/* * Copyright (C) 2003 Russell King, All Rights Reserved. * Copyright 2006-2007 Pierre Ossman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include "queue.h" #include "block.h" #include "core.h" #include "crypto.h" #include "card.h" #include "host.h" #include "mmc_crypto.h" #include "mtk_mmc_block.h" static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq) { /* Allow only 1 DCMD at a time */ return mq->in_flight[MMC_ISSUE_DCMD]; } void mmc_cqe_check_busy(struct mmc_queue *mq) { if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq)) mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY; mq->cqe_busy &= ~MMC_CQE_QUEUE_FULL; } static inline bool mmc_cqe_can_dcmd(struct mmc_host *host) { return host->caps2 & MMC_CAP2_CQE_DCMD; } static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host, struct request *req) { switch (req_op(req)) { case REQ_OP_DRV_IN: case REQ_OP_DRV_OUT: case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: return MMC_ISSUE_SYNC; case REQ_OP_FLUSH: return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC; default: return MMC_ISSUE_ASYNC; } } enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req) { struct mmc_host *host = mq->card->host; if (mq->use_cqe) return mmc_cqe_issue_type(host, req); if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE) return MMC_ISSUE_ASYNC; return MMC_ISSUE_SYNC; } static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq) { if (!mq->recovery_needed) { mq->recovery_needed = true; schedule_work(&mq->recovery_work); } } void mmc_cqe_recovery_notifier(struct mmc_request *mrq) { struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, brq.mrq); struct request *req = mmc_queue_req_to_req(mqrq); struct request_queue *q = req->q; struct mmc_queue *mq = q->queuedata; unsigned long flags; spin_lock_irqsave(q->queue_lock, flags); __mmc_cqe_recovery_notifier(mq); spin_unlock_irqrestore(q->queue_lock, flags); } static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_request *mrq = &mqrq->brq.mrq; struct mmc_queue *mq = req->q->queuedata; struct mmc_host *host = mq->card->host; enum mmc_issue_type issue_type = mmc_issue_type(mq, req); bool recovery_needed = false; switch (issue_type) { case MMC_ISSUE_ASYNC: case MMC_ISSUE_DCMD: if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) { if (recovery_needed) mmc_cqe_recovery_notifier(mrq); return BLK_EH_RESET_TIMER; } /* The request has gone already */ return BLK_EH_DONE; default: /* Timeout is handled by mmc core */ return BLK_EH_RESET_TIMER; } } static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req, bool reserved) { struct request_queue *q = req->q; struct mmc_queue *mq = q->queuedata; unsigned long flags; bool ignore_tout; spin_lock_irqsave(q->queue_lock, flags); ignore_tout = mq->recovery_needed || !mq->use_cqe; spin_unlock_irqrestore(q->queue_lock, flags); return ignore_tout ? BLK_EH_RESET_TIMER : mmc_cqe_timed_out(req); } static void mmc_mq_recovery_handler(struct work_struct *work) { struct mmc_queue *mq = container_of(work, struct mmc_queue, recovery_work); struct request_queue *q = mq->queue; mmc_get_card(mq->card, &mq->ctx); mq->in_recovery = true; if (mq->use_cqe) mmc_blk_cqe_recovery(mq); else mmc_blk_mq_recovery(mq); mq->in_recovery = false; spin_lock_irq(q->queue_lock); mq->recovery_needed = false; spin_unlock_irq(q->queue_lock); mmc_put_card(mq->card, &mq->ctx); blk_mq_run_hw_queues(q, true); } static struct scatterlist *mmc_alloc_sg(int sg_len, gfp_t gfp) { struct scatterlist *sg; sg = kmalloc_array(sg_len, sizeof(*sg), gfp); if (sg) sg_init_table(sg, sg_len); return sg; } static void mmc_queue_setup_discard(struct request_queue *q, struct mmc_card *card) { unsigned max_discard; max_discard = mmc_calc_max_discard(card); if (!max_discard) return; blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); blk_queue_max_discard_sectors(q, max_discard); q->limits.discard_granularity = card->pref_erase << 9; /* granularity must not be greater than max. discard */ if (card->pref_erase > max_discard) q->limits.discard_granularity = SECTOR_SIZE; if (mmc_can_secure_erase_trim(card)) blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); } /** * mmc_init_request() - initialize the MMC-specific per-request data * @q: the request queue * @req: the request * @gfp: memory allocation policy */ static int __mmc_init_request(struct mmc_queue *mq, struct request *req, gfp_t gfp) { struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); struct mmc_card *card = mq->card; struct mmc_host *host = card->host; mq_rq->sg = mmc_alloc_sg(host->max_segs, gfp); if (!mq_rq->sg) return -ENOMEM; return 0; } static void mmc_exit_request(struct request_queue *q, struct request *req) { struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); kfree(mq_rq->sg); mq_rq->sg = NULL; } static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req, unsigned int hctx_idx, unsigned int numa_node) { return __mmc_init_request(set->driver_data, req, GFP_KERNEL); } static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req, unsigned int hctx_idx) { struct mmc_queue *mq = set->driver_data; mmc_exit_request(mq->queue, req); } static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct request *req = bd->rq; struct request_queue *q = req->q; struct mmc_queue *mq = q->queuedata; struct mmc_card *card = mq->card; struct mmc_host *host = card->host; enum mmc_issue_type issue_type; enum mmc_issued issued; bool get_card, cqe_retune_ok; int ret; if (mmc_card_removed(mq->card)) { req->rq_flags |= RQF_QUIET; return BLK_STS_IOERR; } issue_type = mmc_issue_type(mq, req); spin_lock_irq(q->queue_lock); if (mq->recovery_needed || mq->busy) { spin_unlock_irq(q->queue_lock); return BLK_STS_RESOURCE; } switch (issue_type) { case MMC_ISSUE_DCMD: if (mmc_cqe_dcmd_busy(mq)) { mq->cqe_busy |= MMC_CQE_DCMD_BUSY; spin_unlock_irq(q->queue_lock); return BLK_STS_RESOURCE; } break; case MMC_ISSUE_ASYNC: break; default: /* * Timeouts are handled by mmc core, and we don't have a host * API to abort requests, so we can't handle the timeout anyway. * However, when the timeout happens, blk_mq_complete_request() * no longer works (to stop the request disappearing under us). * To avoid racing with that, set a large timeout. */ req->timeout = 600 * HZ; break; } /* Parallel dispatch of requests is not supported at the moment */ mq->busy = true; mq->in_flight[issue_type] += 1; get_card = (mmc_tot_in_flight(mq) == 1); cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1); spin_unlock_irq(q->queue_lock); if (!(req->rq_flags & RQF_DONTPREP)) { req_to_mmc_queue_req(req)->retries = 0; req->rq_flags |= RQF_DONTPREP; } if (get_card) mmc_get_card(card, &mq->ctx); if (mq->use_cqe) { host->retune_now = host->need_retune && cqe_retune_ok && !host->hold_retune; } blk_mq_start_request(req); issued = mmc_blk_mq_issue_rq(mq, req); switch (issued) { case MMC_REQ_BUSY: ret = BLK_STS_RESOURCE; break; case MMC_REQ_FAILED_TO_START: ret = BLK_STS_IOERR; break; default: ret = BLK_STS_OK; break; } if (issued != MMC_REQ_STARTED) { bool put_card = false; spin_lock_irq(q->queue_lock); mq->in_flight[issue_type] -= 1; if (mmc_tot_in_flight(mq) == 0) put_card = true; mq->busy = false; spin_unlock_irq(q->queue_lock); if (put_card) mmc_put_card(card, &mq->ctx); } else { WRITE_ONCE(mq->busy, false); } return ret; } static const struct blk_mq_ops mmc_mq_ops = { .queue_rq = mmc_mq_queue_rq, .init_request = mmc_mq_init_request, .exit_request = mmc_mq_exit_request, .complete = mmc_blk_mq_complete, .timeout = mmc_mq_timed_out, }; static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card) { struct mmc_host *host = card->host; u64 limit = BLK_BOUNCE_HIGH; unsigned block_size = 512; if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask) limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT; blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue); blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue); if (mmc_can_erase(card)) mmc_queue_setup_discard(mq->queue, card); blk_queue_bounce_limit(mq->queue, limit); blk_queue_max_hw_sectors(mq->queue, min(host->max_blk_count, host->max_req_size / 512)); blk_queue_max_segments(mq->queue, host->max_segs); if (mmc_card_mmc(card) && card->ext_csd.data_sector_size) { block_size = card->ext_csd.data_sector_size; WARN_ON(block_size != 512 && block_size != 4096); } blk_queue_logical_block_size(mq->queue, block_size); blk_queue_max_segment_size(mq->queue, round_down(host->max_seg_size, block_size)); INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler); INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work); if (mmc_card_sd(card)) { /* decrease max # of requests to 32. The goal of this tuning is * reducing the time for draining elevator when elevator_switch * function is called. It is effective for slow external sdcard. */ mq->queue->nr_requests = BLKDEV_MAX_RQ / 8; if (mq->queue->nr_requests < 32) mq->queue->nr_requests = 32; #ifdef CONFIG_LARGE_DIRTY_BUFFER /* apply more throttle on external sdcard */ mq->queue->backing_dev_info->capabilities |= BDI_CAP_STRICTLIMIT; bdi_set_min_ratio(mq->queue->backing_dev_info, 30); bdi_set_max_ratio(mq->queue->backing_dev_info, 60); #endif pr_info("Parameters for external-sdcard: min/max_ratio: %u/%u " "strictlimit: on nr_requests: %lu read_ahead_kb: %lu\n", mq->queue->backing_dev_info->min_ratio, mq->queue->backing_dev_info->max_ratio, mq->queue->nr_requests, mq->queue->backing_dev_info->ra_pages * 4); } mutex_init(&mq->complete_lock); init_waitqueue_head(&mq->wait); } static int mmc_mq_init_queue(struct mmc_queue *mq, int q_depth, const struct blk_mq_ops *mq_ops, spinlock_t *lock) { int ret; memset(&mq->tag_set, 0, sizeof(mq->tag_set)); mq->tag_set.ops = mq_ops; mq->tag_set.queue_depth = q_depth; mq->tag_set.numa_node = NUMA_NO_NODE; mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE | BLK_MQ_F_BLOCKING; mq->tag_set.nr_hw_queues = 1; mq->tag_set.cmd_size = sizeof(struct mmc_queue_req); mq->tag_set.driver_data = mq; ret = blk_mq_alloc_tag_set(&mq->tag_set); if (ret) return ret; mq->queue = blk_mq_init_queue(&mq->tag_set); if (IS_ERR(mq->queue)) { ret = PTR_ERR(mq->queue); goto free_tag_set; } mq->queue->queue_lock = lock; mq->queue->queuedata = mq; // mq->queue->backing_dev_info->ra_pages = 128; return 0; free_tag_set: blk_mq_free_tag_set(&mq->tag_set); return ret; } /* Set queue depth to get a reasonable value for q->nr_requests */ #define MMC_QUEUE_DEPTH 64 static int mmc_mq_init(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock) { struct mmc_host *host = card->host; int q_depth; int ret = 0; #ifdef CONFIG_MTK_EMMC_CQ_SUPPORT int i; struct mmc_blk_data *md = container_of(mq, struct mmc_blk_data, queue); #endif /* * The queue depth for CQE must match the hardware because the request * tag is used to index the hardware queue. */ if (mq->use_cqe) q_depth = min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth); #ifdef CONFIG_MTK_EMMC_CQ_SUPPORT else if (mq->use_swcq && (md->area_type == MMC_BLK_DATA_AREA_MAIN)) { q_depth = MMC_QUEUE_DEPTH; atomic_set(&host->cq_rw, false); atomic_set(&host->cq_w, false); atomic_set(&host->cq_wait_rdy, 0); host->task_id_index = 0; atomic_set(&host->is_data_dma, 0); host->cur_rw_task = CQ_TASK_IDLE; atomic_set(&host->cq_tuning_now, 0); for (i = 0; i < EMMC_MAX_QUEUE_DEPTH; i++) { host->data_mrq_queued[i] = false; atomic_set(&mq->mqrq[i].index, 0); mq->mqrq[i].sg = mmc_alloc_sg(host->max_segs, GFP_KERNEL); if (!mq->mqrq[i].sg) ret = -ENOMEM; } if (ret) { for (i = 0; i < EMMC_MAX_QUEUE_DEPTH; i++) { kfree(mq->mqrq[i].sg); mq->mqrq[i].sg = NULL; } return ret; } host->cmdq_thread = kthread_run(mmc_run_queue_thread, host, "exe_cq/%d", host->index); } #endif else q_depth = MMC_QUEUE_DEPTH; ret = mmc_mq_init_queue(mq, q_depth, &mmc_mq_ops, lock); if (ret) return ret; blk_queue_rq_timeout(mq->queue, 20 * HZ); mmc_setup_queue(mq, card); /* inline crypto */ mmc_crypto_setup_queue(host, mq->queue); return 0; } /** * mmc_init_queue - initialise a queue structure. * @mq: mmc queue * @card: mmc card to attach this queue * @lock: queue lock * @subname: partition subname * * Initialise a MMC card request queue. */ int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock, const char *subname) { struct mmc_host *host = card->host; #ifdef CONFIG_MTK_EMMC_CQ_SUPPORT int err; #endif mq->card = card; mq->use_cqe = host->cqe_enabled; #ifdef CONFIG_MTK_EMMC_CQ_SUPPORT mq->use_swcq = host->swcq_enabled; /* inline crypto */ err = mmc_init_crypto(card->host); if (err) return err; #endif return mmc_mq_init(mq, card, lock); } void mmc_queue_suspend(struct mmc_queue *mq) { blk_mq_quiesce_queue(mq->queue); /* * The host remains claimed while there are outstanding requests, so * simply claiming and releasing here ensures there are none. */ mmc_claim_host(mq->card->host); mmc_release_host(mq->card->host); } void mmc_queue_resume(struct mmc_queue *mq) { blk_mq_unquiesce_queue(mq->queue); } void mmc_cleanup_queue(struct mmc_queue *mq) { struct request_queue *q = mq->queue; #ifdef CONFIG_LARGE_DIRTY_BUFFER /* Restore bdi min/max ratio before device removal */ bdi_set_min_ratio(q->backing_dev_info, 0); bdi_set_max_ratio(q->backing_dev_info, 100); #endif /* * The legacy code handled the possibility of being suspended, * so do that here too. */ if (blk_queue_quiesced(q)) blk_mq_unquiesce_queue(q); blk_cleanup_queue(q); blk_mq_free_tag_set(&mq->tag_set); /* * A request can be completed before the next request, potentially * leaving a complete_work with nothing to do. Such a work item might * still be queued at this point. Flush it. */ flush_work(&mq->complete_work); mq->card = NULL; } /* * Prepare the sg list(s) to be handed of to the host driver */ unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq) { struct request *req = mmc_queue_req_to_req(mqrq); return blk_rq_map_sg(mq->queue, req, mqrq->sg); }