/* * Block device elevator/IO-scheduler. * * Copyright (C) 2000 Andrea Arcangeli SuSE * * 30042000 Jens Axboe : * * Split the elevator a bit so that it is possible to choose a different * one or even write a new "plug in". There are three pieces: * - elevator_fn, inserts a new request in the queue list * - elevator_merge_fn, decides whether a new buffer can be merged with * an existing request * - elevator_dequeue_fn, called when a request is taken off the active list * * 20082000 Dave Jones : * Removed tests for max-bomb-segments, which was breaking elvtune * when run without -bN * * Jens: * - Rework again to work with bio instead of buffer_heads * - loose bi_dev comparisons, partition handling is right now * - completely modularize elevator setup and teardown * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "blk.h" #include "blk-mq-sched.h" #include "blk-wbt.h" static DEFINE_SPINLOCK(elv_list_lock); static LIST_HEAD(elv_list); /* * Merge hash stuff. */ #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) /* * Query io scheduler to see if the current process issuing bio may be * merged with rq. */ static int elv_iosched_allow_bio_merge(struct request *rq, struct bio *bio) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; if (e->uses_mq && e->type->ops.mq.allow_merge) return e->type->ops.mq.allow_merge(q, rq, bio); else if (!e->uses_mq && e->type->ops.sq.elevator_allow_bio_merge_fn) return e->type->ops.sq.elevator_allow_bio_merge_fn(q, rq, bio); return 1; } /* * can we safely merge with this request? */ bool elv_bio_merge_ok(struct request *rq, struct bio *bio) { if (!blk_rq_merge_ok(rq, bio)) return false; if (!elv_iosched_allow_bio_merge(rq, bio)) return false; return true; } EXPORT_SYMBOL(elv_bio_merge_ok); static bool elevator_match(const struct elevator_type *e, const char *name) { if (!strcmp(e->elevator_name, name)) return true; if (e->elevator_alias && !strcmp(e->elevator_alias, name)) return true; return false; } /* * Return scheduler with name 'name' and with matching 'mq capability */ static struct elevator_type *elevator_find(const char *name, bool mq) { struct elevator_type *e; list_for_each_entry(e, &elv_list, list) { if (elevator_match(e, name) && (mq == e->uses_mq)) return e; } return NULL; } static void elevator_put(struct elevator_type *e) { module_put(e->elevator_owner); } static struct elevator_type *elevator_get(struct request_queue *q, const char *name, bool try_loading) { struct elevator_type *e; spin_lock(&elv_list_lock); e = elevator_find(name, q->mq_ops != NULL); if (!e && try_loading) { spin_unlock(&elv_list_lock); request_module("%s-iosched", name); spin_lock(&elv_list_lock); e = elevator_find(name, q->mq_ops != NULL); } if (e && !try_module_get(e->elevator_owner)) e = NULL; spin_unlock(&elv_list_lock); return e; } static char chosen_elevator[ELV_NAME_MAX]; static int __init elevator_setup(char *str) { /* * Be backwards-compatible with previous kernels, so users * won't get the wrong elevator. */ strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); return 1; } __setup("elevator=", elevator_setup); /* called during boot to load the elevator chosen by the elevator param */ void __init load_default_elevator_module(void) { struct elevator_type *e; if (!chosen_elevator[0]) return; /* * Boot parameter is deprecated, we haven't supported that for MQ. * Only look for non-mq schedulers from here. */ spin_lock(&elv_list_lock); e = elevator_find(chosen_elevator, false); spin_unlock(&elv_list_lock); if (!e) request_module("%s-iosched", chosen_elevator); } static struct kobj_type elv_ktype; struct elevator_queue *elevator_alloc(struct request_queue *q, struct elevator_type *e) { struct elevator_queue *eq; eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node); if (unlikely(!eq)) return NULL; eq->type = e; kobject_init(&eq->kobj, &elv_ktype); mutex_init(&eq->sysfs_lock); hash_init(eq->hash); eq->uses_mq = e->uses_mq; return eq; } EXPORT_SYMBOL(elevator_alloc); static void elevator_release(struct kobject *kobj) { struct elevator_queue *e; e = container_of(kobj, struct elevator_queue, kobj); elevator_put(e->type); kfree(e); } /* * Use the default elevator specified by config boot param for non-mq devices, * or by config option. Don't try to load modules as we could be running off * async and request_module() isn't allowed from async. */ int elevator_init(struct request_queue *q) { struct elevator_type *e = NULL; int err = 0; /* * q->sysfs_lock must be held to provide mutual exclusion between * elevator_switch() and here. */ mutex_lock(&q->sysfs_lock); if (unlikely(q->elevator)) goto out_unlock; if (*chosen_elevator) { e = elevator_get(q, chosen_elevator, false); if (!e) printk(KERN_ERR "I/O scheduler %s not found\n", chosen_elevator); } if (!e) e = elevator_get(q, CONFIG_DEFAULT_IOSCHED, false); if (!e) { printk(KERN_ERR "Default I/O scheduler not found. Using noop.\n"); e = elevator_get(q, "noop", false); } err = e->ops.sq.elevator_init_fn(q, e); if (err) elevator_put(e); out_unlock: mutex_unlock(&q->sysfs_lock); return err; } void elevator_exit(struct request_queue *q, struct elevator_queue *e) { mutex_lock(&e->sysfs_lock); if (e->uses_mq && e->type->ops.mq.exit_sched) blk_mq_exit_sched(q, e); else if (!e->uses_mq && e->type->ops.sq.elevator_exit_fn) e->type->ops.sq.elevator_exit_fn(e); mutex_unlock(&e->sysfs_lock); kobject_put(&e->kobj); } static inline void __elv_rqhash_del(struct request *rq) { hash_del(&rq->hash); rq->rq_flags &= ~RQF_HASHED; } void elv_rqhash_del(struct request_queue *q, struct request *rq) { if (ELV_ON_HASH(rq)) __elv_rqhash_del(rq); } EXPORT_SYMBOL_GPL(elv_rqhash_del); void elv_rqhash_add(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; BUG_ON(ELV_ON_HASH(rq)); hash_add(e->hash, &rq->hash, rq_hash_key(rq)); rq->rq_flags |= RQF_HASHED; } EXPORT_SYMBOL_GPL(elv_rqhash_add); void elv_rqhash_reposition(struct request_queue *q, struct request *rq) { __elv_rqhash_del(rq); elv_rqhash_add(q, rq); } struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) { struct elevator_queue *e = q->elevator; struct hlist_node *next; struct request *rq; hash_for_each_possible_safe(e->hash, rq, next, hash, offset) { BUG_ON(!ELV_ON_HASH(rq)); if (unlikely(!rq_mergeable(rq))) { __elv_rqhash_del(rq); continue; } if (rq_hash_key(rq) == offset) return rq; } return NULL; } /* * RB-tree support functions for inserting/lookup/removal of requests * in a sorted RB tree. */ void elv_rb_add(struct rb_root *root, struct request *rq) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct request *__rq; while (*p) { parent = *p; __rq = rb_entry(parent, struct request, rb_node); if (blk_rq_pos(rq) < blk_rq_pos(__rq)) p = &(*p)->rb_left; else if (blk_rq_pos(rq) >= blk_rq_pos(__rq)) p = &(*p)->rb_right; } rb_link_node(&rq->rb_node, parent, p); rb_insert_color(&rq->rb_node, root); } EXPORT_SYMBOL(elv_rb_add); void elv_rb_del(struct rb_root *root, struct request *rq) { BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); rb_erase(&rq->rb_node, root); RB_CLEAR_NODE(&rq->rb_node); } EXPORT_SYMBOL(elv_rb_del); struct request *elv_rb_find(struct rb_root *root, sector_t sector) { struct rb_node *n = root->rb_node; struct request *rq; while (n) { rq = rb_entry(n, struct request, rb_node); if (sector < blk_rq_pos(rq)) n = n->rb_left; else if (sector > blk_rq_pos(rq)) n = n->rb_right; else return rq; } return NULL; } EXPORT_SYMBOL(elv_rb_find); /* * Insert rq into dispatch queue of q. Queue lock must be held on * entry. rq is sort instead into the dispatch queue. To be used by * specific elevators. */ void elv_dispatch_sort(struct request_queue *q, struct request *rq) { sector_t boundary; struct list_head *entry; if (q->last_merge == rq) q->last_merge = NULL; elv_rqhash_del(q, rq); q->nr_sorted--; boundary = q->end_sector; list_for_each_prev(entry, &q->queue_head) { struct request *pos = list_entry_rq(entry); if (req_op(rq) != req_op(pos)) break; if (rq_data_dir(rq) != rq_data_dir(pos)) break; if (pos->rq_flags & (RQF_STARTED | RQF_SOFTBARRIER)) break; if (blk_rq_pos(rq) >= boundary) { if (blk_rq_pos(pos) < boundary) continue; } else { if (blk_rq_pos(pos) >= boundary) break; } if (blk_rq_pos(rq) >= blk_rq_pos(pos)) break; } list_add(&rq->queuelist, entry); } EXPORT_SYMBOL(elv_dispatch_sort); /* * Insert rq into dispatch queue of q. Queue lock must be held on * entry. rq is added to the back of the dispatch queue. To be used by * specific elevators. */ void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) { if (q->last_merge == rq) q->last_merge = NULL; elv_rqhash_del(q, rq); q->nr_sorted--; q->end_sector = rq_end_sector(rq); q->boundary_rq = rq; list_add_tail(&rq->queuelist, &q->queue_head); } EXPORT_SYMBOL(elv_dispatch_add_tail); enum elv_merge elv_merge(struct request_queue *q, struct request **req, struct bio *bio) { struct elevator_queue *e = q->elevator; struct request *__rq; /* * Levels of merges: * nomerges: No merges at all attempted * noxmerges: Only simple one-hit cache try * merges: All merge tries attempted */ if (blk_queue_nomerges(q) || !bio_mergeable(bio)) return ELEVATOR_NO_MERGE; /* * First try one-hit cache. */ if (q->last_merge && elv_bio_merge_ok(q->last_merge, bio)) { enum elv_merge ret = blk_try_merge(q->last_merge, bio); if (ret != ELEVATOR_NO_MERGE) { *req = q->last_merge; return ret; } } if (blk_queue_noxmerges(q)) return ELEVATOR_NO_MERGE; /* * See if our hash lookup can find a potential backmerge. */ __rq = elv_rqhash_find(q, bio->bi_iter.bi_sector); if (__rq && elv_bio_merge_ok(__rq, bio)) { *req = __rq; return ELEVATOR_BACK_MERGE; } if (e->uses_mq && e->type->ops.mq.request_merge) return e->type->ops.mq.request_merge(q, req, bio); else if (!e->uses_mq && e->type->ops.sq.elevator_merge_fn) return e->type->ops.sq.elevator_merge_fn(q, req, bio); return ELEVATOR_NO_MERGE; } /* * Attempt to do an insertion back merge. Only check for the case where * we can append 'rq' to an existing request, so we can throw 'rq' away * afterwards. * * Returns true if we merged, false otherwise */ bool elv_attempt_insert_merge(struct request_queue *q, struct request *rq) { struct request *__rq; bool ret; if (blk_queue_nomerges(q)) return false; /* * First try one-hit cache. */ if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) return true; if (blk_queue_noxmerges(q)) return false; ret = false; /* * See if our hash lookup can find a potential backmerge. */ while (1) { __rq = elv_rqhash_find(q, blk_rq_pos(rq)); if (!__rq || !blk_attempt_req_merge(q, __rq, rq)) break; /* The merged request could be merged with others, try again */ ret = true; rq = __rq; } return ret; } void elv_merged_request(struct request_queue *q, struct request *rq, enum elv_merge type) { struct elevator_queue *e = q->elevator; if (e->uses_mq && e->type->ops.mq.request_merged) e->type->ops.mq.request_merged(q, rq, type); else if (!e->uses_mq && e->type->ops.sq.elevator_merged_fn) e->type->ops.sq.elevator_merged_fn(q, rq, type); if (type == ELEVATOR_BACK_MERGE) elv_rqhash_reposition(q, rq); q->last_merge = rq; } void elv_merge_requests(struct request_queue *q, struct request *rq, struct request *next) { struct elevator_queue *e = q->elevator; bool next_sorted = false; if (e->uses_mq && e->type->ops.mq.requests_merged) e->type->ops.mq.requests_merged(q, rq, next); else if (e->type->ops.sq.elevator_merge_req_fn) { next_sorted = (__force bool)(next->rq_flags & RQF_SORTED); if (next_sorted) e->type->ops.sq.elevator_merge_req_fn(q, rq, next); } elv_rqhash_reposition(q, rq); if (next_sorted) { elv_rqhash_del(q, next); q->nr_sorted--; } q->last_merge = rq; } void elv_bio_merged(struct request_queue *q, struct request *rq, struct bio *bio) { struct elevator_queue *e = q->elevator; if (WARN_ON_ONCE(e->uses_mq)) return; if (e->type->ops.sq.elevator_bio_merged_fn) e->type->ops.sq.elevator_bio_merged_fn(q, rq, bio); } #ifdef CONFIG_PM static void blk_pm_requeue_request(struct request *rq) { if (rq->q->dev && !(rq->rq_flags & RQF_PM)) rq->q->nr_pending--; } static void blk_pm_add_request(struct request_queue *q, struct request *rq) { if (q->dev && !(rq->rq_flags & RQF_PM) && q->nr_pending++ == 0 && (q->rpm_status == RPM_SUSPENDED || q->rpm_status == RPM_SUSPENDING)) pm_request_resume(q->dev); } #else static inline void blk_pm_requeue_request(struct request *rq) {} static inline void blk_pm_add_request(struct request_queue *q, struct request *rq) { } #endif void elv_requeue_request(struct request_queue *q, struct request *rq) { /* * it already went through dequeue, we need to decrement the * in_flight count again */ if (blk_account_rq(rq)) { q->in_flight[rq_is_sync(rq)]--; if (rq->rq_flags & RQF_SORTED) elv_deactivate_rq(q, rq); } rq->rq_flags &= ~RQF_STARTED; blk_pm_requeue_request(rq); __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE); } void elv_drain_elevator(struct request_queue *q) { struct elevator_queue *e = q->elevator; static int printed; if (WARN_ON_ONCE(e->uses_mq)) return; lockdep_assert_held(q->queue_lock); while (e->type->ops.sq.elevator_dispatch_fn(q, 1)) ; if (q->nr_sorted && !blk_queue_is_zoned(q) && printed++ < 10 ) { printk(KERN_ERR "%s: forced dispatching is broken " "(nr_sorted=%u), please report this\n", q->elevator->type->elevator_name, q->nr_sorted); } } void __elv_add_request(struct request_queue *q, struct request *rq, int where) { trace_block_rq_insert(q, rq); blk_queue_io_vol_add(q, rq->cmd_flags, blk_rq_bytes(rq)); blk_pm_add_request(q, rq); rq->q = q; if (rq->rq_flags & RQF_SOFTBARRIER) { /* barriers are scheduling boundary, update end_sector */ if (!blk_rq_is_passthrough(rq)) { q->end_sector = rq_end_sector(rq); q->boundary_rq = rq; } } else if (!(rq->rq_flags & RQF_ELVPRIV) && (where == ELEVATOR_INSERT_SORT || where == ELEVATOR_INSERT_SORT_MERGE)) where = ELEVATOR_INSERT_BACK; switch (where) { case ELEVATOR_INSERT_REQUEUE: case ELEVATOR_INSERT_FRONT: rq->rq_flags |= RQF_SOFTBARRIER; list_add(&rq->queuelist, &q->queue_head); break; case ELEVATOR_INSERT_BACK: rq->rq_flags |= RQF_SOFTBARRIER; elv_drain_elevator(q); list_add_tail(&rq->queuelist, &q->queue_head); /* * We kick the queue here for the following reasons. * - The elevator might have returned NULL previously * to delay requests and returned them now. As the * queue wasn't empty before this request, ll_rw_blk * won't run the queue on return, resulting in hang. * - Usually, back inserted requests won't be merged * with anything. There's no point in delaying queue * processing. */ __blk_run_queue(q); break; case ELEVATOR_INSERT_SORT_MERGE: /* * If we succeed in merging this request with one in the * queue already, we are done - rq has now been freed, * so no need to do anything further. */ if (elv_attempt_insert_merge(q, rq)) break; /* fall through */ case ELEVATOR_INSERT_SORT: BUG_ON(blk_rq_is_passthrough(rq)); rq->rq_flags |= RQF_SORTED; q->nr_sorted++; if (rq_mergeable(rq)) { elv_rqhash_add(q, rq); if (!q->last_merge) q->last_merge = rq; } /* * Some ioscheds (cfq) run q->request_fn directly, so * rq cannot be accessed after calling * elevator_add_req_fn. */ q->elevator->type->ops.sq.elevator_add_req_fn(q, rq); break; case ELEVATOR_INSERT_FLUSH: rq->rq_flags |= RQF_SOFTBARRIER; blk_insert_flush(rq); break; default: printk(KERN_ERR "%s: bad insertion point %d\n", __func__, where); BUG(); } } EXPORT_SYMBOL(__elv_add_request); void elv_add_request(struct request_queue *q, struct request *rq, int where) { unsigned long flags; spin_lock_irqsave(q->queue_lock, flags); __elv_add_request(q, rq, where); spin_unlock_irqrestore(q->queue_lock, flags); } EXPORT_SYMBOL(elv_add_request); struct request *elv_latter_request(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; if (e->uses_mq && e->type->ops.mq.next_request) return e->type->ops.mq.next_request(q, rq); else if (!e->uses_mq && e->type->ops.sq.elevator_latter_req_fn) return e->type->ops.sq.elevator_latter_req_fn(q, rq); return NULL; } struct request *elv_former_request(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; if (e->uses_mq && e->type->ops.mq.former_request) return e->type->ops.mq.former_request(q, rq); if (!e->uses_mq && e->type->ops.sq.elevator_former_req_fn) return e->type->ops.sq.elevator_former_req_fn(q, rq); return NULL; } int elv_set_request(struct request_queue *q, struct request *rq, struct bio *bio, gfp_t gfp_mask) { struct elevator_queue *e = q->elevator; if (WARN_ON_ONCE(e->uses_mq)) return 0; if (e->type->ops.sq.elevator_set_req_fn) return e->type->ops.sq.elevator_set_req_fn(q, rq, bio, gfp_mask); return 0; } void elv_put_request(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; if (WARN_ON_ONCE(e->uses_mq)) return; if (e->type->ops.sq.elevator_put_req_fn) e->type->ops.sq.elevator_put_req_fn(rq); } int elv_may_queue(struct request_queue *q, unsigned int op) { struct elevator_queue *e = q->elevator; if (WARN_ON_ONCE(e->uses_mq)) return 0; if (e->type->ops.sq.elevator_may_queue_fn) return e->type->ops.sq.elevator_may_queue_fn(q, op); return ELV_MQUEUE_MAY; } void elv_completed_request(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; if (WARN_ON_ONCE(e->uses_mq)) return; /* * request is released from the driver, io must be done */ if (blk_account_rq(rq)) { q->in_flight[rq_is_sync(rq)]--; if (!queue_in_flight(q)) q->in_flight_time += ktime_us_delta(ktime_get(), q->in_flight_stamp); if ((rq->rq_flags & RQF_SORTED) && e->type->ops.sq.elevator_completed_req_fn) e->type->ops.sq.elevator_completed_req_fn(q, rq); } } #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) static ssize_t elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct elv_fs_entry *entry = to_elv(attr); struct elevator_queue *e; ssize_t error; if (!entry->show) return -EIO; e = container_of(kobj, struct elevator_queue, kobj); mutex_lock(&e->sysfs_lock); error = e->type ? entry->show(e, page) : -ENOENT; mutex_unlock(&e->sysfs_lock); return error; } static ssize_t elv_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct elv_fs_entry *entry = to_elv(attr); struct elevator_queue *e; ssize_t error; if (!entry->store) return -EIO; e = container_of(kobj, struct elevator_queue, kobj); mutex_lock(&e->sysfs_lock); error = e->type ? entry->store(e, page, length) : -ENOENT; mutex_unlock(&e->sysfs_lock); return error; } static const struct sysfs_ops elv_sysfs_ops = { .show = elv_attr_show, .store = elv_attr_store, }; static struct kobj_type elv_ktype = { .sysfs_ops = &elv_sysfs_ops, .release = elevator_release, }; int elv_register_queue(struct request_queue *q) { struct elevator_queue *e = q->elevator; int error; lockdep_assert_held(&q->sysfs_lock); error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); if (!error) { struct elv_fs_entry *attr = e->type->elevator_attrs; if (attr) { while (attr->attr.name) { if (sysfs_create_file(&e->kobj, &attr->attr)) break; attr++; } } kobject_uevent(&e->kobj, KOBJ_ADD); e->registered = 1; if (!e->uses_mq && e->type->ops.sq.elevator_registered_fn) e->type->ops.sq.elevator_registered_fn(q); } return error; } void elv_unregister_queue(struct request_queue *q) { lockdep_assert_held(&q->sysfs_lock); if (q) { struct elevator_queue *e = q->elevator; kobject_uevent(&e->kobj, KOBJ_REMOVE); kobject_del(&e->kobj); e->registered = 0; /* Re-enable throttling in case elevator disabled it */ wbt_enable_default(q); } } int elv_register(struct elevator_type *e) { char *def = ""; /* create icq_cache if requested */ if (e->icq_size) { if (WARN_ON(e->icq_size < sizeof(struct io_cq)) || WARN_ON(e->icq_align < __alignof__(struct io_cq))) return -EINVAL; snprintf(e->icq_cache_name, sizeof(e->icq_cache_name), "%s_io_cq", e->elevator_name); e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size, e->icq_align, 0, NULL); if (!e->icq_cache) return -ENOMEM; } /* register, don't allow duplicate names */ spin_lock(&elv_list_lock); if (elevator_find(e->elevator_name, e->uses_mq)) { spin_unlock(&elv_list_lock); kmem_cache_destroy(e->icq_cache); return -EBUSY; } list_add_tail(&e->list, &elv_list); spin_unlock(&elv_list_lock); /* print pretty message */ if (elevator_match(e, chosen_elevator) || (!*chosen_elevator && elevator_match(e, CONFIG_DEFAULT_IOSCHED))) def = " (default)"; printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, def); return 0; } EXPORT_SYMBOL_GPL(elv_register); void elv_unregister(struct elevator_type *e) { /* unregister */ spin_lock(&elv_list_lock); list_del_init(&e->list); spin_unlock(&elv_list_lock); /* * Destroy icq_cache if it exists. icq's are RCU managed. Make * sure all RCU operations are complete before proceeding. */ if (e->icq_cache) { rcu_barrier(); kmem_cache_destroy(e->icq_cache); e->icq_cache = NULL; } } EXPORT_SYMBOL_GPL(elv_unregister); int elevator_switch_mq(struct request_queue *q, struct elevator_type *new_e) { int ret; lockdep_assert_held(&q->sysfs_lock); if (q->elevator) { if (q->elevator->registered) elv_unregister_queue(q); ioc_clear_queue(q); elevator_exit(q, q->elevator); } ret = blk_mq_init_sched(q, new_e); if (ret) goto out; if (new_e) { ret = elv_register_queue(q); if (ret) { elevator_exit(q, q->elevator); goto out; } } if (new_e) blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name); else blk_add_trace_msg(q, "elv switch: none"); out: return ret; } /* * For blk-mq devices, we default to using mq-deadline, if available, for single * queue devices. If deadline isn't available OR we have multiple queues, * default to "none". */ int elevator_init_mq(struct request_queue *q) { struct elevator_type *e; int err = 0; if (q->tag_set && q->tag_set->flags & BLK_MQ_F_NO_SCHED_BY_DEFAULT) return 0; if (q->nr_hw_queues != 1) return 0; WARN_ON_ONCE(test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)); if (unlikely(q->elevator)) goto out; e = elevator_get(q, "mq-deadline", false); if (!e) goto out; err = blk_mq_init_sched(q, e); if (err) elevator_put(e); out: return err; } /* * switch to new_e io scheduler. be careful not to introduce deadlocks - * we don't free the old io scheduler, before we have allocated what we * need for the new one. this way we have a chance of going back to the old * one, if the new one fails init for some reason. */ static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) { struct elevator_queue *old = q->elevator; bool old_registered = false; int err; lockdep_assert_held(&q->sysfs_lock); if (q->mq_ops) { blk_mq_freeze_queue(q); blk_mq_quiesce_queue(q); err = elevator_switch_mq(q, new_e); blk_mq_unquiesce_queue(q); blk_mq_unfreeze_queue(q); return err; } /* * Turn on BYPASS and drain all requests w/ elevator private data. * Block layer doesn't call into a quiesced elevator - all requests * are directly put on the dispatch list without elevator data * using INSERT_BACK. All requests have SOFTBARRIER set and no * merge happens either. */ if (old) { old_registered = old->registered; blk_queue_bypass_start(q); /* unregister and clear all auxiliary data of the old elevator */ if (old_registered) elv_unregister_queue(q); ioc_clear_queue(q); } /* allocate, init and register new elevator */ err = new_e->ops.sq.elevator_init_fn(q, new_e); if (err) goto fail_init; err = elv_register_queue(q); if (err) goto fail_register; /* done, kill the old one and finish */ if (old) { elevator_exit(q, old); blk_queue_bypass_end(q); } blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name); return 0; fail_register: elevator_exit(q, q->elevator); fail_init: /* switch failed, restore and re-register old elevator */ if (old) { q->elevator = old; elv_register_queue(q); blk_queue_bypass_end(q); } return err; } /* * Switch this queue to the given IO scheduler. */ static int __elevator_change(struct request_queue *q, const char *name) { char elevator_name[ELV_NAME_MAX]; struct elevator_type *e; /* Make sure queue is not in the middle of being removed */ if (!blk_queue_registered(q)) return -ENOENT; /* * Special case for mq, turn off scheduling */ if (q->mq_ops && !strncmp(name, "none", 4)) return elevator_switch(q, NULL); strlcpy(elevator_name, name, sizeof(elevator_name)); e = elevator_get(q, strstrip(elevator_name), true); if (!e) return -EINVAL; if (q->elevator && elevator_match(q->elevator->type, elevator_name)) { elevator_put(e); return 0; } return elevator_switch(q, e); } static inline bool elv_support_iosched(struct request_queue *q) { if (q->mq_ops && q->tag_set && (q->tag_set->flags & BLK_MQ_F_NO_SCHED)) return false; return true; } ssize_t elv_iosched_store(struct request_queue *q, const char *name, size_t count) { int ret; if (!(q->mq_ops || q->request_fn) || !elv_support_iosched(q)) return count; ret = __elevator_change(q, name); if (!ret) return count; return ret; } ssize_t elv_iosched_show(struct request_queue *q, char *name) { struct elevator_queue *e = q->elevator; struct elevator_type *elv = NULL; struct elevator_type *__e; bool uses_mq = q->mq_ops != NULL; int len = 0; if (!queue_is_rq_based(q)) return sprintf(name, "none\n"); if (!q->elevator) len += sprintf(name+len, "[none] "); else elv = e->type; spin_lock(&elv_list_lock); list_for_each_entry(__e, &elv_list, list) { if (elv && elevator_match(elv, __e->elevator_name) && (__e->uses_mq == uses_mq)) { len += sprintf(name+len, "[%s] ", elv->elevator_name); continue; } if (__e->uses_mq && q->mq_ops && elv_support_iosched(q)) len += sprintf(name+len, "%s ", __e->elevator_name); else if (!__e->uses_mq && !q->mq_ops) len += sprintf(name+len, "%s ", __e->elevator_name); } spin_unlock(&elv_list_lock); if (q->mq_ops && q->elevator) len += sprintf(name+len, "none"); len += sprintf(len+name, "\n"); return len; } struct request *elv_rb_former_request(struct request_queue *q, struct request *rq) { struct rb_node *rbprev = rb_prev(&rq->rb_node); if (rbprev) return rb_entry_rq(rbprev); return NULL; } EXPORT_SYMBOL(elv_rb_former_request); struct request *elv_rb_latter_request(struct request_queue *q, struct request *rq) { struct rb_node *rbnext = rb_next(&rq->rb_node); if (rbnext) return rb_entry_rq(rbnext); return NULL; } EXPORT_SYMBOL(elv_rb_latter_request);