/* * fs/sdcardfs/super.c * * Copyright (c) 2013 Samsung Electronics Co. Ltd * Authors: Daeho Jeong, Woojoong Lee, Seunghwan Hyun, * Sunghwan Yun, Sungjong Seo * * This program has been developed as a stackable file system based on * the WrapFS which written by * * Copyright (c) 1998-2011 Erez Zadok * Copyright (c) 2009 Shrikar Archak * Copyright (c) 2003-2011 Stony Brook University * Copyright (c) 2003-2011 The Research Foundation of SUNY * * This file is dual licensed. It may be redistributed and/or modified * under the terms of the Apache 2.0 License OR version 2 of the GNU * General Public License. */ #include "sdcardfs.h" /* * The inode cache is used with alloc_inode for both our inode info and the * vfs inode. */ static struct kmem_cache *sdcardfs_inode_cachep; /* * To support the top references, we must track some data separately. * An sdcardfs_inode_info always has a reference to its data, and once set up, * also has a reference to its top. The top may be itself, in which case it * holds two references to its data. When top is changed, it takes a ref to the * new data and then drops the ref to the old data. */ static struct kmem_cache *sdcardfs_inode_data_cachep; void data_release(struct kref *ref) { struct sdcardfs_inode_data *data = container_of(ref, struct sdcardfs_inode_data, refcount); kmem_cache_free(sdcardfs_inode_data_cachep, data); } /* final actions when unmounting a file system */ static void sdcardfs_put_super(struct super_block *sb) { struct sdcardfs_sb_info *spd; struct super_block *s; spd = SDCARDFS_SB(sb); if (!spd) return; if (spd->obbpath_s) { kfree(spd->obbpath_s); path_put(&spd->obbpath); } /* decrement lower super references */ s = sdcardfs_lower_super(sb); sdcardfs_set_lower_super(sb, NULL); atomic_dec(&s->s_active); kfree(spd); sb->s_fs_info = NULL; } static int sdcardfs_statfs(struct dentry *dentry, struct kstatfs *buf) { int err; struct path lower_path; u32 min_blocks; struct sdcardfs_sb_info *sbi = SDCARDFS_SB(dentry->d_sb); sdcardfs_get_lower_path(dentry, &lower_path); err = vfs_statfs(&lower_path, buf); sdcardfs_put_lower_path(dentry, &lower_path); if (uid_eq(GLOBAL_ROOT_UID, current_fsuid()) || capable(CAP_SYS_RESOURCE) || in_group_p(AID_USE_ROOT_RESERVED)) goto out; if (sbi->options.reserved_mb) { /* Invalid statfs informations. */ if (buf->f_bsize == 0) { pr_err("Returned block size is zero.\n"); return -EINVAL; } min_blocks = ((sbi->options.reserved_mb * 1024 * 1024)/buf->f_bsize); buf->f_blocks -= min_blocks; if (buf->f_bavail > min_blocks) buf->f_bavail -= min_blocks; else buf->f_bavail = 0; /* Make reserved blocks invisiable to media storage */ buf->f_bfree = buf->f_bavail; } out: /* set return buf to our f/s to avoid confusing user-level utils */ buf->f_type = SDCARDFS_SUPER_MAGIC; return err; } /* * @flags: numeric mount options * @options: mount options string */ static int sdcardfs_remount_fs(struct super_block *sb, int *flags, char *options) { int err = 0; /* * The VFS will take care of "ro" and "rw" flags among others. We * can safely accept a few flags (RDONLY, MANDLOCK), and honor * SILENT, but anything else left over is an error. */ if ((*flags & ~(MS_RDONLY | MS_MANDLOCK | MS_SILENT)) != 0) { pr_err("sdcardfs: remount flags 0x%x unsupported\n", *flags); err = -EINVAL; } return err; } /* * @mnt: mount point we are remounting * @sb: superblock we are remounting * @flags: numeric mount options * @options: mount options string */ static int sdcardfs_remount_fs2(struct vfsmount *mnt, struct super_block *sb, int *flags, char *options) { int err = 0; /* * The VFS will take care of "ro" and "rw" flags among others. We * can safely accept a few flags (RDONLY, MANDLOCK), and honor * SILENT, but anything else left over is an error. */ if ((*flags & ~(MS_RDONLY | MS_MANDLOCK | MS_SILENT | MS_REMOUNT)) != 0) { pr_err("sdcardfs: remount flags 0x%x unsupported\n", *flags); err = -EINVAL; } /* @fs.sec -- 4DC77922893C8B8AE33DD84EE050EBBF -- */ pr_info("Remount options were %s\n", options); err = parse_options_remount(sb, options, *flags & ~MS_SILENT, mnt->data); return err; } static void *sdcardfs_clone_mnt_data(void *data) { struct sdcardfs_vfsmount_options *opt = kmalloc(sizeof(struct sdcardfs_vfsmount_options), GFP_KERNEL); struct sdcardfs_vfsmount_options *old = data; if (!opt) return NULL; opt->gid = old->gid; opt->mask = old->mask; return opt; } static void sdcardfs_copy_mnt_data(void *data, void *newdata) { struct sdcardfs_vfsmount_options *old = data; struct sdcardfs_vfsmount_options *new = newdata; old->gid = new->gid; old->mask = new->mask; } /* * Called by iput() when the inode reference count reached zero * and the inode is not hashed anywhere. Used to clear anything * that needs to be, before the inode is completely destroyed and put * on the inode free list. */ static void sdcardfs_evict_inode(struct inode *inode) { struct inode *lower_inode; truncate_inode_pages(&inode->i_data, 0); set_top(SDCARDFS_I(inode), NULL); clear_inode(inode); /* * Decrement a reference to a lower_inode, which was incremented * by our read_inode when it was created initially. */ lower_inode = sdcardfs_lower_inode(inode); sdcardfs_set_lower_inode(inode, NULL); iput(lower_inode); } static struct inode *sdcardfs_alloc_inode(struct super_block *sb) { struct sdcardfs_inode_info *i; struct sdcardfs_inode_data *d; i = kmem_cache_alloc(sdcardfs_inode_cachep, GFP_KERNEL); if (!i) return NULL; /* memset everything up to the inode to 0 */ memset(i, 0, offsetof(struct sdcardfs_inode_info, vfs_inode)); d = kmem_cache_alloc(sdcardfs_inode_data_cachep, GFP_KERNEL | __GFP_ZERO); if (!d) { kmem_cache_free(sdcardfs_inode_cachep, i); return NULL; } i->data = d; kref_init(&d->refcount); i->top_data = d; spin_lock_init(&i->top_lock); kref_get(&d->refcount); inode_set_iversion(&i->vfs_inode, 1); return &i->vfs_inode; } static void i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); release_own_data(SDCARDFS_I(inode)); kmem_cache_free(sdcardfs_inode_cachep, SDCARDFS_I(inode)); } static void sdcardfs_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, i_callback); } /* sdcardfs inode cache constructor */ static void init_once(void *obj) { struct sdcardfs_inode_info *i = obj; inode_init_once(&i->vfs_inode); } int sdcardfs_init_inode_cache(void) { sdcardfs_inode_cachep = kmem_cache_create("sdcardfs_inode_cache", sizeof(struct sdcardfs_inode_info), 0, SLAB_RECLAIM_ACCOUNT, init_once); if (!sdcardfs_inode_cachep) return -ENOMEM; sdcardfs_inode_data_cachep = kmem_cache_create("sdcardfs_inode_data_cache", sizeof(struct sdcardfs_inode_data), 0, SLAB_RECLAIM_ACCOUNT, NULL); if (!sdcardfs_inode_data_cachep) { kmem_cache_destroy(sdcardfs_inode_cachep); return -ENOMEM; } return 0; } /* sdcardfs inode cache destructor */ void sdcardfs_destroy_inode_cache(void) { kmem_cache_destroy(sdcardfs_inode_data_cachep); kmem_cache_destroy(sdcardfs_inode_cachep); } /* * Used only in nfs, to kill any pending RPC tasks, so that subsequent * code can actually succeed and won't leave tasks that need handling. */ static void sdcardfs_umount_begin(struct super_block *sb) { struct super_block *lower_sb; lower_sb = sdcardfs_lower_super(sb); if (lower_sb && lower_sb->s_op && lower_sb->s_op->umount_begin) lower_sb->s_op->umount_begin(lower_sb); } static int sdcardfs_show_options(struct vfsmount *mnt, struct seq_file *m, struct dentry *root) { struct sdcardfs_sb_info *sbi = SDCARDFS_SB(root->d_sb); struct sdcardfs_mount_options *opts = &sbi->options; struct sdcardfs_vfsmount_options *vfsopts = mnt->data; if (opts->fs_low_uid != 0) seq_printf(m, ",fsuid=%u", opts->fs_low_uid); if (opts->fs_low_gid != 0) seq_printf(m, ",fsgid=%u", opts->fs_low_gid); if (vfsopts->gid != 0) seq_printf(m, ",gid=%u", vfsopts->gid); if (opts->multiuser) seq_puts(m, ",multiuser"); if (vfsopts->mask) seq_printf(m, ",mask=%u", vfsopts->mask); if (opts->fs_user_id) seq_printf(m, ",userid=%u", opts->fs_user_id); if (opts->gid_derivation) seq_puts(m, ",derive_gid"); if (opts->default_normal) seq_puts(m, ",default_normal"); if (opts->reserved_mb != 0) seq_printf(m, ",reserved=%uMB", opts->reserved_mb); if (opts->nocache) seq_printf(m, ",nocache"); if (opts->unshared_obb) seq_printf(m, ",unshared_obb"); return 0; }; int sdcardfs_on_fscrypt_key_removed(struct notifier_block *nb, unsigned long action, void *data) { struct sdcardfs_sb_info *sbi = container_of(nb, struct sdcardfs_sb_info, fscrypt_nb); /* * Evict any unused sdcardfs dentries (and hence any unused sdcardfs * inodes, since sdcardfs doesn't cache unpinned inodes by themselves) * so that the lower filesystem's encrypted inodes can be evicted. * This is needed to make the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl * properly "lock" the files underneath the sdcardfs mount. */ shrink_dcache_sb(sbi->sb); return NOTIFY_OK; } const struct super_operations sdcardfs_sops = { .put_super = sdcardfs_put_super, .statfs = sdcardfs_statfs, .remount_fs = sdcardfs_remount_fs, .remount_fs2 = sdcardfs_remount_fs2, .clone_mnt_data = sdcardfs_clone_mnt_data, .copy_mnt_data = sdcardfs_copy_mnt_data, .evict_inode = sdcardfs_evict_inode, .umount_begin = sdcardfs_umount_begin, .show_options2 = sdcardfs_show_options, .alloc_inode = sdcardfs_alloc_inode, .destroy_inode = sdcardfs_destroy_inode, .drop_inode = generic_delete_inode, };