// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ /** * DOC: The Keyslot Manager * * Many devices with inline encryption support have a limited number of "slots" * into which encryption contexts may be programmed, and requests can be tagged * with a slot number to specify the key to use for en/decryption. * * As the number of slots are limited, and programming keys is expensive on * many inline encryption hardware, we don't want to program the same key into * multiple slots - if multiple requests are using the same key, we want to * program just one slot with that key and use that slot for all requests. * * The keyslot manager manages these keyslots appropriately, and also acts as * an abstraction between the inline encryption hardware and the upper layers. * * Lower layer devices will set up a keyslot manager in their request queue * and tell it how to perform device specific operations like programming/ * evicting keys from keyslots. * * Upper layers will call keyslot_manager_get_slot_for_key() to program a * key into some slot in the inline encryption hardware. */ #include #include #include #include #include #include #include struct keyslot { atomic_t slot_refs; struct list_head idle_slot_node; struct hlist_node hash_node; struct blk_crypto_key key; }; struct keyslot_manager { unsigned int num_slots; struct keyslot_mgmt_ll_ops ksm_ll_ops; unsigned int features; unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX]; unsigned int max_dun_bytes_supported; void *ll_priv_data; #ifdef CONFIG_PM /* Device for runtime power management (NULL if none) */ struct device *dev; #endif /* Protects programming and evicting keys from the device */ struct rw_semaphore lock; /* * Above rw_semaphore maybe nested when used a dm stack layer * which is with inline encryption */ unsigned int lock_flags; /* List of idle slots, with least recently used slot at front */ wait_queue_head_t idle_slots_wait_queue; struct list_head idle_slots; spinlock_t idle_slots_lock; /* * Hash table which maps key hashes to keyslots, so that we can find a * key's keyslot in O(1) time rather than O(num_slots). Protected by * 'lock'. A cryptographic hash function is used so that timing attacks * can't leak information about the raw keys. */ struct hlist_head *slot_hashtable; unsigned int slot_hashtable_size; /* Per-keyslot data */ struct keyslot slots[]; }; static inline bool keyslot_manager_is_passthrough(struct keyslot_manager *ksm) { return ksm->num_slots == 0; } #ifdef CONFIG_PM static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm, struct device *dev) { ksm->dev = dev; } /* If there's an underlying device and it's suspended, resume it. */ static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm) { if (ksm->dev) pm_runtime_get_sync(ksm->dev); } static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm) { if (ksm->dev) pm_runtime_put_sync(ksm->dev); } #else /* CONFIG_PM */ static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm, struct device *dev) { } static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm) { } static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm) { } #endif /* !CONFIG_PM */ static inline void keyslot_manager_hw_enter(struct keyslot_manager *ksm) { /* * Calling into the driver requires ksm->lock held and the device * resumed. But we must resume the device first, since that can acquire * and release ksm->lock via keyslot_manager_reprogram_all_keys(). */ keyslot_manager_pm_get(ksm); if (!ksm->lock_flags) down_write(&ksm->lock); else down_write_nested(&ksm->lock, ksm->lock_flags); } static inline void keyslot_manager_hw_exit(struct keyslot_manager *ksm) { up_write(&ksm->lock); keyslot_manager_pm_put(ksm); } /** * keyslot_manager_create() - Create a keyslot manager * @dev: Device for runtime power management (NULL if none) * @num_slots: The number of key slots to manage. * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot * manager will use to perform operations like programming and * evicting keys. * @features: The supported features as a bitmask of BLK_CRYPTO_FEATURE_* flags. * Most drivers should set BLK_CRYPTO_FEATURE_STANDARD_KEYS here. * @crypto_mode_supported: Array of size BLK_ENCRYPTION_MODE_MAX of * bitmasks that represents whether a crypto mode * and data unit size are supported. The i'th bit * of crypto_mode_supported[crypto_mode] is set iff * a data unit size of (1 << i) is supported. We * only support data unit sizes that are powers of * 2. * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops. * * Allocate memory for and initialize a keyslot manager. Called by e.g. * storage drivers to set up a keyslot manager in their request_queue. * * Context: May sleep * Return: Pointer to constructed keyslot manager or NULL on error. */ struct keyslot_manager *keyslot_manager_create( struct device *dev, unsigned int num_slots, const struct keyslot_mgmt_ll_ops *ksm_ll_ops, unsigned int features, const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX], void *ll_priv_data) { struct keyslot_manager *ksm; unsigned int slot; unsigned int i; if (num_slots == 0) return NULL; /* Check that all ops are specified */ if (ksm_ll_ops->keyslot_program == NULL || ksm_ll_ops->keyslot_evict == NULL) return NULL; ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL); if (!ksm) return NULL; ksm->num_slots = num_slots; ksm->ksm_ll_ops = *ksm_ll_ops; ksm->features = features; memcpy(ksm->crypto_mode_supported, crypto_mode_supported, sizeof(ksm->crypto_mode_supported)); ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; ksm->ll_priv_data = ll_priv_data; keyslot_manager_set_dev(ksm, dev); init_rwsem(&ksm->lock); init_waitqueue_head(&ksm->idle_slots_wait_queue); INIT_LIST_HEAD(&ksm->idle_slots); for (slot = 0; slot < num_slots; slot++) { list_add_tail(&ksm->slots[slot].idle_slot_node, &ksm->idle_slots); } spin_lock_init(&ksm->idle_slots_lock); ksm->slot_hashtable_size = roundup_pow_of_two(num_slots); ksm->slot_hashtable = kvmalloc_array(ksm->slot_hashtable_size, sizeof(ksm->slot_hashtable[0]), GFP_KERNEL); if (!ksm->slot_hashtable) goto err_free_ksm; for (i = 0; i < ksm->slot_hashtable_size; i++) INIT_HLIST_HEAD(&ksm->slot_hashtable[i]); return ksm; err_free_ksm: keyslot_manager_destroy(ksm); return NULL; } EXPORT_SYMBOL_GPL(keyslot_manager_create); void keyslot_manager_set_max_dun_bytes(struct keyslot_manager *ksm, unsigned int max_dun_bytes) { ksm->max_dun_bytes_supported = max_dun_bytes; } EXPORT_SYMBOL_GPL(keyslot_manager_set_max_dun_bytes); static inline struct hlist_head * hash_bucket_for_key(struct keyslot_manager *ksm, const struct blk_crypto_key *key) { return &ksm->slot_hashtable[blk_crypto_key_hash(key) & (ksm->slot_hashtable_size - 1)]; } static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot) { unsigned long flags; spin_lock_irqsave(&ksm->idle_slots_lock, flags); list_del(&ksm->slots[slot].idle_slot_node); spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); } static int find_keyslot(struct keyslot_manager *ksm, const struct blk_crypto_key *key) { const struct hlist_head *head = hash_bucket_for_key(ksm, key); const struct keyslot *slotp; hlist_for_each_entry(slotp, head, hash_node) { if (slotp->key.hash == key->hash && slotp->key.crypto_mode == key->crypto_mode && slotp->key.size == key->size && slotp->key.data_unit_size == key->data_unit_size && !crypto_memneq(slotp->key.raw, key->raw, key->size)) return slotp - ksm->slots; } return -ENOKEY; } static int find_and_grab_keyslot(struct keyslot_manager *ksm, const struct blk_crypto_key *key) { int slot; slot = find_keyslot(ksm, key); if (slot < 0) return slot; if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) { /* Took first reference to this slot; remove it from LRU list */ remove_slot_from_lru_list(ksm, slot); } return slot; } /** * keyslot_manager_get_slot_for_key() - Program a key into a keyslot. * @ksm: The keyslot manager to program the key into. * @key: Pointer to the key object to program, including the raw key, crypto * mode, and data unit size. * * Get a keyslot that's been programmed with the specified key. If one already * exists, return it with incremented refcount. Otherwise, wait for a keyslot * to become idle and program it. * * Context: Process context. Takes and releases ksm->lock. * Return: The keyslot on success, else a -errno value. */ int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm, const struct blk_crypto_key *key) { int slot; int err; struct keyslot *idle_slot; if (keyslot_manager_is_passthrough(ksm)) return 0; down_read(&ksm->lock); slot = find_and_grab_keyslot(ksm, key); up_read(&ksm->lock); if (slot != -ENOKEY) return slot; for (;;) { keyslot_manager_hw_enter(ksm); slot = find_and_grab_keyslot(ksm, key); if (slot != -ENOKEY) { keyslot_manager_hw_exit(ksm); return slot; } /* * If we're here, that means there wasn't a slot that was * already programmed with the key. So try to program it. */ if (!list_empty(&ksm->idle_slots)) break; keyslot_manager_hw_exit(ksm); wait_event(ksm->idle_slots_wait_queue, !list_empty(&ksm->idle_slots)); } idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot, idle_slot_node); slot = idle_slot - ksm->slots; err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot); if (err) { wake_up(&ksm->idle_slots_wait_queue); keyslot_manager_hw_exit(ksm); return err; } /* Move this slot to the hash list for the new key. */ if (idle_slot->key.crypto_mode != BLK_ENCRYPTION_MODE_INVALID) hlist_del(&idle_slot->hash_node); hlist_add_head(&idle_slot->hash_node, hash_bucket_for_key(ksm, key)); atomic_set(&idle_slot->slot_refs, 1); idle_slot->key = *key; remove_slot_from_lru_list(ksm, slot); keyslot_manager_hw_exit(ksm); return slot; } /** * keyslot_manager_get_slot() - Increment the refcount on the specified slot. * @ksm: The keyslot manager that we want to modify. * @slot: The slot to increment the refcount of. * * This function assumes that there is already an active reference to that slot * and simply increments the refcount. This is useful when cloning a bio that * already has a reference to a keyslot, and we want the cloned bio to also have * its own reference. * * Context: Any context. */ void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot) { if (keyslot_manager_is_passthrough(ksm)) return; if (WARN_ON(slot >= ksm->num_slots)) return; WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2); } /** * keyslot_manager_put_slot() - Release a reference to a slot * @ksm: The keyslot manager to release the reference from. * @slot: The slot to release the reference from. * * Context: Any context. */ void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot) { unsigned long flags; if (keyslot_manager_is_passthrough(ksm)) return; if (WARN_ON(slot >= ksm->num_slots)) return; if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs, &ksm->idle_slots_lock, flags)) { list_add_tail(&ksm->slots[slot].idle_slot_node, &ksm->idle_slots); spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); wake_up(&ksm->idle_slots_wait_queue); } } /** * keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode / * data unit size / is_hw_wrapped_key * combination is supported by a ksm. * @ksm: The keyslot manager to check * @crypto_mode: The crypto mode to check for. * @dun_bytes: The number of bytes that will be used to specify the DUN * @data_unit_size: The data_unit_size for the mode. * @is_hw_wrapped_key: Whether a hardware-wrapped key will be used. * * Calls and returns the result of the crypto_mode_supported function specified * by the ksm. * * Context: Process context. * Return: Whether or not this ksm supports the specified crypto settings. */ bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm, enum blk_crypto_mode_num crypto_mode, unsigned int dun_bytes, unsigned int data_unit_size, bool is_hw_wrapped_key) { if (!ksm) return false; if (WARN_ON(crypto_mode >= BLK_ENCRYPTION_MODE_MAX)) return false; if (WARN_ON(!is_power_of_2(data_unit_size))) return false; if (is_hw_wrapped_key) { if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS)) return false; } else { if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS)) return false; } if (!(ksm->crypto_mode_supported[crypto_mode] & data_unit_size)) return false; return ksm->max_dun_bytes_supported >= dun_bytes; } /** * keyslot_manager_evict_key() - Evict a key from the lower layer device. * @ksm: The keyslot manager to evict from * @key: The key to evict * * Find the keyslot that the specified key was programmed into, and evict that * slot from the lower layer device if that slot is not currently in use. * * Context: Process context. Takes and releases ksm->lock. * Return: 0 on success, -EBUSY if the key is still in use, or another * -errno value on other error. */ int keyslot_manager_evict_key(struct keyslot_manager *ksm, const struct blk_crypto_key *key) { int slot; int err; struct keyslot *slotp; if (keyslot_manager_is_passthrough(ksm)) { if (ksm->ksm_ll_ops.keyslot_evict) { keyslot_manager_hw_enter(ksm); err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1); keyslot_manager_hw_exit(ksm); return err; } return 0; } keyslot_manager_hw_enter(ksm); slot = find_keyslot(ksm, key); if (slot < 0) { err = slot; goto out_unlock; } slotp = &ksm->slots[slot]; if (atomic_read(&slotp->slot_refs) != 0) { err = -EBUSY; goto out_unlock; } err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, slot); if (err) goto out_unlock; hlist_del(&slotp->hash_node); memzero_explicit(&slotp->key, sizeof(slotp->key)); err = 0; out_unlock: keyslot_manager_hw_exit(ksm); return err; } /** * keyslot_manager_reprogram_all_keys() - Re-program all keyslots. * @ksm: The keyslot manager * * Re-program all keyslots that are supposed to have a key programmed. This is * intended only for use by drivers for hardware that loses its keys on reset. * * Context: Process context. Takes and releases ksm->lock. */ void keyslot_manager_reprogram_all_keys(struct keyslot_manager *ksm) { unsigned int slot; if (WARN_ON(keyslot_manager_is_passthrough(ksm))) return; /* This is for device initialization, so don't resume the device */ down_write(&ksm->lock); for (slot = 0; slot < ksm->num_slots; slot++) { const struct keyslot *slotp = &ksm->slots[slot]; int err; if (slotp->key.crypto_mode == BLK_ENCRYPTION_MODE_INVALID) continue; err = ksm->ksm_ll_ops.keyslot_program(ksm, &slotp->key, slot); WARN_ON(err); } up_write(&ksm->lock); } EXPORT_SYMBOL_GPL(keyslot_manager_reprogram_all_keys); /** * keyslot_manager_private() - return the private data stored with ksm * @ksm: The keyslot manager * * Returns the private data passed to the ksm when it was created. */ void *keyslot_manager_private(struct keyslot_manager *ksm) { return ksm->ll_priv_data; } EXPORT_SYMBOL_GPL(keyslot_manager_private); void keyslot_manager_destroy(struct keyslot_manager *ksm) { if (ksm) { kvfree(ksm->slot_hashtable); memzero_explicit(ksm, struct_size(ksm, slots, ksm->num_slots)); kvfree(ksm); } } EXPORT_SYMBOL_GPL(keyslot_manager_destroy); /** * keyslot_manager_create_passthrough() - Create a passthrough keyslot manager * @dev: Device for runtime power management (NULL if none) * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops * @features: Bitmask of BLK_CRYPTO_FEATURE_* flags * @crypto_mode_supported: Bitmasks for supported encryption modes * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops. * * Allocate memory for and initialize a passthrough keyslot manager. * Called by e.g. storage drivers to set up a keyslot manager in their * request_queue, when the storage driver wants to manage its keys by itself. * This is useful for inline encryption hardware that don't have a small fixed * number of keyslots, and for layered devices. * * See keyslot_manager_create() for more details about the parameters. * * Context: This function may sleep * Return: Pointer to constructed keyslot manager or NULL on error. */ struct keyslot_manager *keyslot_manager_create_passthrough( struct device *dev, const struct keyslot_mgmt_ll_ops *ksm_ll_ops, unsigned int features, const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX], void *ll_priv_data) { struct keyslot_manager *ksm; ksm = kzalloc(sizeof(*ksm), GFP_KERNEL); if (!ksm) return NULL; ksm->ksm_ll_ops = *ksm_ll_ops; ksm->features = features; memcpy(ksm->crypto_mode_supported, crypto_mode_supported, sizeof(ksm->crypto_mode_supported)); ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; ksm->ll_priv_data = ll_priv_data; keyslot_manager_set_dev(ksm, dev); init_rwsem(&ksm->lock); return ksm; } EXPORT_SYMBOL_GPL(keyslot_manager_create_passthrough); /** * keyslot_manager_intersect_modes() - restrict supported modes by child device * @parent: The keyslot manager for parent device * @child: The keyslot manager for child device, or NULL * * Clear any crypto mode support bits in @parent that aren't set in @child. * If @child is NULL, then all parent bits are cleared. * * Only use this when setting up the keyslot manager for a layered device, * before it's been exposed yet. */ void keyslot_manager_intersect_modes(struct keyslot_manager *parent, const struct keyslot_manager *child) { if (child) { unsigned int i; parent->features &= child->features; parent->max_dun_bytes_supported = min(parent->max_dun_bytes_supported, child->max_dun_bytes_supported); for (i = 0; i < ARRAY_SIZE(child->crypto_mode_supported); i++) { parent->crypto_mode_supported[i] &= child->crypto_mode_supported[i]; } } else { parent->features = 0; parent->max_dun_bytes_supported = 0; memset(parent->crypto_mode_supported, 0, sizeof(parent->crypto_mode_supported)); } } EXPORT_SYMBOL_GPL(keyslot_manager_intersect_modes); /** * keyslot_manager_derive_raw_secret() - Derive software secret from wrapped key * @ksm: The keyslot manager * @wrapped_key: The wrapped key * @wrapped_key_size: Size of the wrapped key in bytes * @secret: (output) the software secret * @secret_size: (output) the number of secret bytes to derive * * Given a hardware-wrapped key, ask the hardware to derive a secret which * software can use for cryptographic tasks other than inline encryption. The * derived secret is guaranteed to be cryptographically isolated from the key * with which any inline encryption with this wrapped key would actually be * done. I.e., both will be derived from the unwrapped key. * * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported, * or another -errno code. */ int keyslot_manager_derive_raw_secret(struct keyslot_manager *ksm, const u8 *wrapped_key, unsigned int wrapped_key_size, u8 *secret, unsigned int secret_size) { int err; if (ksm->ksm_ll_ops.derive_raw_secret) { keyslot_manager_hw_enter(ksm); err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key, wrapped_key_size, secret, secret_size); keyslot_manager_hw_exit(ksm); } else { err = -EOPNOTSUPP; } return err; } EXPORT_SYMBOL_GPL(keyslot_manager_derive_raw_secret); /** * ksm_lock() - set one-depth nesting of lock class * @flags: now, it's only support one depth * * Some scenarios ksm->lock will be nest such as DM stack layer, * although DM's is different with lower device driver's ksm->lock, * lockdep recognizes them as a same one, then will trigger deadlock * detection, set another lock sub-class could avoid it. * */ inline void ksm_flock(struct keyslot_manager *ksm, unsigned int flags) { ksm->lock_flags = flags; } EXPORT_SYMBOL_GPL(ksm_flock);