/* * Copyright (c) 2014-2015 Hisilicon Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "hnae.h" #include "hns_enet.h" #include "hns_dsaf_mac.h" #define NIC_MAX_Q_PER_VF 16 #define HNS_NIC_TX_TIMEOUT (5 * HZ) #define SERVICE_TIMER_HZ (1 * HZ) #define RCB_IRQ_NOT_INITED 0 #define RCB_IRQ_INITED 1 #define HNS_BUFFER_SIZE_2048 2048 #define BD_MAX_SEND_SIZE 8191 #define SKB_TMP_LEN(SKB) \ (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, int send_sz, dma_addr_t dma, int frag_end, int buf_num, enum hns_desc_type type, int mtu) { struct hnae_desc *desc = &ring->desc[ring->next_to_use]; struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; struct iphdr *iphdr; struct ipv6hdr *ipv6hdr; struct sk_buff *skb; __be16 protocol; u8 bn_pid = 0; u8 rrcfv = 0; u8 ip_offset = 0; u8 tvsvsn = 0; u16 mss = 0; u8 l4_len = 0; u16 paylen = 0; desc_cb->priv = priv; desc_cb->length = size; desc_cb->dma = dma; desc_cb->type = type; desc->addr = cpu_to_le64(dma); desc->tx.send_size = cpu_to_le16((u16)send_sz); /* config bd buffer end */ hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); /* fill port_id in the tx bd for sending management pkts */ hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); if (type == DESC_TYPE_SKB) { skb = (struct sk_buff *)priv; if (skb->ip_summed == CHECKSUM_PARTIAL) { skb_reset_mac_len(skb); protocol = skb->protocol; ip_offset = ETH_HLEN; if (protocol == htons(ETH_P_8021Q)) { ip_offset += VLAN_HLEN; protocol = vlan_get_protocol(skb); skb->protocol = protocol; } if (skb->protocol == htons(ETH_P_IP)) { iphdr = ip_hdr(skb); hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); /* check for tcp/udp header */ if (iphdr->protocol == IPPROTO_TCP && skb_is_gso(skb)) { hnae_set_bit(tvsvsn, HNSV2_TXD_TSE_B, 1); l4_len = tcp_hdrlen(skb); mss = skb_shinfo(skb)->gso_size; paylen = skb->len - SKB_TMP_LEN(skb); } } else if (skb->protocol == htons(ETH_P_IPV6)) { hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); ipv6hdr = ipv6_hdr(skb); hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); /* check for tcp/udp header */ if (ipv6hdr->nexthdr == IPPROTO_TCP && skb_is_gso(skb) && skb_is_gso_v6(skb)) { hnae_set_bit(tvsvsn, HNSV2_TXD_TSE_B, 1); l4_len = tcp_hdrlen(skb); mss = skb_shinfo(skb)->gso_size; paylen = skb->len - SKB_TMP_LEN(skb); } } desc->tx.ip_offset = ip_offset; desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; desc->tx.mss = cpu_to_le16(mss); desc->tx.l4_len = l4_len; desc->tx.paylen = cpu_to_le16(paylen); } } hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); desc->tx.bn_pid = bn_pid; desc->tx.ra_ri_cs_fe_vld = rrcfv; ring_ptr_move_fw(ring, next_to_use); } static void fill_v2_desc(struct hnae_ring *ring, void *priv, int size, dma_addr_t dma, int frag_end, int buf_num, enum hns_desc_type type, int mtu) { fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, buf_num, type, mtu); } static const struct acpi_device_id hns_enet_acpi_match[] = { { "HISI00C1", 0 }, { "HISI00C2", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); static void fill_desc(struct hnae_ring *ring, void *priv, int size, dma_addr_t dma, int frag_end, int buf_num, enum hns_desc_type type, int mtu) { struct hnae_desc *desc = &ring->desc[ring->next_to_use]; struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; struct sk_buff *skb; __be16 protocol; u32 ip_offset; u32 asid_bufnum_pid = 0; u32 flag_ipoffset = 0; desc_cb->priv = priv; desc_cb->length = size; desc_cb->dma = dma; desc_cb->type = type; desc->addr = cpu_to_le64(dma); desc->tx.send_size = cpu_to_le16((u16)size); /*config bd buffer end */ flag_ipoffset |= 1 << HNS_TXD_VLD_B; asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; if (type == DESC_TYPE_SKB) { skb = (struct sk_buff *)priv; if (skb->ip_summed == CHECKSUM_PARTIAL) { protocol = skb->protocol; ip_offset = ETH_HLEN; /*if it is a SW VLAN check the next protocol*/ if (protocol == htons(ETH_P_8021Q)) { ip_offset += VLAN_HLEN; protocol = vlan_get_protocol(skb); skb->protocol = protocol; } if (skb->protocol == htons(ETH_P_IP)) { flag_ipoffset |= 1 << HNS_TXD_L3CS_B; /* check for tcp/udp header */ flag_ipoffset |= 1 << HNS_TXD_L4CS_B; } else if (skb->protocol == htons(ETH_P_IPV6)) { /* ipv6 has not l3 cs, check for L4 header */ flag_ipoffset |= 1 << HNS_TXD_L4CS_B; } flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; } } flag_ipoffset |= frag_end << HNS_TXD_FE_B; desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); ring_ptr_move_fw(ring, next_to_use); } static void unfill_desc(struct hnae_ring *ring) { ring_ptr_move_bw(ring, next_to_use); } static int hns_nic_maybe_stop_tx( struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) { struct sk_buff *skb = *out_skb; struct sk_buff *new_skb = NULL; int buf_num; /* no. of segments (plus a header) */ buf_num = skb_shinfo(skb)->nr_frags + 1; if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { if (ring_space(ring) < 1) return -EBUSY; new_skb = skb_copy(skb, GFP_ATOMIC); if (!new_skb) return -ENOMEM; dev_kfree_skb_any(skb); *out_skb = new_skb; buf_num = 1; } else if (buf_num > ring_space(ring)) { return -EBUSY; } *bnum = buf_num; return 0; } static int hns_nic_maybe_stop_tso( struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) { int i; int size; int buf_num; int frag_num; struct sk_buff *skb = *out_skb; struct sk_buff *new_skb = NULL; struct skb_frag_struct *frag; size = skb_headlen(skb); buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; frag_num = skb_shinfo(skb)->nr_frags; for (i = 0; i < frag_num; i++) { frag = &skb_shinfo(skb)->frags[i]; size = skb_frag_size(frag); buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; } if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; if (ring_space(ring) < buf_num) return -EBUSY; /* manual split the send packet */ new_skb = skb_copy(skb, GFP_ATOMIC); if (!new_skb) return -ENOMEM; dev_kfree_skb_any(skb); *out_skb = new_skb; } else if (ring_space(ring) < buf_num) { return -EBUSY; } *bnum = buf_num; return 0; } static void fill_tso_desc(struct hnae_ring *ring, void *priv, int size, dma_addr_t dma, int frag_end, int buf_num, enum hns_desc_type type, int mtu) { int frag_buf_num; int sizeoflast; int k; frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; sizeoflast = size % BD_MAX_SEND_SIZE; sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; /* when the frag size is bigger than hardware, split this frag */ for (k = 0; k < frag_buf_num; k++) fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, (k == frag_buf_num - 1) ? sizeoflast : BD_MAX_SEND_SIZE, dma + BD_MAX_SEND_SIZE * k, frag_end && (k == frag_buf_num - 1) ? 1 : 0, buf_num, (type == DESC_TYPE_SKB && !k) ? DESC_TYPE_SKB : DESC_TYPE_PAGE, mtu); } netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, struct sk_buff *skb, struct hns_nic_ring_data *ring_data) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_ring *ring = ring_data->ring; struct device *dev = ring_to_dev(ring); struct netdev_queue *dev_queue; struct skb_frag_struct *frag; int buf_num; int seg_num; dma_addr_t dma; int size, next_to_use; int i; switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { case -EBUSY: ring->stats.tx_busy++; goto out_net_tx_busy; case -ENOMEM: ring->stats.sw_err_cnt++; netdev_err(ndev, "no memory to xmit!\n"); goto out_err_tx_ok; default: break; } /* no. of segments (plus a header) */ seg_num = skb_shinfo(skb)->nr_frags + 1; next_to_use = ring->next_to_use; /* fill the first part */ size = skb_headlen(skb); dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma)) { netdev_err(ndev, "TX head DMA map failed\n"); ring->stats.sw_err_cnt++; goto out_err_tx_ok; } priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, buf_num, DESC_TYPE_SKB, ndev->mtu); /* fill the fragments */ for (i = 1; i < seg_num; i++) { frag = &skb_shinfo(skb)->frags[i - 1]; size = skb_frag_size(frag); dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma)) { netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); ring->stats.sw_err_cnt++; goto out_map_frag_fail; } priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, seg_num - 1 == i ? 1 : 0, buf_num, DESC_TYPE_PAGE, ndev->mtu); } /*complete translate all packets*/ dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); netdev_tx_sent_queue(dev_queue, skb->len); netif_trans_update(ndev); ndev->stats.tx_bytes += skb->len; ndev->stats.tx_packets++; wmb(); /* commit all data before submit */ assert(skb->queue_mapping < priv->ae_handle->q_num); hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); return NETDEV_TX_OK; out_map_frag_fail: while (ring->next_to_use != next_to_use) { unfill_desc(ring); if (ring->next_to_use != next_to_use) dma_unmap_page(dev, ring->desc_cb[ring->next_to_use].dma, ring->desc_cb[ring->next_to_use].length, DMA_TO_DEVICE); else dma_unmap_single(dev, ring->desc_cb[next_to_use].dma, ring->desc_cb[next_to_use].length, DMA_TO_DEVICE); } out_err_tx_ok: dev_kfree_skb_any(skb); return NETDEV_TX_OK; out_net_tx_busy: netif_stop_subqueue(ndev, skb->queue_mapping); /* Herbert's original patch had: * smp_mb__after_netif_stop_queue(); * but since that doesn't exist yet, just open code it. */ smp_mb(); return NETDEV_TX_BUSY; } static void hns_nic_reuse_page(struct sk_buff *skb, int i, struct hnae_ring *ring, int pull_len, struct hnae_desc_cb *desc_cb) { struct hnae_desc *desc; u32 truesize; int size; int last_offset; bool twobufs; twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); desc = &ring->desc[ring->next_to_clean]; size = le16_to_cpu(desc->rx.size); if (twobufs) { truesize = hnae_buf_size(ring); } else { truesize = ALIGN(size, L1_CACHE_BYTES); last_offset = hnae_page_size(ring) - hnae_buf_size(ring); } skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, size - pull_len, truesize); /* avoid re-using remote pages,flag default unreuse */ if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) return; if (twobufs) { /* if we are only owner of page we can reuse it */ if (likely(page_count(desc_cb->priv) == 1)) { /* flip page offset to other buffer */ desc_cb->page_offset ^= truesize; desc_cb->reuse_flag = 1; /* bump ref count on page before it is given*/ get_page(desc_cb->priv); } return; } /* move offset up to the next cache line */ desc_cb->page_offset += truesize; if (desc_cb->page_offset <= last_offset) { desc_cb->reuse_flag = 1; /* bump ref count on page before it is given*/ get_page(desc_cb->priv); } } static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) { *out_bnum = hnae_get_field(bnum_flag, HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; } static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) { *out_bnum = hnae_get_field(bnum_flag, HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); } static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, struct sk_buff *skb, u32 flag) { struct net_device *netdev = ring_data->napi.dev; u32 l3id; u32 l4id; /* check if RX checksum offload is enabled */ if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) return; /* In hardware, we only support checksum for the following protocols: * 1) IPv4, * 2) TCP(over IPv4 or IPv6), * 3) UDP(over IPv4 or IPv6), * 4) SCTP(over IPv4 or IPv6) * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. * * Hardware limitation: * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & * Error" bit (which usually can be used to indicate whether checksum * was calculated by the hardware and if there was any error encountered * during checksum calculation). * * Software workaround: * We do get info within the RX descriptor about the kind of L3/L4 * protocol coming in the packet and the error status. These errors * might not just be checksum errors but could be related to version, * length of IPv4, UDP, TCP etc. * Because there is no-way of knowing if it is a L3/L4 error due to bad * checksum or any other L3/L4 error, we will not (cannot) convey * checksum status for such cases to upper stack and will not maintain * the RX L3/L4 checksum counters as well. */ l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); /* check L3 protocol for which checksum is supported */ if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) return; /* check for any(not just checksum)flagged L3 protocol errors */ if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) return; /* we do not support checksum of fragmented packets */ if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) return; /* check L4 protocol for which checksum is supported */ if ((l4id != HNS_RX_FLAG_L4ID_TCP) && (l4id != HNS_RX_FLAG_L4ID_UDP) && (l4id != HNS_RX_FLAG_L4ID_SCTP)) return; /* check for any(not just checksum)flagged L4 protocol errors */ if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) return; /* now, this has to be a packet with valid RX checksum */ skb->ip_summed = CHECKSUM_UNNECESSARY; } static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, struct sk_buff **out_skb, int *out_bnum) { struct hnae_ring *ring = ring_data->ring; struct net_device *ndev = ring_data->napi.dev; struct hns_nic_priv *priv = netdev_priv(ndev); struct sk_buff *skb; struct hnae_desc *desc; struct hnae_desc_cb *desc_cb; unsigned char *va; int bnum, length, i; int pull_len; u32 bnum_flag; desc = &ring->desc[ring->next_to_clean]; desc_cb = &ring->desc_cb[ring->next_to_clean]; prefetch(desc); va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; /* prefetch first cache line of first page */ prefetch(va); #if L1_CACHE_BYTES < 128 prefetch(va + L1_CACHE_BYTES); #endif skb = *out_skb = napi_alloc_skb(&ring_data->napi, HNS_RX_HEAD_SIZE); if (unlikely(!skb)) { ring->stats.sw_err_cnt++; return -ENOMEM; } prefetchw(skb->data); length = le16_to_cpu(desc->rx.pkt_len); bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); priv->ops.get_rxd_bnum(bnum_flag, &bnum); *out_bnum = bnum; if (length <= HNS_RX_HEAD_SIZE) { memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); /* we can reuse buffer as-is, just make sure it is local */ if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) desc_cb->reuse_flag = 1; else /* this page cannot be reused so discard it */ put_page(desc_cb->priv); ring_ptr_move_fw(ring, next_to_clean); if (unlikely(bnum != 1)) { /* check err*/ *out_bnum = 1; goto out_bnum_err; } } else { ring->stats.seg_pkt_cnt++; pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE); memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); ring_ptr_move_fw(ring, next_to_clean); if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ *out_bnum = 1; goto out_bnum_err; } for (i = 1; i < bnum; i++) { desc = &ring->desc[ring->next_to_clean]; desc_cb = &ring->desc_cb[ring->next_to_clean]; hns_nic_reuse_page(skb, i, ring, 0, desc_cb); ring_ptr_move_fw(ring, next_to_clean); } } /* check except process, free skb and jump the desc */ if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { out_bnum_err: *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", bnum, ring->max_desc_num_per_pkt, length, (int)MAX_SKB_FRAGS, ((u64 *)desc)[0], ((u64 *)desc)[1]); ring->stats.err_bd_num++; dev_kfree_skb_any(skb); return -EDOM; } bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { netdev_err(ndev, "no valid bd,%016llx,%016llx\n", ((u64 *)desc)[0], ((u64 *)desc)[1]); ring->stats.non_vld_descs++; dev_kfree_skb_any(skb); return -EINVAL; } if (unlikely((!desc->rx.pkt_len) || hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { ring->stats.err_pkt_len++; dev_kfree_skb_any(skb); return -EFAULT; } if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { ring->stats.l2_err++; dev_kfree_skb_any(skb); return -EFAULT; } ring->stats.rx_pkts++; ring->stats.rx_bytes += skb->len; /* indicate to upper stack if our hardware has already calculated * the RX checksum */ hns_nic_rx_checksum(ring_data, skb, bnum_flag); return 0; } static void hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) { int i, ret; struct hnae_desc_cb res_cbs; struct hnae_desc_cb *desc_cb; struct hnae_ring *ring = ring_data->ring; struct net_device *ndev = ring_data->napi.dev; for (i = 0; i < cleand_count; i++) { desc_cb = &ring->desc_cb[ring->next_to_use]; if (desc_cb->reuse_flag) { ring->stats.reuse_pg_cnt++; hnae_reuse_buffer(ring, ring->next_to_use); } else { ret = hnae_reserve_buffer_map(ring, &res_cbs); if (ret) { ring->stats.sw_err_cnt++; netdev_err(ndev, "hnae reserve buffer map failed.\n"); break; } hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); } ring_ptr_move_fw(ring, next_to_use); } wmb(); /* make all data has been write before submit */ writel_relaxed(i, ring->io_base + RCB_REG_HEAD); } /* return error number for error or number of desc left to take */ static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, struct sk_buff *skb) { struct net_device *ndev = ring_data->napi.dev; skb->protocol = eth_type_trans(skb, ndev); (void)napi_gro_receive(&ring_data->napi, skb); } static int hns_desc_unused(struct hnae_ring *ring) { int ntc = ring->next_to_clean; int ntu = ring->next_to_use; return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; } #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ #define HNS_COAL_BDNUM 3 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) { bool coal_enable = ring->q->handle->coal_adapt_en; if (coal_enable && ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) return HNS_COAL_BDNUM; else return 0; } static void hns_update_rx_rate(struct hnae_ring *ring) { bool coal_enable = ring->q->handle->coal_adapt_en; u32 time_passed_ms; u64 total_bytes; if (!coal_enable || time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) return; /* ring->stats.rx_bytes overflowed */ if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { ring->coal_last_rx_bytes = ring->stats.rx_bytes; ring->coal_last_jiffies = jiffies; return; } total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); do_div(total_bytes, time_passed_ms); ring->coal_rx_rate = total_bytes >> 10; ring->coal_last_rx_bytes = ring->stats.rx_bytes; ring->coal_last_jiffies = jiffies; } /** * smooth_alg - smoothing algrithm for adjusting coalesce parameter **/ static u32 smooth_alg(u32 new_param, u32 old_param) { u32 gap = (new_param > old_param) ? new_param - old_param : old_param - new_param; if (gap > 8) gap >>= 3; if (new_param > old_param) return old_param + gap; else return old_param - gap; } /** * hns_nic_adp_coalesce - self adapte coalesce according to rx rate * @ring_data: pointer to hns_nic_ring_data **/ static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) { struct hnae_ring *ring = ring_data->ring; struct hnae_handle *handle = ring->q->handle; u32 new_coal_param, old_coal_param = ring->coal_param; if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; else new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; if (new_coal_param == old_coal_param && new_coal_param == handle->coal_param) return; new_coal_param = smooth_alg(new_coal_param, old_coal_param); ring->coal_param = new_coal_param; /** * Because all ring in one port has one coalesce param, when one ring * calculate its own coalesce param, it cannot write to hardware at * once. There are three conditions as follows: * 1. current ring's coalesce param is larger than the hardware. * 2. or ring which adapt last time can change again. * 3. timeout. */ if (new_coal_param == handle->coal_param) { handle->coal_last_jiffies = jiffies; handle->coal_ring_idx = ring_data->queue_index; } else if (new_coal_param > handle->coal_param || handle->coal_ring_idx == ring_data->queue_index || time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { handle->dev->ops->set_coalesce_usecs(handle, new_coal_param); handle->dev->ops->set_coalesce_frames(handle, 1, new_coal_param); handle->coal_param = new_coal_param; handle->coal_ring_idx = ring_data->queue_index; handle->coal_last_jiffies = jiffies; } } static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, int budget, void *v) { struct hnae_ring *ring = ring_data->ring; struct sk_buff *skb; int num, bnum; #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 int recv_pkts, recv_bds, clean_count, err; int unused_count = hns_desc_unused(ring); num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); rmb(); /* make sure num taken effect before the other data is touched */ recv_pkts = 0, recv_bds = 0, clean_count = 0; num -= unused_count; while (recv_pkts < budget && recv_bds < num) { /* reuse or realloc buffers */ if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { hns_nic_alloc_rx_buffers(ring_data, clean_count + unused_count); clean_count = 0; unused_count = hns_desc_unused(ring); } /* poll one pkt */ err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); if (unlikely(!skb)) /* this fault cannot be repaired */ goto out; recv_bds += bnum; clean_count += bnum; if (unlikely(err)) { /* do jump the err */ recv_pkts++; continue; } /* do update ip stack process*/ ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( ring_data, skb); recv_pkts++; } out: /* make all data has been write before submit */ if (clean_count + unused_count > 0) hns_nic_alloc_rx_buffers(ring_data, clean_count + unused_count); return recv_pkts; } static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) { struct hnae_ring *ring = ring_data->ring; int num = 0; bool rx_stopped; hns_update_rx_rate(ring); /* for hardware bug fixed */ ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); if (num <= hns_coal_rx_bdnum(ring)) { if (ring->q->handle->coal_adapt_en) hns_nic_adpt_coalesce(ring_data); rx_stopped = true; } else { ring_data->ring->q->handle->dev->ops->toggle_ring_irq( ring_data->ring, 1); rx_stopped = false; } return rx_stopped; } static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) { struct hnae_ring *ring = ring_data->ring; int num; hns_update_rx_rate(ring); num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); if (num <= hns_coal_rx_bdnum(ring)) { if (ring->q->handle->coal_adapt_en) hns_nic_adpt_coalesce(ring_data); return true; } return false; } static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, int *bytes, int *pkts) { struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; (*pkts) += (desc_cb->type == DESC_TYPE_SKB); (*bytes) += desc_cb->length; /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ hnae_free_buffer_detach(ring, ring->next_to_clean); ring_ptr_move_fw(ring, next_to_clean); } static int is_valid_clean_head(struct hnae_ring *ring, int h) { int u = ring->next_to_use; int c = ring->next_to_clean; if (unlikely(h > ring->desc_num)) return 0; assert(u > 0 && u < ring->desc_num); assert(c > 0 && c < ring->desc_num); assert(u != c && h != c); /* must be checked before call this func */ return u > c ? (h > c && h <= u) : (h > c || h <= u); } /* reclaim all desc in one budget * return error or number of desc left */ static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, int budget, void *v) { struct hnae_ring *ring = ring_data->ring; struct net_device *ndev = ring_data->napi.dev; struct netdev_queue *dev_queue; struct hns_nic_priv *priv = netdev_priv(ndev); int head; int bytes, pkts; head = readl_relaxed(ring->io_base + RCB_REG_HEAD); rmb(); /* make sure head is ready before touch any data */ if (is_ring_empty(ring) || head == ring->next_to_clean) return 0; /* no data to poll */ if (!is_valid_clean_head(ring, head)) { netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, ring->next_to_use, ring->next_to_clean); ring->stats.io_err_cnt++; return -EIO; } bytes = 0; pkts = 0; while (head != ring->next_to_clean) { hns_nic_reclaim_one_desc(ring, &bytes, &pkts); /* issue prefetch for next Tx descriptor */ prefetch(&ring->desc_cb[ring->next_to_clean]); } /* update tx ring statistics. */ ring->stats.tx_pkts += pkts; ring->stats.tx_bytes += bytes; dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); netdev_tx_completed_queue(dev_queue, pkts, bytes); if (unlikely(priv->link && !netif_carrier_ok(ndev))) netif_carrier_on(ndev); if (unlikely(pkts && netif_carrier_ok(ndev) && (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (netif_tx_queue_stopped(dev_queue) && !test_bit(NIC_STATE_DOWN, &priv->state)) { netif_tx_wake_queue(dev_queue); ring->stats.restart_queue++; } } return 0; } static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) { struct hnae_ring *ring = ring_data->ring; int head; ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); head = readl_relaxed(ring->io_base + RCB_REG_HEAD); if (head != ring->next_to_clean) { ring_data->ring->q->handle->dev->ops->toggle_ring_irq( ring_data->ring, 1); return false; } else { return true; } } static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) { struct hnae_ring *ring = ring_data->ring; int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); if (head == ring->next_to_clean) return true; else return false; } static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) { struct hnae_ring *ring = ring_data->ring; struct net_device *ndev = ring_data->napi.dev; struct netdev_queue *dev_queue; int head; int bytes, pkts; head = ring->next_to_use; /* ntu :soft setted ring position*/ bytes = 0; pkts = 0; while (head != ring->next_to_clean) hns_nic_reclaim_one_desc(ring, &bytes, &pkts); dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); netdev_tx_reset_queue(dev_queue); } static int hns_nic_common_poll(struct napi_struct *napi, int budget) { int clean_complete = 0; struct hns_nic_ring_data *ring_data = container_of(napi, struct hns_nic_ring_data, napi); struct hnae_ring *ring = ring_data->ring; clean_complete += ring_data->poll_one( ring_data, budget - clean_complete, ring_data->ex_process); if (clean_complete < budget) { if (ring_data->fini_process(ring_data)) { napi_complete(napi); ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); } else { return budget; } } return clean_complete; } static irqreturn_t hns_irq_handle(int irq, void *dev) { struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; ring_data->ring->q->handle->dev->ops->toggle_ring_irq( ring_data->ring, 1); napi_schedule(&ring_data->napi); return IRQ_HANDLED; } /** *hns_nic_adjust_link - adjust net work mode by the phy stat or new param *@ndev: net device */ static void hns_nic_adjust_link(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; int state = 1; /* If there is no phy, do not need adjust link */ if (ndev->phydev) { /* When phy link down, do nothing */ if (ndev->phydev->link == 0) return; if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex)) { /* because Hi161X chip don't support to change gmac * speed and duplex with traffic. Delay 200ms to * make sure there is no more data in chip FIFO. */ netif_carrier_off(ndev); msleep(200); h->dev->ops->adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex); netif_carrier_on(ndev); } } state = state && h->dev->ops->get_status(h); if (state != priv->link) { if (state) { netif_carrier_on(ndev); netif_tx_wake_all_queues(ndev); netdev_info(ndev, "link up\n"); } else { netif_carrier_off(ndev); netdev_info(ndev, "link down\n"); } priv->link = state; } } /** *hns_nic_init_phy - init phy *@ndev: net device *@h: ae handle * Return 0 on success, negative on failure */ int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) { struct phy_device *phy_dev = h->phy_dev; int ret; if (!h->phy_dev) return 0; phy_dev->supported &= h->if_support; phy_dev->advertising = phy_dev->supported; if (h->phy_if == PHY_INTERFACE_MODE_XGMII) phy_dev->autoneg = false; if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { phy_dev->dev_flags = 0; ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, h->phy_if); } else { ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); } if (unlikely(ret)) return -ENODEV; return 0; } static int hns_nic_ring_open(struct net_device *netdev, int idx) { struct hns_nic_priv *priv = netdev_priv(netdev); struct hnae_handle *h = priv->ae_handle; napi_enable(&priv->ring_data[idx].napi); enable_irq(priv->ring_data[idx].ring->irq); h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); return 0; } static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; struct sockaddr *mac_addr = p; int ret; if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) return -EADDRNOTAVAIL; ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); if (ret) { netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); return ret; } memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); return 0; } static void hns_nic_update_stats(struct net_device *netdev) { struct hns_nic_priv *priv = netdev_priv(netdev); struct hnae_handle *h = priv->ae_handle; h->dev->ops->update_stats(h, &netdev->stats); } /* set mac addr if it is configed. or leave it to the AE driver */ static void hns_init_mac_addr(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { eth_hw_addr_random(ndev); dev_warn(priv->dev, "No valid mac, use random mac %pM", ndev->dev_addr); } } static void hns_nic_ring_close(struct net_device *netdev, int idx) { struct hns_nic_priv *priv = netdev_priv(netdev); struct hnae_handle *h = priv->ae_handle; h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); disable_irq(priv->ring_data[idx].ring->irq); napi_disable(&priv->ring_data[idx].napi); } static int hns_nic_init_affinity_mask(int q_num, int ring_idx, struct hnae_ring *ring, cpumask_t *mask) { int cpu; /* Diffrent irq banlance between 16core and 32core. * The cpu mask set by ring index according to the ring flag * which indicate the ring is tx or rx. */ if (q_num == num_possible_cpus()) { if (is_tx_ring(ring)) cpu = ring_idx; else cpu = ring_idx - q_num; } else { if (is_tx_ring(ring)) cpu = ring_idx * 2; else cpu = (ring_idx - q_num) * 2 + 1; } cpumask_clear(mask); cpumask_set_cpu(cpu, mask); return cpu; } static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) { int i; for (i = 0; i < q_num * 2; i++) { if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { irq_set_affinity_hint(priv->ring_data[i].ring->irq, NULL); free_irq(priv->ring_data[i].ring->irq, &priv->ring_data[i]); priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; } } } static int hns_nic_init_irq(struct hns_nic_priv *priv) { struct hnae_handle *h = priv->ae_handle; struct hns_nic_ring_data *rd; int i; int ret; int cpu; for (i = 0; i < h->q_num * 2; i++) { rd = &priv->ring_data[i]; if (rd->ring->irq_init_flag == RCB_IRQ_INITED) break; snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, "%s-%s%d", priv->netdev->name, (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; ret = request_irq(rd->ring->irq, hns_irq_handle, 0, rd->ring->ring_name, rd); if (ret) { netdev_err(priv->netdev, "request irq(%d) fail\n", rd->ring->irq); goto out_free_irq; } disable_irq(rd->ring->irq); cpu = hns_nic_init_affinity_mask(h->q_num, i, rd->ring, &rd->mask); if (cpu_online(cpu)) irq_set_affinity_hint(rd->ring->irq, &rd->mask); rd->ring->irq_init_flag = RCB_IRQ_INITED; } return 0; out_free_irq: hns_nic_free_irq(h->q_num, priv); return ret; } static int hns_nic_net_up(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; int i, j; int ret; if (!test_bit(NIC_STATE_DOWN, &priv->state)) return 0; ret = hns_nic_init_irq(priv); if (ret != 0) { netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); return ret; } for (i = 0; i < h->q_num * 2; i++) { ret = hns_nic_ring_open(ndev, i); if (ret) goto out_has_some_queues; } ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); if (ret) goto out_set_mac_addr_err; ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; if (ret) goto out_start_err; if (ndev->phydev) phy_start(ndev->phydev); clear_bit(NIC_STATE_DOWN, &priv->state); (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); return 0; out_start_err: netif_stop_queue(ndev); out_set_mac_addr_err: out_has_some_queues: for (j = i - 1; j >= 0; j--) hns_nic_ring_close(ndev, j); hns_nic_free_irq(h->q_num, priv); set_bit(NIC_STATE_DOWN, &priv->state); return ret; } static void hns_nic_net_down(struct net_device *ndev) { int i; struct hnae_ae_ops *ops; struct hns_nic_priv *priv = netdev_priv(ndev); if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) return; (void)del_timer_sync(&priv->service_timer); netif_tx_stop_all_queues(ndev); netif_carrier_off(ndev); netif_tx_disable(ndev); priv->link = 0; if (ndev->phydev) phy_stop(ndev->phydev); ops = priv->ae_handle->dev->ops; if (ops->stop) ops->stop(priv->ae_handle); netif_tx_stop_all_queues(ndev); for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { hns_nic_ring_close(ndev, i); hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); /* clean tx buffers*/ hns_nic_tx_clr_all_bufs(priv->ring_data + i); } } void hns_nic_net_reset(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *handle = priv->ae_handle; while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) usleep_range(1000, 2000); (void)hnae_reinit_handle(handle); clear_bit(NIC_STATE_RESETTING, &priv->state); } void hns_nic_net_reinit(struct net_device *netdev) { struct hns_nic_priv *priv = netdev_priv(netdev); enum hnae_port_type type = priv->ae_handle->port_type; netif_trans_update(priv->netdev); while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) usleep_range(1000, 2000); hns_nic_net_down(netdev); /* Only do hns_nic_net_reset in debug mode * because of hardware limitation. */ if (type == HNAE_PORT_DEBUG) hns_nic_net_reset(netdev); (void)hns_nic_net_up(netdev); clear_bit(NIC_STATE_REINITING, &priv->state); } static int hns_nic_net_open(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; int ret; if (test_bit(NIC_STATE_TESTING, &priv->state)) return -EBUSY; priv->link = 0; netif_carrier_off(ndev); ret = netif_set_real_num_tx_queues(ndev, h->q_num); if (ret < 0) { netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", ret); return ret; } ret = netif_set_real_num_rx_queues(ndev, h->q_num); if (ret < 0) { netdev_err(ndev, "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); return ret; } ret = hns_nic_net_up(ndev); if (ret) { netdev_err(ndev, "hns net up fail, ret=%d!\n", ret); return ret; } return 0; } static int hns_nic_net_stop(struct net_device *ndev) { hns_nic_net_down(ndev); return 0; } static void hns_tx_timeout_reset(struct hns_nic_priv *priv); #define HNS_TX_TIMEO_LIMIT (40 * HZ) static void hns_nic_net_timeout(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { ndev->watchdog_timeo *= 2; netdev_info(ndev, "watchdog_timo changed to %d.\n", ndev->watchdog_timeo); } else { ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; hns_tx_timeout_reset(priv); } } static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct phy_device *phy_dev = netdev->phydev; if (!netif_running(netdev)) return -EINVAL; if (!phy_dev) return -ENOTSUPP; return phy_mii_ioctl(phy_dev, ifr, cmd); } static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); assert(skb->queue_mapping < ndev->ae_handle->q_num); return hns_nic_net_xmit_hw(ndev, skb, &tx_ring_data(priv, skb->queue_mapping)); } static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, struct sk_buff *skb) { dev_kfree_skb_any(skb); } #define HNS_LB_TX_RING 0 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) { struct sk_buff *skb; struct ethhdr *ethhdr; int frame_len; /* allocate test skb */ skb = alloc_skb(64, GFP_KERNEL); if (!skb) return NULL; skb_put(skb, 64); skb->dev = ndev; memset(skb->data, 0xFF, skb->len); /* must be tcp/ip package */ ethhdr = (struct ethhdr *)skb->data; ethhdr->h_proto = htons(ETH_P_IP); frame_len = skb->len & (~1ul); memset(&skb->data[frame_len / 2], 0xAA, frame_len / 2 - 1); skb->queue_mapping = HNS_LB_TX_RING; return skb; } static int hns_enable_serdes_lb(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; struct hnae_ae_ops *ops = h->dev->ops; int speed, duplex; int ret; ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); if (ret) return ret; ret = ops->start ? ops->start(h) : 0; if (ret) return ret; /* link adjust duplex*/ if (h->phy_if != PHY_INTERFACE_MODE_XGMII) speed = 1000; else speed = 10000; duplex = 1; ops->adjust_link(h, speed, duplex); /* wait h/w ready */ mdelay(300); return 0; } static void hns_disable_serdes_lb(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; struct hnae_ae_ops *ops = h->dev->ops; ops->stop(h); ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); } /** *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The *function as follows: * 1. if one rx ring has found the page_offset is not equal 0 between head * and tail, it means that the chip fetched the wrong descs for the ring * which buffer size is 4096. * 2. we set the chip serdes loopback and set rss indirection to the ring. * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring * recieving all packages and it will fetch new descriptions. * 4. recover to the original state. * *@ndev: net device */ static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; struct hnae_ae_ops *ops = h->dev->ops; struct hns_nic_ring_data *rd; struct hnae_ring *ring; struct sk_buff *skb; u32 *org_indir; u32 *cur_indir; int indir_size; int head, tail; int fetch_num; int i, j; bool found; int retry_times; int ret = 0; /* alloc indir memory */ indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); org_indir = kzalloc(indir_size, GFP_KERNEL); if (!org_indir) return -ENOMEM; /* store the orginal indirection */ ops->get_rss(h, org_indir, NULL, NULL); cur_indir = kzalloc(indir_size, GFP_KERNEL); if (!cur_indir) { ret = -ENOMEM; goto cur_indir_alloc_err; } /* set loopback */ if (hns_enable_serdes_lb(ndev)) { ret = -EINVAL; goto enable_serdes_lb_err; } /* foreach every rx ring to clear fetch desc */ for (i = 0; i < h->q_num; i++) { ring = &h->qs[i]->rx_ring; head = readl_relaxed(ring->io_base + RCB_REG_HEAD); tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); found = false; fetch_num = ring_dist(ring, head, tail); while (head != tail) { if (ring->desc_cb[head].page_offset != 0) { found = true; break; } head++; if (head == ring->desc_num) head = 0; } if (found) { for (j = 0; j < indir_size / sizeof(*org_indir); j++) cur_indir[j] = i; ops->set_rss(h, cur_indir, NULL, 0); for (j = 0; j < fetch_num; j++) { /* alloc one skb and init */ skb = hns_assemble_skb(ndev); if (!skb) { ret = -ENOMEM; goto out; } rd = &tx_ring_data(priv, skb->queue_mapping); hns_nic_net_xmit_hw(ndev, skb, rd); retry_times = 0; while (retry_times++ < 10) { mdelay(10); /* clean rx */ rd = &rx_ring_data(priv, i); if (rd->poll_one(rd, fetch_num, hns_nic_drop_rx_fetch)) break; } retry_times = 0; while (retry_times++ < 10) { mdelay(10); /* clean tx ring 0 send package */ rd = &tx_ring_data(priv, HNS_LB_TX_RING); if (rd->poll_one(rd, fetch_num, NULL)) break; } } } } out: /* restore everything */ ops->set_rss(h, org_indir, NULL, 0); hns_disable_serdes_lb(ndev); enable_serdes_lb_err: kfree(cur_indir); cur_indir_alloc_err: kfree(org_indir); return ret; } static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; bool if_running = netif_running(ndev); int ret; /* MTU < 68 is an error and causes problems on some kernels */ if (new_mtu < 68) return -EINVAL; /* MTU no change */ if (new_mtu == ndev->mtu) return 0; if (!h->dev->ops->set_mtu) return -ENOTSUPP; if (if_running) { (void)hns_nic_net_stop(ndev); msleep(100); } if (priv->enet_ver != AE_VERSION_1 && ndev->mtu <= BD_SIZE_2048_MAX_MTU && new_mtu > BD_SIZE_2048_MAX_MTU) { /* update desc */ hnae_reinit_all_ring_desc(h); /* clear the package which the chip has fetched */ ret = hns_nic_clear_all_rx_fetch(ndev); /* the page offset must be consist with desc */ hnae_reinit_all_ring_page_off(h); if (ret) { netdev_err(ndev, "clear the fetched desc fail\n"); goto out; } } ret = h->dev->ops->set_mtu(h, new_mtu); if (ret) { netdev_err(ndev, "set mtu fail, return value %d\n", ret); goto out; } /* finally, set new mtu to netdevice */ ndev->mtu = new_mtu; out: if (if_running) { if (hns_nic_net_open(ndev)) { netdev_err(ndev, "hns net open fail\n"); ret = -EINVAL; } } return ret; } static int hns_nic_set_features(struct net_device *netdev, netdev_features_t features) { struct hns_nic_priv *priv = netdev_priv(netdev); switch (priv->enet_ver) { case AE_VERSION_1: if (features & (NETIF_F_TSO | NETIF_F_TSO6)) netdev_info(netdev, "enet v1 do not support tso!\n"); break; default: if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { priv->ops.fill_desc = fill_tso_desc; priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; /* The chip only support 7*4096 */ netif_set_gso_max_size(netdev, 7 * 4096); } else { priv->ops.fill_desc = fill_v2_desc; priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; } break; } netdev->features = features; return 0; } static netdev_features_t hns_nic_fix_features( struct net_device *netdev, netdev_features_t features) { struct hns_nic_priv *priv = netdev_priv(netdev); switch (priv->enet_ver) { case AE_VERSION_1: features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_FILTER); break; default: break; } return features; } static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) { struct hns_nic_priv *priv = netdev_priv(netdev); struct hnae_handle *h = priv->ae_handle; if (h->dev->ops->add_uc_addr) return h->dev->ops->add_uc_addr(h, addr); return 0; } static int hns_nic_uc_unsync(struct net_device *netdev, const unsigned char *addr) { struct hns_nic_priv *priv = netdev_priv(netdev); struct hnae_handle *h = priv->ae_handle; if (h->dev->ops->rm_uc_addr) return h->dev->ops->rm_uc_addr(h, addr); return 0; } /** * nic_set_multicast_list - set mutl mac address * @netdev: net device * @p: mac address * * return void */ static void hns_set_multicast_list(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; struct netdev_hw_addr *ha = NULL; if (!h) { netdev_err(ndev, "hnae handle is null\n"); return; } if (h->dev->ops->clr_mc_addr) if (h->dev->ops->clr_mc_addr(h)) netdev_err(ndev, "clear multicast address fail\n"); if (h->dev->ops->set_mc_addr) { netdev_for_each_mc_addr(ha, ndev) if (h->dev->ops->set_mc_addr(h, ha->addr)) netdev_err(ndev, "set multicast fail\n"); } } static void hns_nic_set_rx_mode(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; if (h->dev->ops->set_promisc_mode) { if (ndev->flags & IFF_PROMISC) h->dev->ops->set_promisc_mode(h, 1); else h->dev->ops->set_promisc_mode(h, 0); } hns_set_multicast_list(ndev); if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) netdev_err(ndev, "sync uc address fail\n"); } static void hns_nic_get_stats64(struct net_device *ndev, struct rtnl_link_stats64 *stats) { int idx = 0; u64 tx_bytes = 0; u64 rx_bytes = 0; u64 tx_pkts = 0; u64 rx_pkts = 0; struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h = priv->ae_handle; for (idx = 0; idx < h->q_num; idx++) { tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; } stats->tx_bytes = tx_bytes; stats->tx_packets = tx_pkts; stats->rx_bytes = rx_bytes; stats->rx_packets = rx_pkts; stats->rx_errors = ndev->stats.rx_errors; stats->multicast = ndev->stats.multicast; stats->rx_length_errors = ndev->stats.rx_length_errors; stats->rx_crc_errors = ndev->stats.rx_crc_errors; stats->rx_missed_errors = ndev->stats.rx_missed_errors; stats->tx_errors = ndev->stats.tx_errors; stats->rx_dropped = ndev->stats.rx_dropped; stats->tx_dropped = ndev->stats.tx_dropped; stats->collisions = ndev->stats.collisions; stats->rx_over_errors = ndev->stats.rx_over_errors; stats->rx_frame_errors = ndev->stats.rx_frame_errors; stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; stats->tx_window_errors = ndev->stats.tx_window_errors; stats->rx_compressed = ndev->stats.rx_compressed; stats->tx_compressed = ndev->stats.tx_compressed; } static u16 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, struct net_device *sb_dev, select_queue_fallback_t fallback) { struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; struct hns_nic_priv *priv = netdev_priv(ndev); /* fix hardware broadcast/multicast packets queue loopback */ if (!AE_IS_VER1(priv->enet_ver) && is_multicast_ether_addr(eth_hdr->h_dest)) return 0; else return fallback(ndev, skb, NULL); } static const struct net_device_ops hns_nic_netdev_ops = { .ndo_open = hns_nic_net_open, .ndo_stop = hns_nic_net_stop, .ndo_start_xmit = hns_nic_net_xmit, .ndo_tx_timeout = hns_nic_net_timeout, .ndo_set_mac_address = hns_nic_net_set_mac_address, .ndo_change_mtu = hns_nic_change_mtu, .ndo_do_ioctl = hns_nic_do_ioctl, .ndo_set_features = hns_nic_set_features, .ndo_fix_features = hns_nic_fix_features, .ndo_get_stats64 = hns_nic_get_stats64, .ndo_set_rx_mode = hns_nic_set_rx_mode, .ndo_select_queue = hns_nic_select_queue, }; static void hns_nic_update_link_status(struct net_device *netdev) { struct hns_nic_priv *priv = netdev_priv(netdev); struct hnae_handle *h = priv->ae_handle; if (h->phy_dev) { if (h->phy_if != PHY_INTERFACE_MODE_XGMII) return; (void)genphy_read_status(h->phy_dev); } hns_nic_adjust_link(netdev); } /* for dumping key regs*/ static void hns_nic_dump(struct hns_nic_priv *priv) { struct hnae_handle *h = priv->ae_handle; struct hnae_ae_ops *ops = h->dev->ops; u32 *data, reg_num, i; if (ops->get_regs_len && ops->get_regs) { reg_num = ops->get_regs_len(priv->ae_handle); reg_num = (reg_num + 3ul) & ~3ul; data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); if (data) { ops->get_regs(priv->ae_handle, data); for (i = 0; i < reg_num; i += 4) pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i, data[i], data[i + 1], data[i + 2], data[i + 3]); kfree(data); } } for (i = 0; i < h->q_num; i++) { pr_info("tx_queue%d_next_to_clean:%d\n", i, h->qs[i]->tx_ring.next_to_clean); pr_info("tx_queue%d_next_to_use:%d\n", i, h->qs[i]->tx_ring.next_to_use); pr_info("rx_queue%d_next_to_clean:%d\n", i, h->qs[i]->rx_ring.next_to_clean); pr_info("rx_queue%d_next_to_use:%d\n", i, h->qs[i]->rx_ring.next_to_use); } } /* for resetting subtask */ static void hns_nic_reset_subtask(struct hns_nic_priv *priv) { enum hnae_port_type type = priv->ae_handle->port_type; if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) return; clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); /* If we're already down, removing or resetting, just bail */ if (test_bit(NIC_STATE_DOWN, &priv->state) || test_bit(NIC_STATE_REMOVING, &priv->state) || test_bit(NIC_STATE_RESETTING, &priv->state)) return; hns_nic_dump(priv); netdev_info(priv->netdev, "try to reset %s port!\n", (type == HNAE_PORT_DEBUG ? "debug" : "service")); rtnl_lock(); /* put off any impending NetWatchDogTimeout */ netif_trans_update(priv->netdev); hns_nic_net_reinit(priv->netdev); rtnl_unlock(); } /* for doing service complete*/ static void hns_nic_service_event_complete(struct hns_nic_priv *priv) { WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); /* make sure to commit the things */ smp_mb__before_atomic(); clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); } static void hns_nic_service_task(struct work_struct *work) { struct hns_nic_priv *priv = container_of(work, struct hns_nic_priv, service_task); struct hnae_handle *h = priv->ae_handle; hns_nic_reset_subtask(priv); hns_nic_update_link_status(priv->netdev); h->dev->ops->update_led_status(h); hns_nic_update_stats(priv->netdev); hns_nic_service_event_complete(priv); } static void hns_nic_task_schedule(struct hns_nic_priv *priv) { if (!test_bit(NIC_STATE_DOWN, &priv->state) && !test_bit(NIC_STATE_REMOVING, &priv->state) && !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) (void)schedule_work(&priv->service_task); } static void hns_nic_service_timer(struct timer_list *t) { struct hns_nic_priv *priv = from_timer(priv, t, service_timer); (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); hns_nic_task_schedule(priv); } /** * hns_tx_timeout_reset - initiate reset due to Tx timeout * @priv: driver private struct **/ static void hns_tx_timeout_reset(struct hns_nic_priv *priv) { /* Do the reset outside of interrupt context */ if (!test_bit(NIC_STATE_DOWN, &priv->state)) { set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); netdev_warn(priv->netdev, "initiating reset due to tx timeout(%llu,0x%lx)\n", priv->tx_timeout_count, priv->state); priv->tx_timeout_count++; hns_nic_task_schedule(priv); } } static int hns_nic_init_ring_data(struct hns_nic_priv *priv) { struct hnae_handle *h = priv->ae_handle; struct hns_nic_ring_data *rd; bool is_ver1 = AE_IS_VER1(priv->enet_ver); int i; if (h->q_num > NIC_MAX_Q_PER_VF) { netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); return -EINVAL; } priv->ring_data = kzalloc(array3_size(h->q_num, sizeof(*priv->ring_data), 2), GFP_KERNEL); if (!priv->ring_data) return -ENOMEM; for (i = 0; i < h->q_num; i++) { rd = &priv->ring_data[i]; rd->queue_index = i; rd->ring = &h->qs[i]->tx_ring; rd->poll_one = hns_nic_tx_poll_one; rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : hns_nic_tx_fini_pro_v2; netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll, NAPI_POLL_WEIGHT); rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; } for (i = h->q_num; i < h->q_num * 2; i++) { rd = &priv->ring_data[i]; rd->queue_index = i - h->q_num; rd->ring = &h->qs[i - h->q_num]->rx_ring; rd->poll_one = hns_nic_rx_poll_one; rd->ex_process = hns_nic_rx_up_pro; rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : hns_nic_rx_fini_pro_v2; netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll, NAPI_POLL_WEIGHT); rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; } return 0; } static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) { struct hnae_handle *h = priv->ae_handle; int i; for (i = 0; i < h->q_num * 2; i++) { netif_napi_del(&priv->ring_data[i].napi); if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { (void)irq_set_affinity_hint( priv->ring_data[i].ring->irq, NULL); free_irq(priv->ring_data[i].ring->irq, &priv->ring_data[i]); } priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; } kfree(priv->ring_data); } static void hns_nic_set_priv_ops(struct net_device *netdev) { struct hns_nic_priv *priv = netdev_priv(netdev); struct hnae_handle *h = priv->ae_handle; if (AE_IS_VER1(priv->enet_ver)) { priv->ops.fill_desc = fill_desc; priv->ops.get_rxd_bnum = get_rx_desc_bnum; priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; } else { priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; if ((netdev->features & NETIF_F_TSO) || (netdev->features & NETIF_F_TSO6)) { priv->ops.fill_desc = fill_tso_desc; priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; /* This chip only support 7*4096 */ netif_set_gso_max_size(netdev, 7 * 4096); } else { priv->ops.fill_desc = fill_v2_desc; priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; } /* enable tso when init * control tso on/off through TSE bit in bd */ h->dev->ops->set_tso_stats(h, 1); } } static int hns_nic_try_get_ae(struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_handle *h; int ret; h = hnae_get_handle(&priv->netdev->dev, priv->fwnode, priv->port_id, NULL); if (IS_ERR_OR_NULL(h)) { ret = -ENODEV; dev_dbg(priv->dev, "has not handle, register notifier!\n"); goto out; } priv->ae_handle = h; ret = hns_nic_init_phy(ndev, h); if (ret) { dev_err(priv->dev, "probe phy device fail!\n"); goto out_init_phy; } ret = hns_nic_init_ring_data(priv); if (ret) { ret = -ENOMEM; goto out_init_ring_data; } hns_nic_set_priv_ops(ndev); ret = register_netdev(ndev); if (ret) { dev_err(priv->dev, "probe register netdev fail!\n"); goto out_reg_ndev_fail; } return 0; out_reg_ndev_fail: hns_nic_uninit_ring_data(priv); priv->ring_data = NULL; out_init_phy: out_init_ring_data: hnae_put_handle(priv->ae_handle); priv->ae_handle = NULL; out: return ret; } static int hns_nic_notifier_action(struct notifier_block *nb, unsigned long action, void *data) { struct hns_nic_priv *priv = container_of(nb, struct hns_nic_priv, notifier_block); assert(action == HNAE_AE_REGISTER); if (!hns_nic_try_get_ae(priv->netdev)) { hnae_unregister_notifier(&priv->notifier_block); priv->notifier_block.notifier_call = NULL; } return 0; } static int hns_nic_dev_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct net_device *ndev; struct hns_nic_priv *priv; u32 port_id; int ret; ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); if (!ndev) return -ENOMEM; platform_set_drvdata(pdev, ndev); priv = netdev_priv(ndev); priv->dev = dev; priv->netdev = ndev; if (dev_of_node(dev)) { struct device_node *ae_node; if (of_device_is_compatible(dev->of_node, "hisilicon,hns-nic-v1")) priv->enet_ver = AE_VERSION_1; else priv->enet_ver = AE_VERSION_2; ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); if (!ae_node) { ret = -ENODEV; dev_err(dev, "not find ae-handle\n"); goto out_read_prop_fail; } priv->fwnode = &ae_node->fwnode; } else if (is_acpi_node(dev->fwnode)) { struct fwnode_reference_args args; if (acpi_dev_found(hns_enet_acpi_match[0].id)) priv->enet_ver = AE_VERSION_1; else if (acpi_dev_found(hns_enet_acpi_match[1].id)) priv->enet_ver = AE_VERSION_2; else { ret = -ENXIO; goto out_read_prop_fail; } /* try to find port-idx-in-ae first */ ret = acpi_node_get_property_reference(dev->fwnode, "ae-handle", 0, &args); if (ret) { dev_err(dev, "not find ae-handle\n"); goto out_read_prop_fail; } if (!is_acpi_device_node(args.fwnode)) { ret = -EINVAL; goto out_read_prop_fail; } priv->fwnode = args.fwnode; } else { dev_err(dev, "cannot read cfg data from OF or acpi\n"); ret = -ENXIO; goto out_read_prop_fail; } ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); if (ret) { /* only for old code compatible */ ret = device_property_read_u32(dev, "port-id", &port_id); if (ret) goto out_read_prop_fail; /* for old dts, we need to caculate the port offset */ port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET : port_id - HNS_SRV_OFFSET; } priv->port_id = port_id; hns_init_mac_addr(ndev); ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; ndev->priv_flags |= IFF_UNICAST_FLT; ndev->netdev_ops = &hns_nic_netdev_ops; hns_ethtool_set_ops(ndev); ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; ndev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ ndev->min_mtu = MAC_MIN_MTU; switch (priv->enet_ver) { case AE_VERSION_2: ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; ndev->max_mtu = MAC_MAX_MTU_V2 - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); break; default: ndev->max_mtu = MAC_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); break; } SET_NETDEV_DEV(ndev, dev); if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) dev_dbg(dev, "set mask to 64bit\n"); else dev_err(dev, "set mask to 64bit fail!\n"); /* carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(ndev); timer_setup(&priv->service_timer, hns_nic_service_timer, 0); INIT_WORK(&priv->service_task, hns_nic_service_task); set_bit(NIC_STATE_SERVICE_INITED, &priv->state); clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); set_bit(NIC_STATE_DOWN, &priv->state); if (hns_nic_try_get_ae(priv->netdev)) { priv->notifier_block.notifier_call = hns_nic_notifier_action; ret = hnae_register_notifier(&priv->notifier_block); if (ret) { dev_err(dev, "register notifier fail!\n"); goto out_notify_fail; } dev_dbg(dev, "has not handle, register notifier!\n"); } return 0; out_notify_fail: (void)cancel_work_sync(&priv->service_task); out_read_prop_fail: /* safe for ACPI FW */ of_node_put(to_of_node(priv->fwnode)); free_netdev(ndev); return ret; } static int hns_nic_dev_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct hns_nic_priv *priv = netdev_priv(ndev); if (ndev->reg_state != NETREG_UNINITIALIZED) unregister_netdev(ndev); if (priv->ring_data) hns_nic_uninit_ring_data(priv); priv->ring_data = NULL; if (ndev->phydev) phy_disconnect(ndev->phydev); if (!IS_ERR_OR_NULL(priv->ae_handle)) hnae_put_handle(priv->ae_handle); priv->ae_handle = NULL; if (priv->notifier_block.notifier_call) hnae_unregister_notifier(&priv->notifier_block); priv->notifier_block.notifier_call = NULL; set_bit(NIC_STATE_REMOVING, &priv->state); (void)cancel_work_sync(&priv->service_task); /* safe for ACPI FW */ of_node_put(to_of_node(priv->fwnode)); free_netdev(ndev); return 0; } static const struct of_device_id hns_enet_of_match[] = { {.compatible = "hisilicon,hns-nic-v1",}, {.compatible = "hisilicon,hns-nic-v2",}, {}, }; MODULE_DEVICE_TABLE(of, hns_enet_of_match); static struct platform_driver hns_nic_dev_driver = { .driver = { .name = "hns-nic", .of_match_table = hns_enet_of_match, .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), }, .probe = hns_nic_dev_probe, .remove = hns_nic_dev_remove, }; module_platform_driver(hns_nic_dev_driver); MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); MODULE_AUTHOR("Hisilicon, Inc."); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:hns-nic");