// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 MediaTek Inc. */ #include #include #include #include #include /* #include */ #include "musb_core.h" #include "musbhsdma.h" #ifdef CONFIG_OF /* extern void __iomem *USB_BASE; */ #endif #ifdef CONFIG_MTK_MUSB_DRV_36BIT #define USB_DMACNTL_ADDR36_EN (1 << 14) #define USB_DMACNT_COUNT_MASK (0xffffff) #define USB_DMACNT_HADDR_OFFSET (24) #define USB_DMACNT_HADDR_MASK (0xf) static u32 dma_extract_count(u32 count) { return (count & USB_DMACNT_COUNT_MASK); } static dma_addr_t dma_append_high_addr( dma_addr_t addr, void __iomem *mbase, u8 bchannel) { u64 hbit; hbit = musb_read_hsdma_count(mbase, bchannel); hbit = hbit >> USB_DMACNT_HADDR_OFFSET; addr = addr | (hbit << 32); return addr; } #endif static int dma_controller_start(struct dma_controller *c) { /* nothing to do */ return 0; } static void dma_channel_release(struct dma_channel *channel); static int dma_controller_stop(struct dma_controller *c) { struct musb_dma_controller *controller = container_of(c, struct musb_dma_controller, controller); struct musb *musb = controller->private_data; struct dma_channel *channel; u8 bit; if (controller->used_channels != 0) { dev_notice(musb->controller, "Stopping DMA controller while channel active\n"); for (bit = 0; bit < MUSB_HSDMA_CHANNELS; bit++) { if (controller->used_channels & (1 << bit)) { channel = &controller->channel[bit].channel; dma_channel_release(channel); if (!controller->used_channels) break; } } } return 0; } static struct dma_channel *dma_channel_allocate(struct dma_controller *c, struct musb_hw_ep *hw_ep, u8 transmit) { struct musb_dma_controller *controller = container_of(c, struct musb_dma_controller, controller); struct musb *musb = controller->private_data; struct musb_dma_channel *musb_channel = NULL; struct dma_channel *channel = NULL; u8 bit; #ifdef CONFIG_MTK_MUSB_QMU_SUPPORT /* reserve dma channel 0 for QMU */ for (bit = 1; bit < MUSB_HSDMA_CHANNELS; bit++) { #else for (bit = 0; bit < MUSB_HSDMA_CHANNELS; bit++) { #endif if (!(controller->used_channels & (1 << bit))) { controller->used_channels |= (1 << bit); musb_channel = &(controller->channel[bit]); musb_channel->controller = controller; musb_channel->idx = bit; if (musb->is_host) { musb_channel->epnum = hw_ep->epnum; } else { if (transmit) { /* dma irq will use * this member to get the hw ep. */ musb_channel->epnum = hw_ep->ep_in.current_epnum; } else /* after mapping, * hw ep num eques to the current num */ musb_channel->epnum = hw_ep->ep_out.current_epnum; } musb_channel->transmit = transmit; channel = &(musb_channel->channel); channel->private_data = musb_channel; channel->status = MUSB_DMA_STATUS_FREE; channel->max_len = 0x100000; /* Tx => mode 1; Rx => mode 0 */ channel->desired_mode = transmit; channel->actual_len = 0; break; } } return channel; } static void dma_channel_release(struct dma_channel *channel) { struct musb_dma_channel *musb_channel = channel->private_data; u8 bchannel = musb_channel->idx; void __iomem *mbase = musb_channel->controller->base; musb_writew(mbase, MUSB_HSDMA_CHANNEL_OFFSET(bchannel, MUSB_HSDMA_CONTROL), 0); channel->actual_len = 0; musb_channel->start_addr = 0; musb_channel->len = 0; musb_channel->controller->used_channels &= ~(1 << musb_channel->idx); channel->status = MUSB_DMA_STATUS_UNKNOWN; } static void configure_channel(struct dma_channel *channel, u16 packet_sz, u8 mode, dma_addr_t dma_addr, u32 len) { struct musb_dma_channel *musb_channel = channel->private_data; struct musb_dma_controller *controller = musb_channel->controller; void __iomem *mbase = controller->base; u8 bchannel = musb_channel->idx; u16 csr = 0; DBG(4, "%p, pkt_sz %d, addr 0x%x, len %d, mode %d\n", channel, packet_sz, (unsigned int)dma_addr, len, mode); if (mode) { csr |= 1 << MUSB_HSDMA_MODE1_SHIFT; if (len < packet_sz) { DBG(0, "%s:%d Error Here\n", __func__, __LINE__); return; } } csr |= MUSB_HSDMA_BURSTMODE_INCR16 << MUSB_HSDMA_BURSTMODE_SHIFT; csr |= (musb_channel->epnum << MUSB_HSDMA_ENDPOINT_SHIFT) | (1 << MUSB_HSDMA_ENABLE_SHIFT) | (1 << MUSB_HSDMA_IRQENABLE_SHIFT) | (musb_channel->transmit ? (1 << MUSB_HSDMA_TRANSMIT_SHIFT) : 0); #ifdef CONFIG_MTK_MUSB_DRV_36BIT { u32 val; /* enable 36-bit support */ csr |= USB_DMACNTL_ADDR36_EN; /* low address */ musb_write_hsdma_addr(mbase, bchannel, dma_addr & 0xFFFFFFFF); /* count */ val = len & USB_DMACNT_COUNT_MASK; /* high address */ val |= (((dma_addr >> 32) & USB_DMACNT_HADDR_MASK) << USB_DMACNT_HADDR_OFFSET); musb_write_hsdma_count(mbase, bchannel, val); } #else /* address/count */ musb_write_hsdma_addr(mbase, bchannel, dma_addr); musb_write_hsdma_count(mbase, bchannel, len); #endif /* control (this should start things) */ musb_writew(mbase, MUSB_HSDMA_CHANNEL_OFFSET(bchannel, MUSB_HSDMA_CONTROL), csr); DBG(5, "MUSB:DMA channel %d control reg is %x\n", bchannel, musb_readw(mbase, MUSB_HSDMA_CHANNEL_OFFSET(bchannel, MUSB_HSDMA_CONTROL))); } static int dma_channel_program(struct dma_channel *channel, u16 packet_sz, u8 mode, dma_addr_t dma_addr, u32 len) { struct musb_dma_channel *musb_channel = channel->private_data; struct musb_dma_controller *controller = musb_channel->controller; struct musb *musb = controller->private_data; DBG(2, "ep%d-%s pkt_sz %d, dma_addr 0x%x length %d, mode %d\n", musb_channel->epnum, musb_channel->transmit ? "Tx" : "Rx", packet_sz, (unsigned int)dma_addr, len, mode); if (channel->status == MUSB_DMA_STATUS_UNKNOWN || channel->status == MUSB_DMA_STATUS_BUSY) { DBG(0, "%s:%d Error Here\n", __func__, __LINE__); return -1; } /* Let targets check/tweak the arguments */ if (musb->ops->adjust_channel_params) { int ret = musb->ops->adjust_channel_params(channel, packet_sz, &mode, &dma_addr, &len); if (ret) return ret; } #ifdef NEVER /* * The DMA engine in RTL1.8 and above cannot handle * DMA addresses that are not aligned to a 4 byte boundary. * It ends up masking the last two bits of the address * programmed in DMA_ADDR. * * Fail such DMA transfers, so that the backup PIO mode * can carry out the transfer */ if ((musb->hwvers >= MUSB_HWVERS_1800) && (dma_addr % 4)) return false; #endif channel->actual_len = 0; musb_channel->start_addr = dma_addr; musb_channel->len = len; musb_channel->max_packet_sz = packet_sz; channel->status = MUSB_DMA_STATUS_BUSY; configure_channel(channel, packet_sz, mode, dma_addr, len); return true; } static int dma_channel_abort(struct dma_channel *channel) { struct musb_dma_channel *musb_channel = channel->private_data; void __iomem *mbase = musb_channel->controller->base; u8 bchannel = musb_channel->idx; int offset; u16 csr; if (channel->status == MUSB_DMA_STATUS_BUSY) { if (musb_channel->transmit) { offset = MUSB_EP_OFFSET(musb_channel->epnum, MUSB_TXCSR); /* * The programming guide says that we must clear * the DMAENAB bit before the DMAMODE bit... */ csr = musb_readw(mbase, offset); csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB); musb_writew(mbase, offset, csr); csr &= ~MUSB_TXCSR_DMAMODE; musb_writew(mbase, offset, csr); } else { offset = MUSB_EP_OFFSET (musb_channel->epnum, MUSB_RXCSR); csr = musb_readw(mbase, offset); csr &= ~(MUSB_RXCSR_AUTOCLEAR | MUSB_RXCSR_DMAENAB | MUSB_RXCSR_DMAMODE); musb_writew(mbase, offset, csr); } musb_writew(mbase, MUSB_HSDMA_CHANNEL_OFFSET(bchannel, MUSB_HSDMA_CONTROL), 0); musb_write_hsdma_addr(mbase, bchannel, 0); musb_write_hsdma_count(mbase, bchannel, 0); channel->status = MUSB_DMA_STATUS_FREE; } return 0; } static int dma_channel_pause(struct dma_channel *channel) { /* * Probably nothing to be done here. This is needed * only for certain DMA controllers which require * the DMA channel to be paused to get correct DMA * transfer residue */ return 0; } static int dma_channel_resume(struct dma_channel *channel) { /* Probably nothing to be done here */ return 0; } static int dma_channel_tx_status(struct dma_channel *channel) { struct musb_dma_channel *musb_channel = channel->private_data; void __iomem *mbase = musb_channel->controller->base; u8 bchannel = musb_channel->idx; u32 count, residue; dma_addr_t addr; /* * Get the number of bytes left to be transferred over * DMA * The MUSB spec mentions "The DMA controller ADDR register * will have been incremented as packets were unloaded from * the fifo, the processor can determine the size of the * transfer by comparing the current value of ADDR against * the start address of the memory buffer */ /* residue = musb_read_hsdma_count(mbase, bchannel); */ addr = musb_read_hsdma_addr(mbase, bchannel); #ifdef CONFIG_MTK_MUSB_DRV_36BIT addr = dma_append_high_addr(addr, mbase, bchannel); #endif count = addr - musb_channel->start_addr; residue = channel->prog_len - count; return residue; } static int dma_channel_check_residue(struct dma_channel *channel, u32 residue) { int status; /* In cases where we know the transfer length and were expecting * a DMA completion we could get into the DMA busy condition * here if the next packet is short and the EP interrupt occurs * before we receive dma_completion interrupt for current transfer * Wait for dma_completion. MUSB will interrupt us again for this * short packet when we clear the DMA bits */ if (!residue) { /* Wait for DMA completion */ status = -EINPROGRESS; } else if (residue == channel->prog_len) { /* Nothing transferred over DMA? */ /* WARN_ON(1); */ status = -EINVAL; } else { /* residue looks OK */ status = 0; } return status; } irqreturn_t dma_controller_irq(int irq, void *private_data) { struct musb_dma_controller *controller = private_data; struct musb *musb = controller->private_data; struct musb_dma_channel *musb_channel; struct dma_channel *channel; void __iomem *mbase = controller->base; irqreturn_t retval = IRQ_NONE; unsigned long flags; u8 bchannel; u8 int_hsdma; u32 count; u16 csr; dma_addr_t addr; spin_lock_irqsave(&musb->lock, flags); /* musb_read_clear_dma_interrupt */ int_hsdma = musb_readb(musb->mregs, MUSB_HSDMA_INTR); /* make sure int_hsdma up to date before W1C */ mb(); musb_writeb(musb->mregs, MUSB_HSDMA_INTR, int_hsdma); /* musb_read_clear_dma_interrupt */ if (!int_hsdma) { DBG(2, "spurious DMA irq\n"); for (bchannel = 0; bchannel < MUSB_HSDMA_CHANNELS; bchannel++) { musb_channel = (struct musb_dma_channel *) &(controller->channel[bchannel]); channel = &musb_channel->channel; if (channel->status == MUSB_DMA_STATUS_BUSY) { count = musb_read_hsdma_count(mbase, bchannel); #ifdef CONFIG_MTK_MUSB_DRV_36BIT count = dma_extract_count(count); #endif if (count == 0) int_hsdma |= (1 << bchannel); } } DBG(2, "int_hsdma = 0x%x\n", int_hsdma); if (!int_hsdma) goto done; } for (bchannel = 0; bchannel < MUSB_HSDMA_CHANNELS; bchannel++) { if (int_hsdma & (1 << bchannel)) { musb_channel = (struct musb_dma_channel *) &(controller->channel[bchannel]); channel = &musb_channel->channel; DBG(1, "MUSB:DMA channel %d interrupt\n", bchannel); csr = musb_readw(mbase, MUSB_HSDMA_CHANNEL_OFFSET (bchannel, MUSB_HSDMA_CONTROL)); if (csr & (1 << MUSB_HSDMA_BUSERROR_SHIFT)) { musb_channel->channel.status = MUSB_DMA_STATUS_BUS_ABORT; } else { u8 devctl; addr = musb_read_hsdma_addr(mbase, bchannel); #ifdef CONFIG_MTK_MUSB_DRV_36BIT addr = dma_append_high_addr (addr, mbase, bchannel); #endif channel->actual_len = addr - musb_channel->start_addr; #ifdef NEVER channel->actual_len = musb_readl(mbase, USB_DMA_REALCOUNT(bchannel)); #endif DBG(2, "[MUSB] channel %d ch %p, 0x%p -> 0x%p (%zu / %d) %s\n", bchannel, channel, (void *)(uintptr_t) musb_channel->start_addr, (void *)(uintptr_t) addr, channel->actual_len, musb_channel->len, (channel->actual_len < musb_channel->len) ? "=> reconfig 0" : "=> complete"); devctl = musb_readb(mbase, MUSB_DEVCTL); channel->status = MUSB_DMA_STATUS_FREE; /* completed */ if ((devctl & MUSB_DEVCTL_HM) && (musb_channel->transmit) && ((channel->desired_mode == 0) || (channel->actual_len & (musb_channel->max_packet_sz - 1))) ) { u8 epnum = musb_channel->epnum; int offset = MUSB_EP_OFFSET(epnum, MUSB_TXCSR); u16 txcsr; host_tx_refcnt_inc(epnum); /* * The programming guide says that we * must clear DMAENAB before DMAMODE. */ musb_ep_select(mbase, epnum); txcsr = musb_readw(mbase, offset); txcsr &= ~(MUSB_TXCSR_DMAENAB | MUSB_TXCSR_AUTOSET); musb_writew(mbase, offset, txcsr); /* Send out the packet */ txcsr &= ~MUSB_TXCSR_DMAMODE; txcsr |= MUSB_TXCSR_TXPKTRDY; musb_writew(mbase, offset, txcsr); if (musb_host_db_workaround2 && musb->is_host) wait_tx_done(epnum, 2000000000); } else musb_dma_completion(musb, musb_channel->epnum, musb_channel->transmit); } } } DBG(4, "MUSB: DMA interrupt completino on ep\n"); retval = IRQ_HANDLED; done: spin_unlock_irqrestore(&musb->lock, flags); return retval; } void dma_controller_destroy(struct dma_controller *c) { struct musb_dma_controller *controller = container_of(c, struct musb_dma_controller, controller); if (!controller) return; if (controller->irq) free_irq(controller->irq, c); kfree(controller); } struct dma_controller *dma_controller_create (struct musb *musb, void __iomem *base) { struct musb_dma_controller *controller; int irq = musb->dma_irq; if ((irq <= 0) && (irq != SHARE_IRQ)) { DBG(0, "[MUSB] No DMA interrupt line!\n"); return NULL; } controller = kzalloc(sizeof(*controller), GFP_KERNEL); if (!controller) return NULL; controller->channel_count = MUSB_HSDMA_CHANNELS; controller->private_data = musb; controller->base = base; controller->controller.start = dma_controller_start; controller->controller.stop = dma_controller_stop; controller->controller.channel_alloc = dma_channel_allocate; controller->controller.channel_release = dma_channel_release; controller->controller.channel_program = dma_channel_program; controller->controller.channel_abort = dma_channel_abort; controller->controller.channel_pause = dma_channel_pause; controller->controller.channel_resume = dma_channel_resume; controller->controller.tx_status = dma_channel_tx_status; controller->controller.check_residue = dma_channel_check_residue; if (irq != SHARE_IRQ) { if (request_irq(irq, dma_controller_irq, 0, dev_name(musb->controller), &controller->controller)) { DBG(0, "request_irq %d failed!\n", irq); dma_controller_destroy(&controller->controller); return NULL; } } controller->irq = irq; return &controller->controller; } #define MUSB_HSDMA_REAL_COUNT 0x80 #define USB_HSDMA_CHANNEL_OFFSET(_bchannel, _offset) \ (MUSB_HSDMA_BASE + (_bchannel << 4) + _offset) #define usb_read_hsdma_addr(mbase, bchannel) \ musb_readl(mbase, \ USB_HSDMA_CHANNEL_OFFSET(bchannel, MUSB_HSDMA_ADDRESS)) #define usb_read_hsdma_ctrl(mbase, bchannel) \ musb_readb(mbase, \ MUSB_HSDMA_CHANNEL_OFFSET(bchannel, MUSB_HSDMA_CONTROL)) #define usb_read_hsdma_count(mbase, bchannel) \ musb_readl(mbase, \ MUSB_HSDMA_CHANNEL_OFFSET(bchannel, MUSB_HSDMA_COUNT)) #define usb_read_hsdma_real_count(mbase, bchannel) \ musb_readl(mbase, \ MUSB_HSDMA_CHANNEL_OFFSET(bchannel, MUSB_HSDMA_REAL_COUNT)) u8 USB_DMA_status(u8 *pbDMAen, u8 *pbDMAdir) { u8 bchannel; u8 bDMAen = 0; u8 bDMAdir = 0; #ifdef CONFIG_OF for (bchannel = 0; bchannel < MUSB_HSDMA_CHANNELS; bchannel++) { bDMAen |= (usb_read_hsdma_ctrl(mtk_musb->mregs, bchannel) & 0x01) << bchannel; bDMAdir |= ((usb_read_hsdma_ctrl(mtk_musb->mregs, bchannel) & 0x02) >> 1) << bchannel; } #else void __iomem *base = USB_BASE; for (bchannel = 0; bchannel < MUSB_HSDMA_CHANNELS; bchannel++) { bDMAen |= (usb_read_hsdma_ctrl(base, bchannel) & 0x01) << bchannel; bDMAdir |= ((usb_read_hsdma_ctrl(base, bchannel) & 0x02) >> 1) << bchannel; } #endif if (pbDMAen) *pbDMAen = bDMAen; if (pbDMAdir) *pbDMAdir = bDMAdir; if (bDMAen > 0) return 1; else return 0; } EXPORT_SYMBOL(USB_DMA_status); u32 USB_DMA_address(u32 *len, u8 bchannel) { #ifdef CONFIG_OF /* void __iomem *base = USB_BASE; */ if (len) { *len = usb_read_hsdma_count(mtk_musb->mregs, bchannel) + usb_read_hsdma_real_count (mtk_musb->mregs, bchannel); } return (usb_read_hsdma_addr(mtk_musb->mregs, bchannel) - usb_read_hsdma_real_count(mtk_musb->mregs, bchannel)); #else void __iomem *base = (void *)USB_BASE; if (len) { *len = usb_read_hsdma_count(base, bchannel) + usb_read_hsdma_real_count(base, bchannel); } return usb_read_hsdma_addr(base, bchannel) - usb_read_hsdma_real_count(base, bchannel); #endif } EXPORT_SYMBOL(USB_DMA_address);