; u8 mclk_div; u8 mclk_src_sel; u8 sclk_prediv; u8 pll_div_int; u32 pll_div_frac; u8 pll_mode; u8 pll_divout; u32 mclk_int; u8 pll_cal_ratio; }; /* * Common PLL Settings for given SCLK * Table 4-5 from the Datasheet */ static const struct cs42l42_pll_params pll_ratio_table[] = { { 1536000, 0, 1, 0x00, 0x7D, 0x000000, 0x03, 0x10, 12000000, 125 }, { 2822400, 0, 1, 0x00, 0x40, 0x000000, 0x03, 0x10, 11289600, 128 }, { 3000000, 0, 1, 0x00, 0x40, 0x000000, 0x03, 0x10, 12000000, 128 }, { 3072000, 0, 1, 0x00, 0x3E, 0x800000, 0x03, 0x10, 12000000, 125 }, { 4000000, 0, 1, 0x00, 0x30, 0x800000, 0x03, 0x10, 12000000, 96 }, { 4096000, 0, 1, 0x00, 0x2E, 0xE00000, 0x03, 0x10, 12000000, 94 }, { 5644800, 0, 1, 0x01, 0x40, 0x000000, 0x03, 0x10, 11289600, 128 }, { 6000000, 0, 1, 0x01, 0x40, 0x000000, 0x03, 0x10, 12000000, 128 }, { 6144000, 0, 1, 0x01, 0x3E, 0x800000, 0x03, 0x10, 12000000, 125 }, { 11289600, 0, 0, 0, 0, 0, 0, 0, 11289600, 0 }, { 12000000, 0, 0, 0, 0, 0, 0, 0, 12000000, 0 }, { 12288000, 0, 0, 0, 0, 0, 0, 0, 12288000, 0 }, { 22579200, 1, 0, 0, 0, 0, 0, 0, 22579200, 0 }, { 24000000, 1, 0, 0, 0, 0, 0, 0, 24000000, 0 }, { 24576000, 1, 0, 0, 0, 0, 0, 0, 24576000, 0 } }; static int cs42l42_pll_config(struct snd_soc_component *component) { struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); int i; u32 fsync; for (i = 0; i < ARRAY_SIZE(pll_ratio_table); i++) { if (pll_ratio_table[i].sclk == cs42l42->sclk) { /* Configure the internal sample rate */ snd_soc_component_update_bits(component, CS42L42_MCLK_CTL, CS42L42_INTERNAL_FS_MASK, ((pll_ratio_table[i].mclk_int != 12000000) && (pll_ratio_table[i].mclk_int != 24000000)) << CS42L42_INTERNAL_FS_SHIFT); /* Set the MCLK src (PLL or SCLK) and the divide * ratio */ snd_soc_component_update_bits(component, CS42L42_MCLK_SRC_SEL, CS42L42_MCLK_SRC_SEL_MASK | CS42L42_MCLKDIV_MASK, (pll_ratio_table[i].mclk_src_sel << CS42L42_MCLK_SRC_SEL_SHIFT) | (pll_ratio_table[i].mclk_div << CS42L42_MCLKDIV_SHIFT)); /* Set up the LRCLK */ fsync = cs42l42->sclk / cs42l42->srate; if (((fsync * cs42l42->srate) != cs42l42->sclk) || ((fsync % 2) != 0)) { dev_err(component->dev, "Unsupported sclk %d/sample rate %d\n", cs42l42->sclk, cs42l42->srate); return -EINVAL; } /* Set the LRCLK period */ snd_soc_component_update_bits(component, CS42L42_FSYNC_P_LOWER, CS42L42_FSYNC_PERIOD_MASK, CS42L42_FRAC0_VAL(fsync - 1) << CS42L42_FSYNC_PERIOD_SHIFT); snd_soc_component_update_bits(component, CS42L42_FSYNC_P_UPPER, CS42L42_FSYNC_PERIOD_MASK, CS42L42_FRAC1_VAL(fsync - 1) << CS42L42_FSYNC_PERIOD_SHIFT); /* Set the LRCLK to 50% duty cycle */ fsync = fsync / 2; snd_soc_component_update_bits(component, CS42L42_FSYNC_PW_LOWER, CS42L42_FSYNC_PULSE_WIDTH_MASK, CS42L42_FRAC0_VAL(fsync - 1) << CS42L42_FSYNC_PULSE_WIDTH_SHIFT); snd_soc_component_update_bits(component, CS42L42_FSYNC_PW_UPPER, CS42L42_FSYNC_PULSE_WIDTH_MASK, CS42L42_FRAC1_VAL(fsync - 1) << CS42L42_FSYNC_PULSE_WIDTH_SHIFT); snd_soc_component_update_bits(component, CS42L42_ASP_FRM_CFG, CS42L42_ASP_5050_MASK, CS42L42_ASP_5050_MASK); /* Set the frame delay to 1.0 SCLK clocks */ snd_soc_component_update_bits(component, CS42L42_ASP_FRM_CFG, CS42L42_ASP_FSD_MASK, CS42L42_ASP_FSD_1_0 << CS42L42_ASP_FSD_SHIFT); /* Set the sample rates (96k or lower) */ snd_soc_component_update_bits(component, CS42L42_FS_RATE_EN, CS42L42_FS_EN_MASK, (CS42L42_FS_EN_IASRC_96K | CS42L42_FS_EN_OASRC_96K) << CS42L42_FS_EN_SHIFT); /* Set the input/output internal MCLK clock ~12 MHz */ snd_soc_component_update_bits(component, CS42L42_IN_ASRC_CLK, CS42L42_CLK_IASRC_SEL_MASK, CS42L42_CLK_IASRC_SEL_12 << CS42L42_CLK_IASRC_SEL_SHIFT); snd_soc_component_update_bits(component, CS42L42_OUT_ASRC_CLK, CS42L42_CLK_OASRC_SEL_MASK, CS42L42_CLK_OASRC_SEL_12 << CS42L42_CLK_OASRC_SEL_SHIFT); if (pll_ratio_table[i].mclk_src_sel == 0) { /* Pass the clock straight through */ snd_soc_component_update_bits(component, CS42L42_PLL_CTL1, CS42L42_PLL_START_MASK, 0); } else { /* Configure PLL per table 4-5 */ snd_soc_component_update_bits(component, CS42L42_PLL_DIV_CFG1, CS42L42_SCLK_PREDIV_MASK, pll_ratio_table[i].sclk_prediv << CS42L42_SCLK_PREDIV_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_DIV_INT, CS42L42_PLL_DIV_INT_MASK, pll_ratio_table[i].pll_div_int << CS42L42_PLL_DIV_INT_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_DIV_FRAC0, CS42L42_PLL_DIV_FRAC_MASK, CS42L42_FRAC0_VAL( pll_ratio_table[i].pll_div_frac) << CS42L42_PLL_DIV_FRAC_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_DIV_FRAC1, CS42L42_PLL_DIV_FRAC_MASK, CS42L42_FRAC1_VAL( pll_ratio_table[i].pll_div_frac) << CS42L42_PLL_DIV_FRAC_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_DIV_FRAC2, CS42L42_PLL_DIV_FRAC_MASK, CS42L42_FRAC2_VAL( pll_ratio_table[i].pll_div_frac) << CS42L42_PLL_DIV_FRAC_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_CTL4, CS42L42_PLL_MODE_MASK, pll_ratio_table[i].pll_mode << CS42L42_PLL_MODE_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_CTL3, CS42L42_PLL_DIVOUT_MASK, pll_ratio_table[i].pll_divout << CS42L42_PLL_DIVOUT_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_CAL_RATIO, CS42L42_PLL_CAL_RATIO_MASK, pll_ratio_table[i].pll_cal_ratio << CS42L42_PLL_CAL_RATIO_SHIFT); } return 0; } } return -EINVAL; } static int cs42l42_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; u32 asp_cfg_val = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFM: asp_cfg_val |= CS42L42_ASP_MASTER_MODE << CS42L42_ASP_MODE_SHIFT; break; case SND_SOC_DAIFMT_CBS_CFS: asp_cfg_val |= CS42L42_ASP_SLAVE_MODE << CS42L42_ASP_MODE_SHIFT; break; default: return -EINVAL; } /* interface format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_LEFT_J: break; default: return -EINVAL; } /* Bitclock/frame inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: asp_cfg_val |= CS42L42_ASP_SCPOL_NOR << CS42L42_ASP_SCPOL_SHIFT; break; case SND_SOC_DAIFMT_NB_IF: asp_cfg_val |= CS42L42_ASP_SCPOL_NOR << CS42L42_ASP_SCPOL_SHIFT; asp_cfg_val |= CS42L42_ASP_LCPOL_INV << CS42L42_ASP_LCPOL_SHIFT; break; case SND_SOC_DAIFMT_IB_NF: break; case SND_SOC_DAIFMT_IB_IF: asp_cfg_val |= CS42L42_ASP_LCPOL_INV << CS42L42_ASP_LCPOL_SHIFT; break; } snd_soc_component_update_bits(component, CS42L42_ASP_CLK_CFG, CS42L42_ASP_MODE_MASK | CS42L42_ASP_SCPOL_MASK | CS42L42_ASP_LCPOL_MASK, asp_cfg_val); return 0; } static int cs42l42_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); unsigned int width = (params_width(params) / 8) - 1; unsigned int val = 0; cs42l42->srate = params_rate(params); switch(substream->stream) { case SNDRV_PCM_STREAM_PLAYBACK: val |= width << CS42L42_ASP_RX_CH_RES_SHIFT; /* channel 1 on low LRCLK */ snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_CH1_AP_RES, CS42L42_ASP_RX_CH_AP_MASK | CS42L42_ASP_RX_CH_RES_MASK, val); /* Channel 2 on high LRCLK */ val |= CS42L42_ASP_RX_CH_AP_HI << CS42L42_ASP_RX_CH_AP_SHIFT; snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_CH2_AP_RES, CS42L42_ASP_RX_CH_AP_MASK | CS42L42_ASP_RX_CH_RES_MASK, val); break; default: break; } return cs42l42_pll_config(component); } static int cs42l42_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = dai->component; struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); cs42l42->sclk = freq; return 0; } static int cs42l42_digital_mute(struct snd_soc_dai *dai, int mute) { struct snd_soc_component *component = dai->component; unsigned int regval; u8 fullScaleVol; if (mute) { /* Mark SCLK as not present to turn on the internal * oscillator. */ snd_soc_component_update_bits(component, CS42L42_OSC_SWITCH, CS42L42_SCLK_PRESENT_MASK, 0); snd_soc_component_update_bits(component, CS42L42_PLL_CTL1, CS42L42_PLL_START_MASK, 0 << CS42L42_PLL_START_SHIFT); /* Mute the headphone */ snd_soc_component_update_bits(component, CS42L42_HP_CTL, CS42L42_HP_ANA_AMUTE_MASK | CS42L42_HP_ANA_BMUTE_MASK, CS42L42_HP_ANA_AMUTE_MASK | CS42L42_HP_ANA_BMUTE_MASK); } else { snd_soc_component_update_bits(component, CS42L42_PLL_CTL1, CS42L42_PLL_START_MASK, 1 << CS42L42_PLL_START_SHIFT); /* Read the headphone load */ regval = snd_soc_component_read32(component, CS42L42_LOAD_DET_RCSTAT); if (((regval & CS42L42_RLA_STAT_MASK) >> CS42L42_RLA_STAT_SHIFT) == CS42L42_RLA_STAT_15_OHM) { fullScaleVol = CS42L42_HP_FULL_SCALE_VOL_MASK; } else { fullScaleVol = 0; } /* Un-mute the headphone, set the full scale volume flag */ snd_soc_component_update_bits(component, CS42L42_HP_CTL, CS42L42_HP_ANA_AMUTE_MASK | CS42L42_HP_ANA_BMUTE_MASK | CS42L42_HP_FULL_SCALE_VOL_MASK, fullScaleVol); /* Mark SCLK as present, turn off internal oscillator */ snd_soc_component_update_bits(component, CS42L42_OSC_SWITCH, CS42L42_SCLK_PRESENT_MASK, CS42L42_SCLK_PRESENT_MASK); } return 0; } #define CS42L42_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S24_LE |\ SNDRV_PCM_FMTBIT_S32_LE ) static const struct snd_soc_dai_ops cs42l42_ops = { .hw_params = cs42l42_pcm_hw_params, .set_fmt = cs42l42_set_dai_fmt, .set_sysclk = cs42l42_set_sysclk, .digital_mute = cs42l42_digital_mute }; static struct snd_soc_dai_driver cs42l42_dai = { .name = "cs42l42", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_192000, .formats = CS42L42_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_192000, .formats = CS42L42_FORMATS, }, .ops = &cs42l42_ops, }; static void cs42l42_process_hs_type_detect(struct cs42l42_private *cs42l42) { unsigned int hs_det_status; unsigned int int_status; /* Mask the auto detect interrupt */ regmap_update_bits(cs42l42->regmap, CS42L42_CODEC_INT_MASK, CS42L42_PDN_DONE_MASK | CS42L42_HSDET_AUTO_DONE_MASK, (1 << CS42L42_PDN_DONE_SHIFT) | (1 << CS42L42_HSDET_AUTO_DONE_SHIFT)); /* Set hs detect to automatic, disabled mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (2 << CS42L42_HSDET_CTRL_SHIFT) | (2 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (3 << CS42L42_HSDET_AUTO_TIME_SHIFT)); /* Read and save the hs detection result */ regmap_read(cs42l42->regmap, CS42L42_HS_DET_STATUS, &hs_det_status); cs42l42->hs_type = (hs_det_status & CS42L42_HSDET_TYPE_MASK) >> CS42L42_HSDET_TYPE_SHIFT; /* Set up button detection */ if ((cs42l42->hs_type == CS42L42_PLUG_CTIA) || (cs42l42->hs_type == CS42L42_PLUG_OMTP)) { /* Set auto HS bias settings to default */ regmap_update_bits(cs42l42->regmap, CS42L42_HSBIAS_SC_AUTOCTL, CS42L42_HSBIAS_SENSE_EN_MASK | CS42L42_AUTO_HSBIAS_HIZ_MASK | CS42L42_TIP_SENSE_EN_MASK | CS42L42_HSBIAS_SENSE_TRIP_MASK, (0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) | (0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) | (0 << CS42L42_TIP_SENSE_EN_SHIFT) | (3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT)); /* Set up hs detect level sensitivity */ regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_LATCH_TO_VP_MASK | CS42L42_EVENT_STAT_SEL_MASK | CS42L42_HS_DET_LEVEL_MASK, (1 << CS42L42_LATCH_TO_VP_SHIFT) | (0 << CS42L42_EVENT_STAT_SEL_SHIFT) | (cs42l42->bias_thresholds[0] << CS42L42_HS_DET_LEVEL_SHIFT)); /* Set auto HS bias settings to default */ regmap_update_bits(cs42l42->regmap, CS42L42_HSBIAS_SC_AUTOCTL, CS42L42_HSBIAS_SENSE_EN_MASK | CS42L42_AUTO_HSBIAS_HIZ_MASK | CS42L42_TIP_SENSE_EN_MASK | CS42L42_HSBIAS_SENSE_TRIP_MASK, (1 << CS42L42_HSBIAS_SENSE_EN_SHIFT) | (1 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) | (0 << CS42L42_TIP_SENSE_EN_SHIFT) | (3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT)); /* Turn on level detect circuitry */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_DETECT_MODE_MASK | CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (0 << CS42L42_DETECT_MODE_SHIFT) | (3 << CS42L42_HSBIAS_CTL_SHIFT) | (0 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); msleep(cs42l42->btn_det_init_dbnce); /* Clear any button interrupts before unmasking them */ regmap_read(cs42l42->regmap, CS42L42_DET_INT_STATUS2, &int_status); /* Unmask button detect interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (0 << CS42L42_M_DETECT_TF_SHIFT) | (0 << CS42L42_M_DETECT_FT_SHIFT) | (0 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); } else { /* Make sure button detect and HS bias circuits are off */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_DETECT_MODE_MASK | CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (0 << CS42L42_DETECT_MODE_SHIFT) | (1 << CS42L42_HSBIAS_CTL_SHIFT) | (1 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); } regmap_update_bits(cs42l42->regmap, CS42L42_DAC_CTL2, CS42L42_HPOUT_PULLDOWN_MASK | CS42L42_HPOUT_LOAD_MASK | CS42L42_HPOUT_CLAMP_MASK | CS42L42_DAC_HPF_EN_MASK | CS42L42_DAC_MON_EN_MASK, (0 << CS42L42_HPOUT_PULLDOWN_SHIFT) | (0 << CS42L42_HPOUT_LOAD_SHIFT) | (0 << CS42L42_HPOUT_CLAMP_SHIFT) | (1 << CS42L42_DAC_HPF_EN_SHIFT) | (0 << CS42L42_DAC_MON_EN_SHIFT)); /* Unmask tip sense interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, CS42L42_RS_PLUG_MASK | CS42L42_RS_UNPLUG_MASK | CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK, (1 << CS42L42_RS_PLUG_SHIFT) | (1 << CS42L42_RS_UNPLUG_SHIFT) | (0 << CS42L42_TS_PLUG_SHIFT) | (0 << CS42L42_TS_UNPLUG_SHIFT)); } static void cs42l42_init_hs_type_detect(struct cs42l42_private *cs42l42) { /* Mask tip sense interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, CS42L42_RS_PLUG_MASK | CS42L42_RS_UNPLUG_MASK | CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK, (1 << CS42L42_RS_PLUG_SHIFT) | (1 << CS42L42_RS_UNPLUG_SHIFT) | (1 << CS42L42_TS_PLUG_SHIFT) | (1 << CS42L42_TS_UNPLUG_SHIFT)); /* Make sure button detect and HS bias circuits are off */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_DETECT_MODE_MASK | CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (0 << CS42L42_DETECT_MODE_SHIFT) | (1 << CS42L42_HSBIAS_CTL_SHIFT) | (1 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); /* Set auto HS bias settings to default */ regmap_update_bits(cs42l42->regmap, CS42L42_HSBIAS_SC_AUTOCTL, CS42L42_HSBIAS_SENSE_EN_MASK | CS42L42_AUTO_HSBIAS_HIZ_MASK | CS42L42_TIP_SENSE_EN_MASK | CS42L42_HSBIAS_SENSE_TRIP_MASK, (0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) | (0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) | (0 << CS42L42_TIP_SENSE_EN_SHIFT) | (3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT)); /* Set hs detect to manual, disabled mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (0 << CS42L42_HSDET_CTRL_SHIFT) | (2 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (3 << CS42L42_HSDET_AUTO_TIME_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_DAC_CTL2, CS42L42_HPOUT_PULLDOWN_MASK | CS42L42_HPOUT_LOAD_MASK | CS42L42_HPOUT_CLAMP_MASK | CS42L42_DAC_HPF_EN_MASK | CS42L42_DAC_MON_EN_MASK, (8 << CS42L42_HPOUT_PULLDOWN_SHIFT) | (0 << CS42L42_HPOUT_LOAD_SHIFT) | (1 << CS42L42_HPOUT_CLAMP_SHIFT) | (1 << CS42L42_DAC_HPF_EN_SHIFT) | (1 << CS42L42_DAC_MON_EN_SHIFT)); /* Power up HS bias to 2.7V */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_DETECT_MODE_MASK | CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (0 << CS42L42_DETECT_MODE_SHIFT) | (3 << CS42L42_HSBIAS_CTL_SHIFT) | (1 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); /* Wait for HS bias to ramp up */ msleep(cs42l42->hs_bias_ramp_time); /* Unmask auto detect interrupt */ regmap_update_bits(cs42l42->regmap, CS42L42_CODEC_INT_MASK, CS42L42_PDN_DONE_MASK | CS42L42_HSDET_AUTO_DONE_MASK, (1 << CS42L42_PDN_DONE_SHIFT) | (0 << CS42L42_HSDET_AUTO_DONE_SHIFT)); /* Set hs detect to automatic, enabled mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (3 << CS42L42_HSDET_CTRL_SHIFT) | (2 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (3 << CS42L42_HSDET_AUTO_TIME_SHIFT)); } static void cs42l42_cancel_hs_type_detect(struct cs42l42_private *cs42l42) { /* Mask button detect interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (1 << CS42L42_M_DETECT_TF_SHIFT) | (1 << CS42L42_M_DETECT_FT_SHIFT) | (1 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); /* Ground HS bias */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_DETECT_MODE_MASK | CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (0 << CS42L42_DETECT_MODE_SHIFT) | (1 << CS42L42_HSBIAS_CTL_SHIFT) | (1 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); /* Set auto HS bias settings to default */ regmap_update_bits(cs42l42->regmap, CS42L42_HSBIAS_SC_AUTOCTL, CS42L42_HSBIAS_SENSE_EN_MASK | CS42L42_AUTO_HSBIAS_HIZ_MASK | CS42L42_TIP_SENSE_EN_MASK | CS42L42_HSBIAS_SENSE_TRIP_MASK, (0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) | (0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) | (0 << CS42L42_TIP_SENSE_EN_SHIFT) | (3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT)); /* Set hs detect to manual, disabled mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (0 << CS42L42_HSDET_CTRL_SHIFT) | (2 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (3 << CS42L42_HSDET_AUTO_TIME_SHIFT)); } static void cs42l42_handle_button_press(struct cs42l42_private *cs42l42) { int bias_level; unsigned int detect_status; /* Mask button detect interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (1 << CS42L42_M_DETECT_TF_SHIFT) | (1 << CS42L42_M_DETECT_FT_SHIFT) | (1 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); usleep_range(cs42l42->btn_det_event_dbnce * 1000, cs42l42->btn_det_event_dbnce * 2000); /* Test all 4 level detect biases */ bias_level = 1; do { /* Adjust button detect level sensitivity */ regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_LATCH_TO_VP_MASK | CS42L42_EVENT_STAT_SEL_MASK | CS42L42_HS_DET_LEVEL_MASK, (1 << CS42L42_LATCH_TO_VP_SHIFT) | (0 << CS42L42_EVENT_STAT_SEL_SHIFT) | (cs42l42->bias_thresholds[bias_level] << CS42L42_HS_DET_LEVEL_SHIFT)); regmap_read(cs42l42->regmap, CS42L42_DET_STATUS2, &detect_status); } while ((detect_status & CS42L42_HS_TRUE_MASK) && (++bias_level < CS42L42_NUM_BIASES)); switch (bias_level) { case 1: /* Function C button press */ dev_dbg(cs42l42->component->dev, "Function C button press\n"); break; case 2: /* Function B button press */ dev_dbg(cs42l42->component->dev, "Function B button press\n"); break; case 3: /* Function D button press */ dev_dbg(cs42l42->component->dev, "Function D button press\n"); break; case 4: /* Function A button press */ dev_dbg(cs42l42->component->dev, "Function A button press\n"); break; } /* Set button detect level sensitivity back to default */ regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_LATCH_TO_VP_MASK | CS42L42_EVENT_STAT_SEL_MASK | CS42L42_HS_DET_LEVEL_MASK, (1 << CS42L42_LATCH_TO_VP_SHIFT) | (0 << CS42L42_EVENT_STAT_SEL_SHIFT) | (cs42l42->bias_thresholds[0] << CS42L42_HS_DET_LEVEL_SHIFT)); /* Clear any button interrupts before unmasking them */ regmap_read(cs42l42->regmap, CS42L42_DET_INT_STATUS2, &detect_status); /* Unmask button detect interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (0 << CS42L42_M_DETECT_TF_SHIFT) | (0 << CS42L42_M_DETECT_FT_SHIFT) | (0 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); } struct cs42l42_irq_params { u16 status_addr; u16 mask_addr; u8 mask; }; static const struct cs42l42_irq_params irq_params_table[] = { {CS42L42_ADC_OVFL_STATUS, CS42L42_ADC_OVFL_INT_MASK, CS42L42_ADC_OVFL_VAL_MASK}, {CS42L42_MIXER_STATUS, CS42L42_MIXER_INT_MASK, CS42L42_MIXER_VAL_MASK}, {CS42L42_SRC_STATUS, CS42L42_SRC_INT_MASK, CS42L42_SRC_VAL_MASK}, {CS42L42_ASP_RX_STATUS, CS42L42_ASP_RX_INT_MASK, CS42L42_ASP_RX_VAL_MASK}, {CS42L42_ASP_TX_STATUS, CS42L42_ASP_TX_INT_MASK, CS42L42_ASP_TX_VAL_MASK}, {CS42L42_CODEC_STATUS, CS42L42_CODEC_INT_MASK, CS42L42_CODEC_VAL_MASK}, {CS42L42_DET_INT_STATUS1, CS42L42_DET_INT1_MASK, CS42L42_DET_INT_VAL1_MASK}, {CS42L42_DET_INT_STATUS2, CS42L42_DET_INT2_MASK, CS42L42_DET_INT_VAL2_MASK}, {CS42L42_SRCPL_INT_STATUS, CS42L42_SRCPL_INT_MASK, CS42L42_SRCPL_VAL_MASK}, {CS42L42_VPMON_STATUS, CS42L42_VPMON_INT_MASK, CS42L42_VPMON_VAL_MASK}, {CS42L42_PLL_LOCK_STATUS, CS42L42_PLL_LOCK_INT_MASK, CS42L42_PLL_LOCK_VAL_MASK}, {CS42L42_TSRS_PLUG_STATUS, CS42L42_TSRS_PLUG_INT_MASK, CS42L42_TSRS_PLUG_VAL_MASK} }; static irqreturn_t cs42l42_irq_thread(int irq, void *data) { struct cs42l42_private *cs42l42 = (struct cs42l42_private *)data; struct snd_soc_component *component = cs42l42->component; unsigned int stickies[12]; unsigned int masks[12]; unsigned int current_plug_status; unsigned int current_button_status; unsigned int i; /* Read sticky registers to clear interurpt */ for (i = 0; i < ARRAY_SIZE(stickies); i++) { regmap_read(cs42l42->regmap, irq_params_table[i].status_addr, &(stickies[i])); regmap_read(cs42l42->regmap, irq_params_table[i].mask_addr, &(masks[i])); stickies[i] = stickies[i] & (~masks[i]) & irq_params_table[i].mask; } /* Read tip sense status before handling type detect */ current_plug_status = (stickies[11] & (CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK)) >> CS42L42_TS_PLUG_SHIFT; /* Read button sense status */ current_button_status = stickies[7] & (CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK); /* Check auto-detect status */ if ((~masks[5]) & irq_params_table[5].mask) { if (stickies[5] & CS42L42_HSDET_AUTO_DONE_MASK) { cs42l42_process_hs_type_detect(cs42l42); dev_dbg(component->dev, "Auto detect done (%d)\n", cs42l42->hs_type); } } /* Check tip sense status */ if ((~masks[11]) & irq_params_table[11].mask) { switch (current_plug_status) { case CS42L42_TS_PLUG: if (cs42l42->plug_state != CS42L42_TS_PLUG) { cs42l42->plug_state = CS42L42_TS_PLUG; cs42l42_init_hs_type_detect(cs42l42); } break; case CS42L42_TS_UNPLUG: if (cs42l42->plug_state != CS42L42_TS_UNPLUG) { cs42l42->plug_state = CS42L42_TS_UNPLUG; cs42l42_cancel_hs_type_detect(cs42l42); dev_dbg(component->dev, "Unplug event\n"); } break; default: if (cs42l42->plug_state != CS42L42_TS_TRANS) cs42l42->plug_state = CS42L42_TS_TRANS; } } /* Check button detect status */ if ((~masks[7]) & irq_params_table[7].mask) { if (!(current_button_status & CS42L42_M_HSBIAS_HIZ_MASK)) { if (current_button_status & CS42L42_M_DETECT_TF_MASK) { dev_dbg(component->dev, "Button released\n"); } else if (current_button_status & CS42L42_M_DETECT_FT_MASK) { cs42l42_handle_button_press(cs42l42); } } } return IRQ_HANDLED; } static void cs42l42_set_interrupt_masks(struct cs42l42_private *cs42l42) { regmap_update_bits(cs42l42->regmap, CS42L42_ADC_OVFL_INT_MASK, CS42L42_ADC_OVFL_MASK, (1 << CS42L42_ADC_OVFL_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_MIXER_INT_MASK, CS42L42_MIX_CHB_OVFL_MASK | CS42L42_MIX_CHA_OVFL_MASK | CS42L42_EQ_OVFL_MASK | CS42L42_EQ_BIQUAD_OVFL_MASK, (1 << CS42L42_MIX_CHB_OVFL_SHIFT) | (1 << CS42L42_MIX_CHA_OVFL_SHIFT) | (1 << CS42L42_EQ_OVFL_SHIFT) | (1 << CS42L42_EQ_BIQUAD_OVFL_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_SRC_INT_MASK, CS42L42_SRC_ILK_MASK | CS42L42_SRC_OLK_MASK | CS42L42_SRC_IUNLK_MASK | CS42L42_SRC_OUNLK_MASK, (1 << CS42L42_SRC_ILK_SHIFT) | (1 << CS42L42_SRC_OLK_SHIFT) | (1 << CS42L42_SRC_IUNLK_SHIFT) | (1 << CS42L42_SRC_OUNLK_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_ASP_RX_INT_MASK, CS42L42_ASPRX_NOLRCK_MASK | CS42L42_ASPRX_EARLY_MASK | CS42L42_ASPRX_LATE_MASK | CS42L42_ASPRX_ERROR_MASK | CS42L42_ASPRX_OVLD_MASK, (1 << CS42L42_ASPRX_NOLRCK_SHIFT) | (1 << CS42L42_ASPRX_EARLY_SHIFT) | (1 << CS42L42_ASPRX_LATE_SHIFT) | (1 << CS42L42_ASPRX_ERROR_SHIFT) | (1 << CS42L42_ASPRX_OVLD_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_ASP_TX_INT_MASK, CS42L42_ASPTX_NOLRCK_MASK | CS42L42_ASPTX_EARLY_MASK | CS42L42_ASPTX_LATE_MASK | CS42L42_ASPTX_SMERROR_MASK, (1 << CS42L42_ASPTX_NOLRCK_SHIFT) | (1 << CS42L42_ASPTX_EARLY_SHIFT) | (1 << CS42L42_ASPTX_LATE_SHIFT) | (1 << CS42L42_ASPTX_SMERROR_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_CODEC_INT_MASK, CS42L42_PDN_DONE_MASK | CS42L42_HSDET_AUTO_DONE_MASK, (1 << CS42L42_PDN_DONE_SHIFT) | (1 << CS42L42_HSDET_AUTO_DONE_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_SRCPL_INT_MASK, CS42L42_SRCPL_ADC_LK_MASK | CS42L42_SRCPL_DAC_LK_MASK | CS42L42_SRCPL_ADC_UNLK_MASK | CS42L42_SRCPL_DAC_UNLK_MASK, (1 << CS42L42_SRCPL_ADC_LK_SHIFT) | (1 << CS42L42_SRCPL_DAC_LK_SHIFT) | (1 << CS42L42_SRCPL_ADC_UNLK_SHIFT) | (1 << CS42L42_SRCPL_DAC_UNLK_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT1_MASK, CS42L42_TIP_SENSE_UNPLUG_MASK | CS42L42_TIP_SENSE_PLUG_MASK | CS42L42_HSBIAS_SENSE_MASK, (1 << CS42L42_TIP_SENSE_UNPLUG_SHIFT) | (1 << CS42L42_TIP_SENSE_PLUG_SHIFT) | (1 << CS42L42_HSBIAS_SENSE_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (1 << CS42L42_M_DETECT_TF_SHIFT) | (1 << CS42L42_M_DETECT_FT_SHIFT) | (1 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_VPMON_INT_MASK, CS42L42_VPMON_MASK, (1 << CS42L42_VPMON_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_PLL_LOCK_INT_MASK, CS42L42_PLL_LOCK_MASK, (1 << CS42L42_PLL_LOCK_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, CS42L42_RS_PLUG_MASK | CS42L42_RS_UNPLUG_MASK | CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK, (1 << CS42L42_RS_PLUG_SHIFT) | (1 << CS42L42_RS_UNPLUG_SHIFT) | (0 << CS42L42_TS_PLUG_SHIFT) | (0 << CS42L42_TS_UNPLUG_SHIFT)); } static void cs42l42_setup_hs_type_detect(struct cs42l42_private *cs42l42) { unsigned int reg; cs42l42->hs_type = CS42L42_PLUG_INVALID; /* Latch analog controls to VP power domain */ regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_LATCH_TO_VP_MASK | CS42L42_EVENT_STAT_SEL_MASK | CS42L42_HS_DET_LEVEL_MASK, (1 << CS42L42_LATCH_TO_VP_SHIFT) | (0 << CS42L42_EVENT_STAT_SEL_SHIFT) | (cs42l42->bias_thresholds[0] << CS42L42_HS_DET_LEVEL_SHIFT)); /* Remove ground noise-suppression clamps */ regmap_update_bits(cs42l42->regmap, CS42L42_HS_CLAMP_DISABLE, CS42L42_HS_CLAMP_DISABLE_MASK, (1 << CS42L42_HS_CLAMP_DISABLE_SHIFT)); /* Enable the tip sense circuit */ regmap_update_bits(cs42l42->regmap, CS42L42_TIPSENSE_CTL, CS42L42_TIP_SENSE_CTRL_MASK | CS42L42_TIP_SENSE_INV_MASK | CS42L42_TIP_SENSE_DEBOUNCE_MASK, (3 << CS42L42_TIP_SENSE_CTRL_SHIFT) | (0 << CS42L42_TIP_SENSE_INV_SHIFT) | (2 << CS42L42_TIP_SENSE_DEBOUNCE_SHIFT)); /* Save the initial status of the tip sense */ regmap_read(cs42l42->regmap, CS42L42_TSRS_PLUG_STATUS, ®); cs42l42->plug_state = (((char) reg) & (CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK)) >> CS42L42_TS_PLUG_SHIFT; } static const unsigned int threshold_defaults[] = { CS42L42_HS_DET_LEVEL_15, CS42L42_HS_DET_LEVEL_8, CS42L42_HS_DET_LEVEL_4, CS42L42_HS_DET_LEVEL_1 }; static int cs42l42_handle_device_data(struct i2c_client *i2c_client, struct cs42l42_private *cs42l42) { struct device_node *np = i2c_client->dev.of_node; unsigned int val; unsigned int thresholds[CS42L42_NUM_BIASES]; int ret; int i; ret = of_property_read_u32(np, "cirrus,ts-inv", &val); if (!ret) { switch (val) { case CS42L42_TS_INV_EN: case CS42L42_TS_INV_DIS: cs42l42->ts_inv = val; break; default: dev_err(&i2c_client->dev, "Wrong cirrus,ts-inv DT value %d\n", val); cs42l42->ts_inv = CS42L42_TS_INV_DIS; } } else { cs42l42->ts_inv = CS42L42_TS_INV_DIS; } regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL, CS42L42_TS_INV_MASK, (cs42l42->ts_inv << CS42L42_TS_INV_SHIFT)); ret = of_property_read_u32(np, "cirrus,ts-dbnc-rise", &val); if (!ret) { switch (val) { case CS42L42_TS_DBNCE_0: case CS42L42_TS_DBNCE_125: case CS42L42_TS_DBNCE_250: case CS42L42_TS_DBNCE_500: case CS42L42_TS_DBNCE_750: case CS42L42_TS_DBNCE_1000: case CS42L42_TS_DBNCE_1250: case CS42L42_TS_DBNCE_1500: cs42l42->ts_dbnc_rise = val; break; default: dev_err(&i2c_client->dev, "Wrong cirrus,ts-dbnc-rise DT value %d\n", val); cs42l42->ts_dbnc_rise = CS42L42_TS_DBNCE_1000; } } else { cs42l42->ts_dbnc_rise = CS42L42_TS_DBNCE_1000; } regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL, CS42L42_TS_RISE_DBNCE_TIME_MASK, (cs42l42->ts_dbnc_rise << CS42L42_TS_RISE_DBNCE_TIME_SHIFT)); ret = of_property_read_u32(np, "cirrus,ts-dbnc-fall", &val); if (!ret) { switch (val) { case CS42L42_TS_DBNCE_0: case CS42L42_TS_DBNCE_125: case CS42L42_TS_DBNCE_250: case CS42L42_TS_DBNCE_500: case CS42L42_TS_DBNCE_750: case CS42L42_TS_DBNCE_1000: case CS42L42_TS_DBNCE_1250: case CS42L42_TS_DBNCE_1500: cs42l42->ts_dbnc_fall = val; break; default: dev_err(&i2c_client->dev, "Wrong cirrus,ts-dbnc-fall DT value %d\n", val); cs42l42->ts_dbnc_fall = CS42L42_TS_DBNCE_0; } } else { cs42l42->ts_dbnc_fall = CS42L42_TS_DBNCE_0; } regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL, CS42L42_TS_FALL_DBNCE_TIME_MASK, (cs42l42->ts_dbnc_fall << CS42L42_TS_FALL_DBNCE_TIME_SHIFT)); ret = of_property_read_u32(np, "cirrus,btn-det-init-dbnce", &val); if (!ret) { if ((val >= CS42L42_BTN_DET_INIT_DBNCE_MIN) && (val <= CS42L42_BTN_DET_INIT_DBNCE_MAX)) cs42l42->btn_det_init_dbnce = val; else { dev_err(&i2c_client->dev, "Wrong cirrus,btn-det-init-dbnce DT value %d\n", val); cs42l42->btn_det_init_dbnce = CS42L42_BTN_DET_INIT_DBNCE_DEFAULT; } } else { cs42l42->btn_det_init_dbnce = CS42L42_BTN_DET_INIT_DBNCE_DEFAULT; } ret = of_property_read_u32(np, "cirrus,btn-det-event-dbnce", &val); if (!ret) { if ((val >= CS42L42_BTN_DET_EVENT_DBNCE_MIN) && (val <= CS42L42_BTN_DET_EVENT_DBNCE_MAX)) cs42l42->btn_det_event_dbnce = val; else { dev_err(&i2c_client->dev, "Wrong cirrus,btn-det-event-dbnce DT value %d\n", val); cs42l42->btn_det_event_dbnce = CS42L42_BTN_DET_EVENT_DBNCE_DEFAULT; } } else { cs42l42->btn_det_event_dbnce = CS42L42_BTN_DET_EVENT_DBNCE_DEFAULT; } ret = of_property_read_u32_array(np, "cirrus,bias-lvls", (u32 *)thresholds, CS42L42_NUM_BIASES); if (!ret) { for (i = 0; i < CS42L42_NUM_BIASES; i++) { if ((thresholds[i] >= CS42L42_HS_DET_LEVEL_MIN) && (thresholds[i] <= CS42L42_HS_DET_LEVEL_MAX)) cs42l42->bias_thresholds[i] = thresholds[i]; else { dev_err(&i2c_client->dev, "Wrong cirrus,bias-lvls[%d] DT value %d\n", i, thresholds[i]); cs42l42->bias_thresholds[i] = threshold_defaults[i]; } } } else { for (i = 0; i < CS42L42_NUM_BIASES; i++) cs42l42->bias_thresholds[i] = threshold_defaults[i]; } ret = of_property_read_u32(np, "cirrus,hs-bias-ramp-rate", &val); if (!ret) { switch (val) { case CS42L42_HSBIAS_RAMP_FAST_RISE_SLOW_FALL: cs42l42->hs_bias_ramp_rate = val; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME0; break; case CS42L42_HSBIAS_RAMP_FAST: cs42l42->hs_bias_ramp_rate = val; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME1; break; case CS42L42_HSBIAS_RAMP_SLOW: cs42l42->hs_bias_ramp_rate = val; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2; break; case CS42L42_HSBIAS_RAMP_SLOWEST: cs42l42->hs_bias_ramp_rate = val; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME3; break; default: dev_err(&i2c_client->dev, "Wrong cirrus,hs-bias-ramp-rate DT value %d\n", val); cs42l42->hs_bias_ramp_rate = CS42L42_HSBIAS_RAMP_SLOW; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2; } } else { cs42l42->hs_bias_ramp_rate = CS42L42_HSBIAS_RAMP_SLOW; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2; } regmap_update_bits(cs42l42->regmap, CS42L42_HS_BIAS_CTL, CS42L42_HSBIAS_RAMP_MASK, (cs42l42->hs_bias_ramp_rate << CS42L42_HSBIAS_RAMP_SHIFT)); return 0; } static int cs42l42_i2c_probe(struct i2c_client *i2c_client, const struct i2c_device_id *id) { struct cs42l42_private *cs42l42; int ret, i; unsigned int devid = 0; unsigned int reg; cs42l42 = devm_kzalloc(&i2c_client->dev, sizeof(struct cs42l42_private), GFP_KERNEL); if (!cs42l42) return -ENOMEM; i2c_set_clientdata(i2c_client, cs42l42); cs42l42->regmap = devm_regmap_init_i2c(i2c_client, &cs42l42_regmap); if (IS_ERR(cs42l42->regmap)) { ret = PTR_ERR(cs42l42->regmap); dev_err(&i2c_client->dev, "regmap_init() failed: %d\n", ret); return ret; } for (i = 0; i < ARRAY_SIZE(cs42l42->supplies); i++) cs42l42->supplies[i].supply = cs42l42_supply_names[i]; ret = devm_regulator_bulk_get(&i2c_client->dev, ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); if (ret != 0) { dev_err(&i2c_client->dev, "Failed to request supplies: %d\n", ret); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); if (ret != 0) { dev_err(&i2c_client->dev, "Failed to enable supplies: %d\n", ret); return ret; } /* Reset the Device */ cs42l42->reset_gpio = devm_gpiod_get_optional(&i2c_client->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(cs42l42->reset_gpio)) return PTR_ERR(cs42l42->reset_gpio); if (cs42l42->reset_gpio) { dev_dbg(&i2c_client->dev, "Found reset GPIO\n"); gpiod_set_value_cansleep(cs42l42->reset_gpio, 1); } usleep_range(CS42L42_BOOT_TIME_US, CS42L42_BOOT_TIME_US * 2); /* Request IRQ */ ret = devm_request_threaded_irq(&i2c_client->dev, i2c_client->irq, NULL, cs42l42_irq_thread, IRQF_ONESHOT | IRQF_TRIGGER_LOW, "cs42l42", cs42l42); if (ret != 0) dev_err(&i2c_client->dev, "Failed to request IRQ: %d\n", ret); /* initialize codec */ ret = regmap_read(cs42l42->regmap, CS42L42_DEVID_AB, ®); devid = (reg & 0xFF) << 12; ret = regmap_read(cs42l42->regmap, CS42L42_DEVID_CD, ®); devid |= (reg & 0xFF) << 4; ret = regmap_read(cs42l42->regmap, CS42L42_DEVID_E, ®); devid |= (reg & 0xF0) >> 4; if (devid != CS42L42_CHIP_ID) { ret = -ENODEV; dev_err(&i2c_client->dev, "CS42L42 Device ID (%X). Expected %X\n", devid, CS42L42_CHIP_ID); return ret; } ret = regmap_read(cs42l42->regmap, CS42L42_REVID, ®); if (ret < 0) { dev_err(&i2c_client->dev, "Get Revision ID failed\n"); return ret; } dev_info(&i2c_client->dev, "Cirrus Logic CS42L42, Revision: %02X\n", reg & 0xFF); /* Power up the codec */ regmap_update_bits(cs42l42->regmap, CS42L42_PWR_CTL1, CS42L42_ASP_DAO_PDN_MASK | CS42L42_ASP_DAI_PDN_MASK | CS42L42_MIXER_PDN_MASK | CS42L42_EQ_PDN_MASK | CS42L42_HP_PDN_MASK | CS42L42_ADC_PDN_MASK | CS42L42_PDN_ALL_MASK, (1 << CS42L42_ASP_DAO_PDN_SHIFT) | (1 << CS42L42_ASP_DAI_PDN_SHIFT) | (1 << CS42L42_MIXER_PDN_SHIFT) | (1 << CS42L42_EQ_PDN_SHIFT) | (1 << CS42L42_HP_PDN_SHIFT) | (1 << CS42L42_ADC_PDN_SHIFT) | (0 << CS42L42_PDN_ALL_SHIFT)); if (i2c_client->dev.of_node) { ret = cs42l42_handle_device_data(i2c_client, cs42l42); if (ret != 0) return ret; } /* Setup headset detection */ cs42l42_setup_hs_type_detect(cs42l42); /* Mask/Unmask Interrupts */ cs42l42_set_interrupt_masks(cs42l42); /* Register codec for machine driver */ ret = devm_snd_soc_register_component(&i2c_client->dev, &soc_component_dev_cs42l42, &cs42l42_dai, 1); if (ret < 0) goto err_disable; return 0; err_disable: regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); return ret; } static int cs42l42_i2c_remove(struct i2c_client *i2c_client) { struct cs42l42_private *cs42l42 = i2c_get_clientdata(i2c_client); /* Hold down reset */ gpiod_set_value_cansleep(cs42l42->reset_gpio, 0); return 0; } #ifdef CONFIG_PM static int cs42l42_runtime_suspend(struct device *dev) { struct cs42l42_private *cs42l42 = dev_get_drvdata(dev); regcache_cache_only(cs42l42->regmap, true); regcache_mark_dirty(cs42l42->regmap); /* Hold down reset */ gpiod_set_value_cansleep(cs42l42->reset_gpio, 0); /* remove power */ regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); return 0; } static int cs42l42_runtime_resume(struct device *dev) { struct cs42l42_private *cs42l42 = dev_get_drvdata(dev); int ret; /* Enable power */ ret = regulator_bulk_enable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); if (ret != 0) { dev_err(dev, "Failed to enable supplies: %d\n", ret); return ret; } gpiod_set_value_cansleep(cs42l42->reset_gpio, 1); usleep_range(CS42L42_BOOT_TIME_US, CS42L42_BOOT_TIME_US * 2); regcache_cache_only(cs42l42->regmap, false); regcache_sync(cs42l42->regmap); return 0; } #endif static const struct dev_pm_ops cs42l42_runtime_pm = { SET_RUNTIME_PM_OPS(cs42l42_runtime_suspend, cs42l42_runtime_resume, NULL) }; static const struct of_device_id cs42l42_of_match[] = { { .compatible = "cirrus,cs42l42", }, {}, }; MODULE_DEVICE_TABLE(of, cs42l42_of_match); static const struct i2c_device_id cs42l42_id[] = { {"cs42l42", 0}, {} }; MODULE_DEVICE_TABLE(i2c, cs42l42_id); static struct i2c_driver cs42l42_i2c_driver = { .driver = { .name = "cs42l42", .pm = &cs42l42_runtime_pm, .of_match_table = cs42l42_of_match, }, .id_table = cs42l42_id, .probe = cs42l42_i2c_probe, .remove = cs42l42_i2c_remove, }; module_i2c_driver(cs42l42_i2c_driver); MODULE_DESCRIPTION("ASoC CS42L42 driver"); MODULE_AUTHOR("James Schulman, Cirrus Logic Inc, "); MODULE_AUTHOR("Brian Austin, Cirrus Logic Inc, "); MODULE_AUTHOR("Michael White, Cirrus Logic Inc, "); MODULE_LICENSE("GPL");