// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include "i40e.h" #include /* The XL710 timesync is very much like Intel's 82599 design when it comes to * the fundamental clock design. However, the clock operations are much simpler * in the XL710 because the device supports a full 64 bits of nanoseconds. * Because the field is so wide, we can forgo the cycle counter and just * operate with the nanosecond field directly without fear of overflow. * * Much like the 82599, the update period is dependent upon the link speed: * At 40Gb link or no link, the period is 1.6ns. * At 10Gb link, the period is multiplied by 2. (3.2ns) * At 1Gb link, the period is multiplied by 20. (32ns) * 1588 functionality is not supported at 100Mbps. */ #define I40E_PTP_40GB_INCVAL 0x0199999999ULL #define I40E_PTP_10GB_INCVAL_MULT 2 #define I40E_PTP_1GB_INCVAL_MULT 20 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) /** * i40e_ptp_read - Read the PHC time from the device * @pf: Board private structure * @ts: timespec structure to hold the current time value * * This function reads the PRTTSYN_TIME registers and stores them in a * timespec. However, since the registers are 64 bits of nanoseconds, we must * convert the result to a timespec before we can return. **/ static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts) { struct i40e_hw *hw = &pf->hw; u32 hi, lo; u64 ns; /* The timer latches on the lowest register read. */ lo = rd32(hw, I40E_PRTTSYN_TIME_L); hi = rd32(hw, I40E_PRTTSYN_TIME_H); ns = (((u64)hi) << 32) | lo; *ts = ns_to_timespec64(ns); } /** * i40e_ptp_write - Write the PHC time to the device * @pf: Board private structure * @ts: timespec structure that holds the new time value * * This function writes the PRTTSYN_TIME registers with the user value. Since * we receive a timespec from the stack, we must convert that timespec into * nanoseconds before programming the registers. **/ static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) { struct i40e_hw *hw = &pf->hw; u64 ns = timespec64_to_ns(ts); /* The timer will not update until the high register is written, so * write the low register first. */ wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); } /** * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time * @hwtstamps: Timestamp structure to update * @timestamp: Timestamp from the hardware * * We need to convert the NIC clock value into a hwtstamp which can be used by * the upper level timestamping functions. Since the timestamp is simply a 64- * bit nanosecond value, we can call ns_to_ktime directly to handle this. **/ static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, u64 timestamp) { memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ns_to_ktime(timestamp); } /** * i40e_ptp_adjfreq - Adjust the PHC frequency * @ptp: The PTP clock structure * @ppb: Parts per billion adjustment from the base * * Adjust the frequency of the PHC by the indicated parts per billion from the * base frequency. **/ static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); struct i40e_hw *hw = &pf->hw; u64 adj, freq, diff; int neg_adj = 0; if (ppb < 0) { neg_adj = 1; ppb = -ppb; } freq = I40E_PTP_40GB_INCVAL; freq *= ppb; diff = div_u64(freq, 1000000000ULL); if (neg_adj) adj = I40E_PTP_40GB_INCVAL - diff; else adj = I40E_PTP_40GB_INCVAL + diff; /* At some link speeds, the base incval is so large that directly * multiplying by ppb would result in arithmetic overflow even when * using a u64. Avoid this by instead calculating the new incval * always in terms of the 40GbE clock rate and then multiplying by the * link speed factor afterwards. This does result in slightly lower * precision at lower link speeds, but it is fairly minor. */ smp_mb(); /* Force any pending update before accessing. */ adj *= READ_ONCE(pf->ptp_adj_mult); wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); return 0; } /** * i40e_ptp_adjtime - Adjust the PHC time * @ptp: The PTP clock structure * @delta: Offset in nanoseconds to adjust the PHC time by * * Adjust the frequency of the PHC by the indicated parts per billion from the * base frequency. **/ static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); struct timespec64 now; mutex_lock(&pf->tmreg_lock); i40e_ptp_read(pf, &now); timespec64_add_ns(&now, delta); i40e_ptp_write(pf, (const struct timespec64 *)&now); mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_ptp_gettime - Get the time of the PHC * @ptp: The PTP clock structure * @ts: timespec structure to hold the current time value * * Read the device clock and return the correct value on ns, after converting it * into a timespec struct. **/ static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); mutex_lock(&pf->tmreg_lock); i40e_ptp_read(pf, ts); mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_ptp_settime - Set the time of the PHC * @ptp: The PTP clock structure * @ts: timespec structure that holds the new time value * * Set the device clock to the user input value. The conversion from timespec * to ns happens in the write function. **/ static int i40e_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); mutex_lock(&pf->tmreg_lock); i40e_ptp_write(pf, ts); mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem * @ptp: The PTP clock structure * @rq: The requested feature to change * @on: Enable/disable flag * * The XL710 does not support any of the ancillary features of the PHC * subsystem, so this function may just return. **/ static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { return -EOPNOTSUPP; } /** * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events * @pf: the PF data structure * * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers * for noticed latch events. This allows the driver to keep track of the first * time a latch event was noticed which will be used to help clear out Rx * timestamps for packets that got dropped or lost. * * This function will return the current value of I40E_PRTTSYN_STAT_1 and is * expected to be called only while under the ptp_rx_lock. **/ static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 prttsyn_stat, new_latch_events; int i; prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); new_latch_events = prttsyn_stat & ~pf->latch_event_flags; /* Update the jiffies time for any newly latched timestamp. This * ensures that we store the time that we first discovered a timestamp * was latched by the hardware. The service task will later determine * if we should free the latch and drop that timestamp should too much * time pass. This flow ensures that we only update jiffies for new * events latched since the last time we checked, and not all events * currently latched, so that the service task accounting remains * accurate. */ for (i = 0; i < 4; i++) { if (new_latch_events & BIT(i)) pf->latch_events[i] = jiffies; } /* Finally, we store the current status of the Rx timestamp latches */ pf->latch_event_flags = prttsyn_stat; return prttsyn_stat; } /** * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung * @pf: The PF private data structure * @vsi: The VSI with the rings relevant to 1588 * * This watchdog task is scheduled to detect error case where hardware has * dropped an Rx packet that was timestamped when the ring is full. The * particular error is rare but leaves the device in a state unable to timestamp * any future packets. **/ void i40e_ptp_rx_hang(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; unsigned int i, cleared = 0; /* Since we cannot turn off the Rx timestamp logic if the device is * configured for Tx timestamping, we check if Rx timestamping is * configured. We don't want to spuriously warn about Rx timestamp * hangs if we don't care about the timestamps. */ if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) return; spin_lock_bh(&pf->ptp_rx_lock); /* Update current latch times for Rx events */ i40e_ptp_get_rx_events(pf); /* Check all the currently latched Rx events and see whether they have * been latched for over a second. It is assumed that any timestamp * should have been cleared within this time, or else it was captured * for a dropped frame that the driver never received. Thus, we will * clear any timestamp that has been latched for over 1 second. */ for (i = 0; i < 4; i++) { if ((pf->latch_event_flags & BIT(i)) && time_is_before_jiffies(pf->latch_events[i] + HZ)) { rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); pf->latch_event_flags &= ~BIT(i); cleared++; } } spin_unlock_bh(&pf->ptp_rx_lock); /* Log a warning if more than 2 timestamps got dropped in the same * check. We don't want to warn about all drops because it can occur * in normal scenarios such as PTP frames on multicast addresses we * aren't listening to. However, administrator should know if this is * the reason packets aren't receiving timestamps. */ if (cleared > 2) dev_dbg(&pf->pdev->dev, "Dropped %d missed RXTIME timestamp events\n", cleared); /* Finally, update the rx_hwtstamp_cleared counter */ pf->rx_hwtstamp_cleared += cleared; } /** * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung * @pf: The PF private data structure * * This watchdog task is run periodically to make sure that we clear the Tx * timestamp logic if we don't obtain a timestamp in a reasonable amount of * time. It is unexpected in the normal case but if it occurs it results in * permanently preventing timestamps of future packets. **/ void i40e_ptp_tx_hang(struct i40e_pf *pf) { struct sk_buff *skb; if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) return; /* Nothing to do if we're not already waiting for a timestamp */ if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state)) return; /* We already have a handler routine which is run when we are notified * of a Tx timestamp in the hardware. If we don't get an interrupt * within a second it is reasonable to assume that we never will. */ if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) { skb = pf->ptp_tx_skb; pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); /* Free the skb after we clear the bitlock */ dev_kfree_skb_any(skb); pf->tx_hwtstamp_timeouts++; } } /** * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp * @pf: Board private structure * * Read the value of the Tx timestamp from the registers, convert it into a * value consumable by the stack, and store that result into the shhwtstamps * struct before returning it up the stack. **/ void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) { struct skb_shared_hwtstamps shhwtstamps; struct sk_buff *skb = pf->ptp_tx_skb; struct i40e_hw *hw = &pf->hw; u32 hi, lo; u64 ns; if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) return; /* don't attempt to timestamp if we don't have an skb */ if (!pf->ptp_tx_skb) return; lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); ns = (((u64)hi) << 32) | lo; i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); /* Clear the bit lock as soon as possible after reading the register, * and prior to notifying the stack via skb_tstamp_tx(). Otherwise * applications might wake up and attempt to request another transmit * timestamp prior to the bit lock being cleared. */ pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); /* Notify the stack and free the skb after we've unlocked */ skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /** * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp * @pf: Board private structure * @skb: Particular skb to send timestamp with * @index: Index into the receive timestamp registers for the timestamp * * The XL710 receives a notification in the receive descriptor with an offset * into the set of RXTIME registers where the timestamp is for that skb. This * function goes and fetches the receive timestamp from that offset, if a valid * one exists. The RXTIME registers are in ns, so we must convert the result * first. **/ void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) { u32 prttsyn_stat, hi, lo; struct i40e_hw *hw; u64 ns; /* Since we cannot turn off the Rx timestamp logic if the device is * doing Tx timestamping, check if Rx timestamping is configured. */ if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) return; hw = &pf->hw; spin_lock_bh(&pf->ptp_rx_lock); /* Get current Rx events and update latch times */ prttsyn_stat = i40e_ptp_get_rx_events(pf); /* TODO: Should we warn about missing Rx timestamp event? */ if (!(prttsyn_stat & BIT(index))) { spin_unlock_bh(&pf->ptp_rx_lock); return; } /* Clear the latched event since we're about to read its register */ pf->latch_event_flags &= ~BIT(index); lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); spin_unlock_bh(&pf->ptp_rx_lock); ns = (((u64)hi) << 32) | lo; i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); } /** * i40e_ptp_set_increment - Utility function to update clock increment rate * @pf: Board private structure * * During a link change, the DMA frequency that drives the 1588 logic will * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, * we must update the increment value per clock tick. **/ void i40e_ptp_set_increment(struct i40e_pf *pf) { struct i40e_link_status *hw_link_info; struct i40e_hw *hw = &pf->hw; u64 incval; u32 mult; hw_link_info = &hw->phy.link_info; i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); switch (hw_link_info->link_speed) { case I40E_LINK_SPEED_10GB: mult = I40E_PTP_10GB_INCVAL_MULT; break; case I40E_LINK_SPEED_1GB: mult = I40E_PTP_1GB_INCVAL_MULT; break; case I40E_LINK_SPEED_100MB: { static int warn_once; if (!warn_once) { dev_warn(&pf->pdev->dev, "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); warn_once++; } mult = 0; break; } case I40E_LINK_SPEED_40GB: default: mult = 1; break; } /* The increment value is calculated by taking the base 40GbE incvalue * and multiplying it by a factor based on the link speed. */ incval = I40E_PTP_40GB_INCVAL * mult; /* Write the new increment value into the increment register. The * hardware will not update the clock until both registers have been * written. */ wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); /* Update the base adjustement value. */ WRITE_ONCE(pf->ptp_adj_mult, mult); smp_mb(); /* Force the above update. */ } /** * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping * @pf: Board private structure * @ifr: ioctl data * * Obtain the current hardware timestamping settigs as requested. To do this, * keep a shadow copy of the timestamp settings rather than attempting to * deconstruct it from the registers. **/ int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) { struct hwtstamp_config *config = &pf->tstamp_config; if (!(pf->flags & I40E_FLAG_PTP)) return -EOPNOTSUPP; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode * @pf: Board private structure * @config: hwtstamp settings requested or saved * * Control hardware registers to enter the specific mode requested by the * user. Also used during reset path to ensure that timestamp settings are * maintained. * * Note: modifies config in place, and may update the requested mode to be * more broad if the specific filter is not directly supported. **/ static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, struct hwtstamp_config *config) { struct i40e_hw *hw = &pf->hw; u32 tsyntype, regval; /* Reserved for future extensions. */ if (config->flags) return -EINVAL; switch (config->tx_type) { case HWTSTAMP_TX_OFF: pf->ptp_tx = false; break; case HWTSTAMP_TX_ON: pf->ptp_tx = true; break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: pf->ptp_rx = false; /* We set the type to V1, but do not enable UDP packet * recognition. In this way, we should be as close to * disabling PTP Rx timestamps as possible since V1 packets * are always UDP, since L2 packets are a V2 feature. */ tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE)) return -ERANGE; pf->ptp_rx = true; tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | I40E_PRTTSYN_CTL1_UDP_ENA_MASK; config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE)) return -ERANGE; /* fall through */ case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: pf->ptp_rx = true; tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | I40E_PRTTSYN_CTL1_TSYNTYPE_V2; if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) { tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; } else { config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; } break; case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: default: return -ERANGE; } /* Clear out all 1588-related registers to clear and unlatch them. */ spin_lock_bh(&pf->ptp_rx_lock); rd32(hw, I40E_PRTTSYN_STAT_0); rd32(hw, I40E_PRTTSYN_TXTIME_H); rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); pf->latch_event_flags = 0; spin_unlock_bh(&pf->ptp_rx_lock); /* Enable/disable the Tx timestamp interrupt based on user input. */ regval = rd32(hw, I40E_PRTTSYN_CTL0); if (pf->ptp_tx) regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; else regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; wr32(hw, I40E_PRTTSYN_CTL0, regval); regval = rd32(hw, I40E_PFINT_ICR0_ENA); if (pf->ptp_tx) regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; else regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; wr32(hw, I40E_PFINT_ICR0_ENA, regval); /* Although there is no simple on/off switch for Rx, we "disable" Rx * timestamps by setting to V1 only mode and clear the UDP * recognition. This ought to disable all PTP Rx timestamps as V1 * packets are always over UDP. Note that software is configured to * ignore Rx timestamps via the pf->ptp_rx flag. */ regval = rd32(hw, I40E_PRTTSYN_CTL1); /* clear everything but the enable bit */ regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; /* now enable bits for desired Rx timestamps */ regval |= tsyntype; wr32(hw, I40E_PRTTSYN_CTL1, regval); return 0; } /** * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping * @pf: Board private structure * @ifr: ioctl data * * Respond to the user filter requests and make the appropriate hardware * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping * logic, so keep track in software of whether to indicate these timestamps * or not. * * It is permissible to "upgrade" the user request to a broader filter, as long * as the user receives the timestamps they care about and the user is notified * the filter has been broadened. **/ int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) { struct hwtstamp_config config; int err; if (!(pf->flags & I40E_FLAG_PTP)) return -EOPNOTSUPP; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = i40e_ptp_set_timestamp_mode(pf, &config); if (err) return err; /* save these settings for future reference */ pf->tstamp_config = config; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * i40e_ptp_create_clock - Create PTP clock device for userspace * @pf: Board private structure * * This function creates a new PTP clock device. It only creates one if we * don't already have one, so it is safe to call. Will return error if it * can't create one, but success if we already have a device. Should be used * by i40e_ptp_init to create clock initially, and prevent global resets from * creating new clock devices. **/ static long i40e_ptp_create_clock(struct i40e_pf *pf) { /* no need to create a clock device if we already have one */ if (!IS_ERR_OR_NULL(pf->ptp_clock)) return 0; strncpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name) - 1); pf->ptp_caps.owner = THIS_MODULE; pf->ptp_caps.max_adj = 999999999; pf->ptp_caps.n_ext_ts = 0; pf->ptp_caps.pps = 0; pf->ptp_caps.adjfreq = i40e_ptp_adjfreq; pf->ptp_caps.adjtime = i40e_ptp_adjtime; pf->ptp_caps.gettime64 = i40e_ptp_gettime; pf->ptp_caps.settime64 = i40e_ptp_settime; pf->ptp_caps.enable = i40e_ptp_feature_enable; /* Attempt to register the clock before enabling the hardware. */ pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); if (IS_ERR(pf->ptp_clock)) return PTR_ERR(pf->ptp_clock); /* clear the hwtstamp settings here during clock create, instead of * during regular init, so that we can maintain settings across a * reset or suspend. */ pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; return 0; } /** * i40e_ptp_init - Initialize the 1588 support after device probe or reset * @pf: Board private structure * * This function sets device up for 1588 support. The first time it is run, it * will create a PHC clock device. It does not create a clock device if one * already exists. It also reconfigures the device after a reset. **/ void i40e_ptp_init(struct i40e_pf *pf) { struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; struct i40e_hw *hw = &pf->hw; u32 pf_id; long err; /* Only one PF is assigned to control 1588 logic per port. Do not * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID */ pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >> I40E_PRTTSYN_CTL0_PF_ID_SHIFT; if (hw->pf_id != pf_id) { pf->flags &= ~I40E_FLAG_PTP; dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", __func__, netdev->name); return; } mutex_init(&pf->tmreg_lock); spin_lock_init(&pf->ptp_rx_lock); /* ensure we have a clock device */ err = i40e_ptp_create_clock(pf); if (err) { pf->ptp_clock = NULL; dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", __func__); } else if (pf->ptp_clock) { struct timespec64 ts; u32 regval; if (pf->hw.debug_mask & I40E_DEBUG_LAN) dev_info(&pf->pdev->dev, "PHC enabled\n"); pf->flags |= I40E_FLAG_PTP; /* Ensure the clocks are running. */ regval = rd32(hw, I40E_PRTTSYN_CTL0); regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; wr32(hw, I40E_PRTTSYN_CTL0, regval); regval = rd32(hw, I40E_PRTTSYN_CTL1); regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; wr32(hw, I40E_PRTTSYN_CTL1, regval); /* Set the increment value per clock tick. */ i40e_ptp_set_increment(pf); /* reset timestamping mode */ i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); /* Set the clock value. */ ts = ktime_to_timespec64(ktime_get_real()); i40e_ptp_settime(&pf->ptp_caps, &ts); } } /** * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC * @pf: Board private structure * * This function handles the cleanup work required from the initialization by * clearing out the important information and unregistering the PHC. **/ void i40e_ptp_stop(struct i40e_pf *pf) { pf->flags &= ~I40E_FLAG_PTP; pf->ptp_tx = false; pf->ptp_rx = false; if (pf->ptp_tx_skb) { struct sk_buff *skb = pf->ptp_tx_skb; pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); dev_kfree_skb_any(skb); } if (pf->ptp_clock) { ptp_clock_unregister(pf->ptp_clock); pf->ptp_clock = NULL; dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, pf->vsi[pf->lan_vsi]->netdev->name); } }