/* * omap-rng.c - RNG driver for TI OMAP CPU family * * Author: Deepak Saxena * * Copyright 2005 (c) MontaVista Software, Inc. * * Mostly based on original driver: * * Copyright (C) 2005 Nokia Corporation * Author: Juha Yrjölä * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RNG_REG_STATUS_RDY (1 << 0) #define RNG_REG_INTACK_RDY_MASK (1 << 0) #define RNG_REG_INTACK_SHUTDOWN_OFLO_MASK (1 << 1) #define RNG_SHUTDOWN_OFLO_MASK (1 << 1) #define RNG_CONTROL_STARTUP_CYCLES_SHIFT 16 #define RNG_CONTROL_STARTUP_CYCLES_MASK (0xffff << 16) #define RNG_CONTROL_ENABLE_TRNG_SHIFT 10 #define RNG_CONTROL_ENABLE_TRNG_MASK (1 << 10) #define RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT 16 #define RNG_CONFIG_MAX_REFIL_CYCLES_MASK (0xffff << 16) #define RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT 0 #define RNG_CONFIG_MIN_REFIL_CYCLES_MASK (0xff << 0) #define RNG_CONTROL_STARTUP_CYCLES 0xff #define RNG_CONFIG_MIN_REFIL_CYCLES 0x21 #define RNG_CONFIG_MAX_REFIL_CYCLES 0x22 #define RNG_ALARMCNT_ALARM_TH_SHIFT 0x0 #define RNG_ALARMCNT_ALARM_TH_MASK (0xff << 0) #define RNG_ALARMCNT_SHUTDOWN_TH_SHIFT 16 #define RNG_ALARMCNT_SHUTDOWN_TH_MASK (0x1f << 16) #define RNG_ALARM_THRESHOLD 0xff #define RNG_SHUTDOWN_THRESHOLD 0x4 #define RNG_REG_FROENABLE_MASK 0xffffff #define RNG_REG_FRODETUNE_MASK 0xffffff #define OMAP2_RNG_OUTPUT_SIZE 0x4 #define OMAP4_RNG_OUTPUT_SIZE 0x8 #define EIP76_RNG_OUTPUT_SIZE 0x10 /* * EIP76 RNG takes approx. 700us to produce 16 bytes of output data * as per testing results. And to account for the lack of udelay()'s * reliability, we keep the timeout as 1000us. */ #define RNG_DATA_FILL_TIMEOUT 100 enum { RNG_OUTPUT_0_REG = 0, RNG_OUTPUT_1_REG, RNG_OUTPUT_2_REG, RNG_OUTPUT_3_REG, RNG_STATUS_REG, RNG_INTMASK_REG, RNG_INTACK_REG, RNG_CONTROL_REG, RNG_CONFIG_REG, RNG_ALARMCNT_REG, RNG_FROENABLE_REG, RNG_FRODETUNE_REG, RNG_ALARMMASK_REG, RNG_ALARMSTOP_REG, RNG_REV_REG, RNG_SYSCONFIG_REG, }; static const u16 reg_map_omap2[] = { [RNG_OUTPUT_0_REG] = 0x0, [RNG_STATUS_REG] = 0x4, [RNG_CONFIG_REG] = 0x28, [RNG_REV_REG] = 0x3c, [RNG_SYSCONFIG_REG] = 0x40, }; static const u16 reg_map_omap4[] = { [RNG_OUTPUT_0_REG] = 0x0, [RNG_OUTPUT_1_REG] = 0x4, [RNG_STATUS_REG] = 0x8, [RNG_INTMASK_REG] = 0xc, [RNG_INTACK_REG] = 0x10, [RNG_CONTROL_REG] = 0x14, [RNG_CONFIG_REG] = 0x18, [RNG_ALARMCNT_REG] = 0x1c, [RNG_FROENABLE_REG] = 0x20, [RNG_FRODETUNE_REG] = 0x24, [RNG_ALARMMASK_REG] = 0x28, [RNG_ALARMSTOP_REG] = 0x2c, [RNG_REV_REG] = 0x1FE0, [RNG_SYSCONFIG_REG] = 0x1FE4, }; static const u16 reg_map_eip76[] = { [RNG_OUTPUT_0_REG] = 0x0, [RNG_OUTPUT_1_REG] = 0x4, [RNG_OUTPUT_2_REG] = 0x8, [RNG_OUTPUT_3_REG] = 0xc, [RNG_STATUS_REG] = 0x10, [RNG_INTACK_REG] = 0x10, [RNG_CONTROL_REG] = 0x14, [RNG_CONFIG_REG] = 0x18, [RNG_ALARMCNT_REG] = 0x1c, [RNG_FROENABLE_REG] = 0x20, [RNG_FRODETUNE_REG] = 0x24, [RNG_ALARMMASK_REG] = 0x28, [RNG_ALARMSTOP_REG] = 0x2c, [RNG_REV_REG] = 0x7c, }; struct omap_rng_dev; /** * struct omap_rng_pdata - RNG IP block-specific data * @regs: Pointer to the register offsets structure. * @data_size: No. of bytes in RNG output. * @data_present: Callback to determine if data is available. * @init: Callback for IP specific initialization sequence. * @cleanup: Callback for IP specific cleanup sequence. */ struct omap_rng_pdata { u16 *regs; u32 data_size; u32 (*data_present)(struct omap_rng_dev *priv); int (*init)(struct omap_rng_dev *priv); void (*cleanup)(struct omap_rng_dev *priv); }; struct omap_rng_dev { void __iomem *base; struct device *dev; const struct omap_rng_pdata *pdata; struct hwrng rng; struct clk *clk; struct clk *clk_reg; }; static inline u32 omap_rng_read(struct omap_rng_dev *priv, u16 reg) { return __raw_readl(priv->base + priv->pdata->regs[reg]); } static inline void omap_rng_write(struct omap_rng_dev *priv, u16 reg, u32 val) { __raw_writel(val, priv->base + priv->pdata->regs[reg]); } static int omap_rng_do_read(struct hwrng *rng, void *data, size_t max, bool wait) { struct omap_rng_dev *priv; int i, present; priv = (struct omap_rng_dev *)rng->priv; if (max < priv->pdata->data_size) return 0; for (i = 0; i < RNG_DATA_FILL_TIMEOUT; i++) { present = priv->pdata->data_present(priv); if (present || !wait) break; udelay(10); } if (!present) return 0; memcpy_fromio(data, priv->base + priv->pdata->regs[RNG_OUTPUT_0_REG], priv->pdata->data_size); if (priv->pdata->regs[RNG_INTACK_REG]) omap_rng_write(priv, RNG_INTACK_REG, RNG_REG_INTACK_RDY_MASK); return priv->pdata->data_size; } static int omap_rng_init(struct hwrng *rng) { struct omap_rng_dev *priv; priv = (struct omap_rng_dev *)rng->priv; return priv->pdata->init(priv); } static void omap_rng_cleanup(struct hwrng *rng) { struct omap_rng_dev *priv; priv = (struct omap_rng_dev *)rng->priv; priv->pdata->cleanup(priv); } static inline u32 omap2_rng_data_present(struct omap_rng_dev *priv) { return omap_rng_read(priv, RNG_STATUS_REG) ? 0 : 1; } static int omap2_rng_init(struct omap_rng_dev *priv) { omap_rng_write(priv, RNG_SYSCONFIG_REG, 0x1); return 0; } static void omap2_rng_cleanup(struct omap_rng_dev *priv) { omap_rng_write(priv, RNG_SYSCONFIG_REG, 0x0); } static struct omap_rng_pdata omap2_rng_pdata = { .regs = (u16 *)reg_map_omap2, .data_size = OMAP2_RNG_OUTPUT_SIZE, .data_present = omap2_rng_data_present, .init = omap2_rng_init, .cleanup = omap2_rng_cleanup, }; #if defined(CONFIG_OF) static inline u32 omap4_rng_data_present(struct omap_rng_dev *priv) { return omap_rng_read(priv, RNG_STATUS_REG) & RNG_REG_STATUS_RDY; } static int eip76_rng_init(struct omap_rng_dev *priv) { u32 val; /* Return if RNG is already running. */ if (omap_rng_read(priv, RNG_CONTROL_REG) & RNG_CONTROL_ENABLE_TRNG_MASK) return 0; /* Number of 512 bit blocks of raw Noise Source output data that must * be processed by either the Conditioning Function or the * SP 800-90 DRBG ‘BC_DF’ functionality to yield a ‘full entropy’ * output value. */ val = 0x5 << RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT; /* Number of FRO samples that are XOR-ed together into one bit to be * shifted into the main shift register */ val |= RNG_CONFIG_MAX_REFIL_CYCLES << RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT; omap_rng_write(priv, RNG_CONFIG_REG, val); /* Enable all available FROs */ omap_rng_write(priv, RNG_FRODETUNE_REG, 0x0); omap_rng_write(priv, RNG_FROENABLE_REG, RNG_REG_FROENABLE_MASK); /* Enable TRNG */ val = RNG_CONTROL_ENABLE_TRNG_MASK; omap_rng_write(priv, RNG_CONTROL_REG, val); return 0; } static int omap4_rng_init(struct omap_rng_dev *priv) { u32 val; /* Return if RNG is already running. */ if (omap_rng_read(priv, RNG_CONTROL_REG) & RNG_CONTROL_ENABLE_TRNG_MASK) return 0; val = RNG_CONFIG_MIN_REFIL_CYCLES << RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT; val |= RNG_CONFIG_MAX_REFIL_CYCLES << RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT; omap_rng_write(priv, RNG_CONFIG_REG, val); omap_rng_write(priv, RNG_FRODETUNE_REG, 0x0); omap_rng_write(priv, RNG_FROENABLE_REG, RNG_REG_FROENABLE_MASK); val = RNG_ALARM_THRESHOLD << RNG_ALARMCNT_ALARM_TH_SHIFT; val |= RNG_SHUTDOWN_THRESHOLD << RNG_ALARMCNT_SHUTDOWN_TH_SHIFT; omap_rng_write(priv, RNG_ALARMCNT_REG, val); val = RNG_CONTROL_STARTUP_CYCLES << RNG_CONTROL_STARTUP_CYCLES_SHIFT; val |= RNG_CONTROL_ENABLE_TRNG_MASK; omap_rng_write(priv, RNG_CONTROL_REG, val); return 0; } static void omap4_rng_cleanup(struct omap_rng_dev *priv) { int val; val = omap_rng_read(priv, RNG_CONTROL_REG); val &= ~RNG_CONTROL_ENABLE_TRNG_MASK; omap_rng_write(priv, RNG_CONTROL_REG, val); } static irqreturn_t omap4_rng_irq(int irq, void *dev_id) { struct omap_rng_dev *priv = dev_id; u32 fro_detune, fro_enable; /* * Interrupt raised by a fro shutdown threshold, do the following: * 1. Clear the alarm events. * 2. De tune the FROs which are shutdown. * 3. Re enable the shutdown FROs. */ omap_rng_write(priv, RNG_ALARMMASK_REG, 0x0); omap_rng_write(priv, RNG_ALARMSTOP_REG, 0x0); fro_enable = omap_rng_read(priv, RNG_FROENABLE_REG); fro_detune = ~fro_enable & RNG_REG_FRODETUNE_MASK; fro_detune = fro_detune | omap_rng_read(priv, RNG_FRODETUNE_REG); fro_enable = RNG_REG_FROENABLE_MASK; omap_rng_write(priv, RNG_FRODETUNE_REG, fro_detune); omap_rng_write(priv, RNG_FROENABLE_REG, fro_enable); omap_rng_write(priv, RNG_INTACK_REG, RNG_REG_INTACK_SHUTDOWN_OFLO_MASK); return IRQ_HANDLED; } static struct omap_rng_pdata omap4_rng_pdata = { .regs = (u16 *)reg_map_omap4, .data_size = OMAP4_RNG_OUTPUT_SIZE, .data_present = omap4_rng_data_present, .init = omap4_rng_init, .cleanup = omap4_rng_cleanup, }; static struct omap_rng_pdata eip76_rng_pdata = { .regs = (u16 *)reg_map_eip76, .data_size = EIP76_RNG_OUTPUT_SIZE, .data_present = omap4_rng_data_present, .init = eip76_rng_init, .cleanup = omap4_rng_cleanup, }; static const struct of_device_id omap_rng_of_match[] = { { .compatible = "ti,omap2-rng", .data = &omap2_rng_pdata, }, { .compatible = "ti,omap4-rng", .data = &omap4_rng_pdata, }, { .compatible = "inside-secure,safexcel-eip76", .data = &eip76_rng_pdata, }, {}, }; MODULE_DEVICE_TABLE(of, omap_rng_of_match); static int of_get_omap_rng_device_details(struct omap_rng_dev *priv, struct platform_device *pdev) { const struct of_device_id *match; struct device *dev = &pdev->dev; int irq, err; match = of_match_device(of_match_ptr(omap_rng_of_match), dev); if (!match) { dev_err(dev, "no compatible OF match\n"); return -EINVAL; } priv->pdata = match->data; if (of_device_is_compatible(dev->of_node, "ti,omap4-rng") || of_device_is_compatible(dev->of_node, "inside-secure,safexcel-eip76")) { irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "%s: error getting IRQ resource - %d\n", __func__, irq); return irq; } err = devm_request_irq(dev, irq, omap4_rng_irq, IRQF_TRIGGER_NONE, dev_name(dev), priv); if (err) { dev_err(dev, "unable to request irq %d, err = %d\n", irq, err); return err; } /* * On OMAP4, enabling the shutdown_oflo interrupt is * done in the interrupt mask register. There is no * such register on EIP76, and it's enabled by the * same bit in the control register */ if (priv->pdata->regs[RNG_INTMASK_REG]) omap_rng_write(priv, RNG_INTMASK_REG, RNG_SHUTDOWN_OFLO_MASK); else omap_rng_write(priv, RNG_CONTROL_REG, RNG_SHUTDOWN_OFLO_MASK); } return 0; } #else static int of_get_omap_rng_device_details(struct omap_rng_dev *omap_rng, struct platform_device *pdev) { return -EINVAL; } #endif static int get_omap_rng_device_details(struct omap_rng_dev *omap_rng) { /* Only OMAP2/3 can be non-DT */ omap_rng->pdata = &omap2_rng_pdata; return 0; } static int omap_rng_probe(struct platform_device *pdev) { struct omap_rng_dev *priv; struct resource *res; struct device *dev = &pdev->dev; int ret; priv = devm_kzalloc(dev, sizeof(struct omap_rng_dev), GFP_KERNEL); if (!priv) return -ENOMEM; priv->rng.read = omap_rng_do_read; priv->rng.init = omap_rng_init; priv->rng.cleanup = omap_rng_cleanup; priv->rng.quality = 900; priv->rng.priv = (unsigned long)priv; platform_set_drvdata(pdev, priv); priv->dev = dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->base = devm_ioremap_resource(dev, res); if (IS_ERR(priv->base)) { ret = PTR_ERR(priv->base); goto err_ioremap; } priv->rng.name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); if (!priv->rng.name) { ret = -ENOMEM; goto err_ioremap; } pm_runtime_enable(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "Failed to runtime_get device: %d\n", ret); pm_runtime_put_noidle(&pdev->dev); goto err_ioremap; } priv->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(priv->clk) && PTR_ERR(priv->clk) == -EPROBE_DEFER) return -EPROBE_DEFER; if (!IS_ERR(priv->clk)) { ret = clk_prepare_enable(priv->clk); if (ret) { dev_err(&pdev->dev, "Unable to enable the clk: %d\n", ret); goto err_register; } } priv->clk_reg = devm_clk_get(&pdev->dev, "reg"); if (IS_ERR(priv->clk_reg) && PTR_ERR(priv->clk_reg) == -EPROBE_DEFER) return -EPROBE_DEFER; if (!IS_ERR(priv->clk_reg)) { ret = clk_prepare_enable(priv->clk_reg); if (ret) { dev_err(&pdev->dev, "Unable to enable the register clk: %d\n", ret); goto err_register; } } ret = (dev->of_node) ? of_get_omap_rng_device_details(priv, pdev) : get_omap_rng_device_details(priv); if (ret) goto err_register; ret = hwrng_register(&priv->rng); if (ret) goto err_register; dev_info(&pdev->dev, "Random Number Generator ver. %02x\n", omap_rng_read(priv, RNG_REV_REG)); return 0; err_register: priv->base = NULL; pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); clk_disable_unprepare(priv->clk_reg); clk_disable_unprepare(priv->clk); err_ioremap: dev_err(dev, "initialization failed.\n"); return ret; } static int omap_rng_remove(struct platform_device *pdev) { struct omap_rng_dev *priv = platform_get_drvdata(pdev); hwrng_unregister(&priv->rng); priv->pdata->cleanup(priv); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); clk_disable_unprepare(priv->clk); clk_disable_unprepare(priv->clk_reg); return 0; } static int __maybe_unused omap_rng_suspend(struct device *dev) { struct omap_rng_dev *priv = dev_get_drvdata(dev); priv->pdata->cleanup(priv); pm_runtime_put_sync(dev); return 0; } static int __maybe_unused omap_rng_resume(struct device *dev) { struct omap_rng_dev *priv = dev_get_drvdata(dev); int ret; ret = pm_runtime_get_sync(dev); if (ret < 0) { dev_err(dev, "Failed to runtime_get device: %d\n", ret); pm_runtime_put_noidle(dev); return ret; } priv->pdata->init(priv); return 0; } static SIMPLE_DEV_PM_OPS(omap_rng_pm, omap_rng_suspend, omap_rng_resume); static struct platform_driver omap_rng_driver = { .driver = { .name = "omap_rng", .pm = &omap_rng_pm, .of_match_table = of_match_ptr(omap_rng_of_match), }, .probe = omap_rng_probe, .remove = omap_rng_remove, }; module_platform_driver(omap_rng_driver); MODULE_ALIAS("platform:omap_rng"); MODULE_AUTHOR("Deepak Saxena (and others)"); MODULE_LICENSE("GPL");