/* * Low-level CPU initialisation * Based on arch/arm/kernel/head.S * * Copyright (C) 1994-2002 Russell King * Copyright (C) 2003-2012 ARM Ltd. * Authors: Catalin Marinas * Will Deacon * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "efi-header.S" #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET) #if (TEXT_OFFSET & 0xfff) != 0 #error TEXT_OFFSET must be at least 4KB aligned #elif (PAGE_OFFSET & 0x1fffff) != 0 #error PAGE_OFFSET must be at least 2MB aligned #elif TEXT_OFFSET > 0x1fffff #error TEXT_OFFSET must be less than 2MB #endif /* * Kernel startup entry point. * --------------------------- * * The requirements are: * MMU = off, D-cache = off, I-cache = on or off, * x0 = physical address to the FDT blob. * * This code is mostly position independent so you call this at * __pa(PAGE_OFFSET + TEXT_OFFSET). * * Note that the callee-saved registers are used for storing variables * that are useful before the MMU is enabled. The allocations are described * in the entry routines. */ __HEAD _head: /* * DO NOT MODIFY. Image header expected by Linux boot-loaders. */ #ifdef CONFIG_EFI /* * This add instruction has no meaningful effect except that * its opcode forms the magic "MZ" signature required by UEFI. */ add x13, x18, #0x16 b stext #else b stext // branch to kernel start, magic .long 0 // reserved #endif le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian le64sym _kernel_size_le // Effective size of kernel image, little-endian le64sym _kernel_flags_le // Informative flags, little-endian .quad 0 // reserved #ifdef CONFIG_PROCA le64sym _proca_conf_offset // memory info for proca ta #else .quad 0xecefecef // Magic number for proca ta #endif .quad 0 // reserved .ascii "ARM\x64" // Magic number #ifdef CONFIG_EFI .long pe_header - _head // Offset to the PE header. pe_header: __EFI_PE_HEADER #else .long 0 // reserved #endif __INIT /* * The following callee saved general purpose registers are used on the * primary lowlevel boot path: * * Register Scope Purpose * x21 stext() .. start_kernel() FDT pointer passed at boot in x0 * x23 stext() .. start_kernel() physical misalignment/KASLR offset * x28 __create_page_tables() callee preserved temp register * x19/x20 __primary_switch() callee preserved temp registers * x24 __primary_switch() .. relocate_kernel() * current RELR displacement */ ENTRY(stext) bl preserve_boot_args bl el2_setup // Drop to EL1, w0=cpu_boot_mode adrp x23, __PHYS_OFFSET and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0 bl set_cpu_boot_mode_flag bl __create_page_tables /* * The following calls CPU setup code, see arch/arm64/mm/proc.S for * details. * On return, the CPU will be ready for the MMU to be turned on and * the TCR will have been set. */ bl __cpu_setup // initialise processor b __primary_switch ENDPROC(stext) /* * Preserve the arguments passed by the bootloader in x0 .. x3 */ preserve_boot_args: mov x21, x0 // x21=FDT adr_l x0, boot_args // record the contents of stp x21, x1, [x0] // x0 .. x3 at kernel entry stp x2, x3, [x0, #16] dmb sy // needed before dc ivac with // MMU off mov x1, #0x20 // 4 x 8 bytes b __inval_dcache_area // tail call ENDPROC(preserve_boot_args) /* * Macro to create a table entry to the next page. * * tbl: page table address * virt: virtual address * shift: #imm page table shift * ptrs: #imm pointers per table page * * Preserves: virt * Corrupts: ptrs, tmp1, tmp2 * Returns: tbl -> next level table page address */ .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 add \tmp1, \tbl, #PAGE_SIZE phys_to_pte \tmp2, \tmp1 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type lsr \tmp1, \virt, #\shift sub \ptrs, \ptrs, #1 and \tmp1, \tmp1, \ptrs // table index str \tmp2, [\tbl, \tmp1, lsl #3] add \tbl, \tbl, #PAGE_SIZE // next level table page .endm /* * Macro to populate page table entries, these entries can be pointers to the next level * or last level entries pointing to physical memory. * * tbl: page table address * rtbl: pointer to page table or physical memory * index: start index to write * eindex: end index to write - [index, eindex] written to * flags: flags for pagetable entry to or in * inc: increment to rtbl between each entry * tmp1: temporary variable * * Preserves: tbl, eindex, flags, inc * Corrupts: index, tmp1 * Returns: rtbl */ .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1 .Lpe\@: phys_to_pte \tmp1, \rtbl orr \tmp1, \tmp1, \flags // tmp1 = table entry str \tmp1, [\tbl, \index, lsl #3] add \rtbl, \rtbl, \inc // rtbl = pa next level add \index, \index, #1 cmp \index, \eindex b.ls .Lpe\@ .endm /* * Compute indices of table entries from virtual address range. If multiple entries * were needed in the previous page table level then the next page table level is assumed * to be composed of multiple pages. (This effectively scales the end index). * * vstart: virtual address of start of range * vend: virtual address of end of range * shift: shift used to transform virtual address into index * ptrs: number of entries in page table * istart: index in table corresponding to vstart * iend: index in table corresponding to vend * count: On entry: how many extra entries were required in previous level, scales * our end index. * On exit: returns how many extra entries required for next page table level * * Preserves: vstart, vend, shift, ptrs * Returns: istart, iend, count */ .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count lsr \iend, \vend, \shift mov \istart, \ptrs sub \istart, \istart, #1 and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1) mov \istart, \ptrs mul \istart, \istart, \count add \iend, \iend, \istart // iend += (count - 1) * ptrs // our entries span multiple tables lsr \istart, \vstart, \shift mov \count, \ptrs sub \count, \count, #1 and \istart, \istart, \count sub \count, \iend, \istart .endm /* * Map memory for specified virtual address range. Each level of page table needed supports * multiple entries. If a level requires n entries the next page table level is assumed to be * formed from n pages. * * tbl: location of page table * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE) * vstart: start address to map * vend: end address to map - we map [vstart, vend] * flags: flags to use to map last level entries * phys: physical address corresponding to vstart - physical memory is contiguous * pgds: the number of pgd entries * * Temporaries: istart, iend, tmp, count, sv - these need to be different registers * Preserves: vstart, vend, flags * Corrupts: tbl, rtbl, istart, iend, tmp, count, sv */ .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv add \rtbl, \tbl, #PAGE_SIZE mov \sv, \rtbl mov \count, #0 compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp mov \tbl, \sv mov \sv, \rtbl #if SWAPPER_PGTABLE_LEVELS > 3 compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp mov \tbl, \sv mov \sv, \rtbl #endif #if SWAPPER_PGTABLE_LEVELS > 2 compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp mov \tbl, \sv #endif compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1 populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp .endm /* * Setup the initial page tables. We only setup the barest amount which is * required to get the kernel running. The following sections are required: * - identity mapping to enable the MMU (low address, TTBR0) * - first few MB of the kernel linear mapping to jump to once the MMU has * been enabled */ __create_page_tables: mov x28, lr /* * Invalidate the idmap and swapper page tables to avoid potential * dirty cache lines being evicted. */ adrp x0, idmap_pg_dir adrp x1, swapper_pg_end sub x1, x1, x0 bl __inval_dcache_area /* * Clear the idmap and swapper page tables. */ adrp x0, idmap_pg_dir adrp x1, swapper_pg_end sub x1, x1, x0 1: stp xzr, xzr, [x0], #16 stp xzr, xzr, [x0], #16 stp xzr, xzr, [x0], #16 stp xzr, xzr, [x0], #16 subs x1, x1, #64 b.ne 1b mov x7, SWAPPER_MM_MMUFLAGS /* * Create the identity mapping. */ adrp x0, idmap_pg_dir adrp x3, __idmap_text_start // __pa(__idmap_text_start) /* * VA_BITS may be too small to allow for an ID mapping to be created * that covers system RAM if that is located sufficiently high in the * physical address space. So for the ID map, use an extended virtual * range in that case, and configure an additional translation level * if needed. * * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the * entire ID map region can be mapped. As T0SZ == (64 - #bits used), * this number conveniently equals the number of leading zeroes in * the physical address of __idmap_text_end. */ adrp x5, __idmap_text_end clz x5, x5 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough? b.ge 1f // .. then skip VA range extension adr_l x6, idmap_t0sz str x5, [x6] dmb sy dc ivac, x6 // Invalidate potentially stale cache line #if (VA_BITS < 48) #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3) #define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT)) /* * If VA_BITS < 48, we have to configure an additional table level. * First, we have to verify our assumption that the current value of * VA_BITS was chosen such that all translation levels are fully * utilised, and that lowering T0SZ will always result in an additional * translation level to be configured. */ #if VA_BITS != EXTRA_SHIFT #error "Mismatch between VA_BITS and page size/number of translation levels" #endif mov x4, EXTRA_PTRS create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6 #else /* * If VA_BITS == 48, we don't have to configure an additional * translation level, but the top-level table has more entries. */ mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT) str_l x4, idmap_ptrs_per_pgd, x5 #endif 1: ldr_l x4, idmap_ptrs_per_pgd mov x5, x3 // __pa(__idmap_text_start) adr_l x6, __idmap_text_end // __pa(__idmap_text_end) map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14 /* * Map the kernel image (starting with PHYS_OFFSET). */ adrp x0, swapper_pg_dir mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text) add x5, x5, x23 // add KASLR displacement mov x4, PTRS_PER_PGD adrp x6, _end // runtime __pa(_end) adrp x3, _text // runtime __pa(_text) sub x6, x6, x3 // _end - _text add x6, x6, x5 // runtime __va(_end) map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14 /* * Since the page tables have been populated with non-cacheable * accesses (MMU disabled), invalidate the idmap and swapper page * tables again to remove any speculatively loaded cache lines. */ adrp x0, idmap_pg_dir adrp x1, swapper_pg_end sub x1, x1, x0 dmb sy bl __inval_dcache_area ret x28 ENDPROC(__create_page_tables) .ltorg /* * The following fragment of code is executed with the MMU enabled. * * x0 = __PHYS_OFFSET */ __primary_switched: adrp x4, init_thread_union add sp, x4, #THREAD_SIZE adr_l x5, init_task msr sp_el0, x5 // Save thread_info adr_l x8, vectors // load VBAR_EL1 with virtual msr vbar_el1, x8 // vector table address isb stp xzr, x30, [sp, #-16]! mov x29, sp #ifdef CONFIG_SHADOW_CALL_STACK adr_l x18, init_shadow_call_stack // Set shadow call stack #endif str_l x21, __fdt_pointer, x5 // Save FDT pointer ldr_l x4, kimage_vaddr // Save the offset between sub x4, x4, x0 // the kernel virtual and str_l x4, kimage_voffset, x5 // physical mappings // Clear BSS adr_l x0, __bss_start mov x1, xzr adr_l x2, __bss_stop sub x2, x2, x0 bl __pi_memset dsb ishst // Make zero page visible to PTW #ifdef CONFIG_KASAN bl kasan_early_init #endif #ifdef CONFIG_RANDOMIZE_BASE tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized? b.ne 0f mov x0, x21 // pass FDT address in x0 bl kaslr_early_init // parse FDT for KASLR options cbz x0, 0f // KASLR disabled? just proceed orr x23, x23, x0 // record KASLR offset ldp x29, x30, [sp], #16 // we must enable KASLR, return ret // to __primary_switch() 0: #endif add sp, sp, #16 mov x29, #0 mov x30, #0 b start_kernel ENDPROC(__primary_switched) /* * end early head section, begin head code that is also used for * hotplug and needs to have the same protections as the text region */ .section ".idmap.text","awx" ENTRY(kimage_vaddr) .quad _text - TEXT_OFFSET /* * If we're fortunate enough to boot at EL2, ensure that the world is * sane before dropping to EL1. * * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if * booted in EL1 or EL2 respectively. */ ENTRY(el2_setup) msr SPsel, #1 // We want to use SP_EL{1,2} mrs x0, CurrentEL cmp x0, #CurrentEL_EL2 b.eq 1f mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1) msr sctlr_el1, x0 mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1 isb ret 1: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2) msr sctlr_el2, x0 #ifdef CONFIG_ARM64_VHE /* * Check for VHE being present. For the rest of the EL2 setup, * x2 being non-zero indicates that we do have VHE, and that the * kernel is intended to run at EL2. */ mrs x2, id_aa64mmfr1_el1 ubfx x2, x2, #8, #4 #else mov x2, xzr #endif /* Hyp configuration. */ mov_q x0, HCR_HOST_NVHE_FLAGS cbz x2, set_hcr mov_q x0, HCR_HOST_VHE_FLAGS set_hcr: msr hcr_el2, x0 isb /* * Allow Non-secure EL1 and EL0 to access physical timer and counter. * This is not necessary for VHE, since the host kernel runs in EL2, * and EL0 accesses are configured in the later stage of boot process. * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in * EL2. */ cbnz x2, 1f mrs x0, cnthctl_el2 orr x0, x0, #3 // Enable EL1 physical timers msr cnthctl_el2, x0 1: msr cntvoff_el2, xzr // Clear virtual offset #ifdef CONFIG_ARM_GIC_V3 /* GICv3 system register access */ mrs x0, id_aa64pfr0_el1 ubfx x0, x0, #24, #4 cbz x0, 3f mrs_s x0, SYS_ICC_SRE_EL2 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1 msr_s SYS_ICC_SRE_EL2, x0 isb // Make sure SRE is now set mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back, tbz x0, #0, 3f // and check that it sticks msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults 3: #endif /* Populate ID registers. */ mrs x0, midr_el1 mrs x1, mpidr_el1 msr vpidr_el2, x0 msr vmpidr_el2, x1 #ifdef CONFIG_COMPAT msr hstr_el2, xzr // Disable CP15 traps to EL2 #endif /* EL2 debug */ mrs x1, id_aa64dfr0_el1 // Check ID_AA64DFR0_EL1 PMUVer sbfx x0, x1, #8, #4 cmp x0, #1 b.lt 4f // Skip if no PMU present mrs x0, pmcr_el0 // Disable debug access traps ubfx x0, x0, #11, #5 // to EL2 and allow access to 4: csel x3, xzr, x0, lt // all PMU counters from EL1 /* Statistical profiling */ ubfx x0, x1, #32, #4 // Check ID_AA64DFR0_EL1 PMSVer cbz x0, 7f // Skip if SPE not present cbnz x2, 6f // VHE? mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2, and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT) cbnz x4, 5f // then permit sampling of physical mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \ 1 << SYS_PMSCR_EL2_PA_SHIFT) msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter 5: mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT) orr x3, x3, x1 // If we don't have VHE, then b 7f // use EL1&0 translation. 6: // For VHE, use EL2 translation orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1 7: msr mdcr_el2, x3 // Configure debug traps /* LORegions */ mrs x1, id_aa64mmfr1_el1 ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4 cbz x0, 1f msr_s SYS_LORC_EL1, xzr 1: /* Stage-2 translation */ msr vttbr_el2, xzr cbz x2, install_el2_stub mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 isb ret install_el2_stub: /* * When VHE is not in use, early init of EL2 and EL1 needs to be * done here. * When VHE _is_ in use, EL1 will not be used in the host and * requires no configuration, and all non-hyp-specific EL2 setup * will be done via the _EL1 system register aliases in __cpu_setup. */ mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1) msr sctlr_el1, x0 /* Coprocessor traps. */ mov x0, #0x33ff msr cptr_el2, x0 // Disable copro. traps to EL2 /* SVE register access */ mrs x1, id_aa64pfr0_el1 ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4 cbz x1, 7f bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps msr cptr_el2, x0 // Disable copro. traps to EL2 isb mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector msr_s SYS_ZCR_EL2, x1 // length for EL1. /* Hypervisor stub */ 7: adr_l x0, __hyp_stub_vectors msr vbar_el2, x0 /* spsr */ mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ PSR_MODE_EL1h) msr spsr_el2, x0 msr elr_el2, lr mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 eret ENDPROC(el2_setup) /* * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed * in w0. See arch/arm64/include/asm/virt.h for more info. */ set_cpu_boot_mode_flag: adr_l x1, __boot_cpu_mode cmp w0, #BOOT_CPU_MODE_EL2 b.ne 1f add x1, x1, #4 1: str w0, [x1] // This CPU has booted in EL1 dmb sy dc ivac, x1 // Invalidate potentially stale cache line ret ENDPROC(set_cpu_boot_mode_flag) /* * These values are written with the MMU off, but read with the MMU on. * Writers will invalidate the corresponding address, discarding up to a * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures * sufficient alignment that the CWG doesn't overlap another section. */ .pushsection ".mmuoff.data.write", "aw" /* * We need to find out the CPU boot mode long after boot, so we need to * store it in a writable variable. * * This is not in .bss, because we set it sufficiently early that the boot-time * zeroing of .bss would clobber it. */ ENTRY(__boot_cpu_mode) .long BOOT_CPU_MODE_EL2 .long BOOT_CPU_MODE_EL1 /* * The booting CPU updates the failed status @__early_cpu_boot_status, * with MMU turned off. */ ENTRY(__early_cpu_boot_status) .quad 0 .popsection /* * This provides a "holding pen" for platforms to hold all secondary * cores are held until we're ready for them to initialise. */ ENTRY(secondary_holding_pen) bl el2_setup // Drop to EL1, w0=cpu_boot_mode bl set_cpu_boot_mode_flag mrs x0, mpidr_el1 mov_q x1, MPIDR_HWID_BITMASK and x0, x0, x1 adr_l x3, secondary_holding_pen_release pen: ldr x4, [x3] cmp x4, x0 b.eq secondary_startup wfe b pen ENDPROC(secondary_holding_pen) /* * Secondary entry point that jumps straight into the kernel. Only to * be used where CPUs are brought online dynamically by the kernel. */ ENTRY(secondary_entry) bl el2_setup // Drop to EL1 bl set_cpu_boot_mode_flag b secondary_startup ENDPROC(secondary_entry) secondary_startup: /* * Common entry point for secondary CPUs. */ bl __cpu_secondary_check52bitva bl __cpu_setup // initialise processor bl __enable_mmu ldr x8, =__secondary_switched br x8 ENDPROC(secondary_startup) __secondary_switched: adr_l x5, vectors msr vbar_el1, x5 isb adr_l x0, secondary_data ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack mov sp, x1 ldr x2, [x0, #CPU_BOOT_TASK] msr sp_el0, x2 #ifdef CONFIG_SHADOW_CALL_STACK ldr x18, [x2, #TSK_TI_SCS] // set shadow call stack str xzr, [x2, #TSK_TI_SCS] // limit visibility of saved SCS #endif mov x29, #0 mov x30, #0 b secondary_start_kernel ENDPROC(__secondary_switched) /* * The booting CPU updates the failed status @__early_cpu_boot_status, * with MMU turned off. * * update_early_cpu_boot_status tmp, status * - Corrupts tmp1, tmp2 * - Writes 'status' to __early_cpu_boot_status and makes sure * it is committed to memory. */ .macro update_early_cpu_boot_status status, tmp1, tmp2 mov \tmp2, #\status adr_l \tmp1, __early_cpu_boot_status str \tmp2, [\tmp1] dmb sy dc ivac, \tmp1 // Invalidate potentially stale cache line .endm /* * Enable the MMU. * * x0 = SCTLR_EL1 value for turning on the MMU. * * Returns to the caller via x30/lr. This requires the caller to be covered * by the .idmap.text section. * * Checks if the selected granule size is supported by the CPU. * If it isn't, park the CPU */ ENTRY(__enable_mmu) mrs x1, ID_AA64MMFR0_EL1 ubfx x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED b.ne __no_granule_support update_early_cpu_boot_status 0, x1, x2 adrp x1, idmap_pg_dir adrp x2, swapper_pg_dir phys_to_ttbr x3, x1 phys_to_ttbr x4, x2 msr ttbr0_el1, x3 // load TTBR0 msr ttbr1_el1, x4 // load TTBR1 isb msr sctlr_el1, x0 isb /* * Invalidate the local I-cache so that any instructions fetched * speculatively from the PoC are discarded, since they may have * been dynamically patched at the PoU. */ ic iallu dsb nsh isb ret ENDPROC(__enable_mmu) ENTRY(__cpu_secondary_check52bitva) #ifdef CONFIG_ARM64_52BIT_VA ldr_l x0, vabits_user cmp x0, #52 b.ne 2f mrs_s x0, SYS_ID_AA64MMFR2_EL1 and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT) cbnz x0, 2f adr_l x0, va52mismatch mov w1, #1 strb w1, [x0] dmb sy dc ivac, x0 // Invalidate potentially stale cache line update_early_cpu_boot_status CPU_STUCK_IN_KERNEL, x0, x1 1: wfe wfi b 1b #endif 2: ret ENDPROC(__cpu_secondary_check52bitva) __no_granule_support: /* Indicate that this CPU can't boot and is stuck in the kernel */ update_early_cpu_boot_status CPU_STUCK_IN_KERNEL, x1, x2 1: wfe wfi b 1b ENDPROC(__no_granule_support) #ifdef CONFIG_RELOCATABLE __relocate_kernel: /* * Iterate over each entry in the relocation table, and apply the * relocations in place. */ ldr w9, =__rela_offset // offset to reloc table ldr w10, =__rela_size // size of reloc table mov_q x11, KIMAGE_VADDR // default virtual offset add x11, x11, x23 // actual virtual offset add x9, x9, x11 // __va(.rela) add x10, x9, x10 // __va(.rela) + sizeof(.rela) 0: cmp x9, x10 b.hs 1f ldp x12, x13, [x9], #24 ldr x14, [x9, #-8] cmp w13, #R_AARCH64_RELATIVE b.ne 0b add x14, x14, x23 // relocate str x14, [x12, x23] b 0b 1: #ifdef CONFIG_RELR /* * Apply RELR relocations. * * RELR is a compressed format for storing relative relocations. The * encoded sequence of entries looks like: * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] * * i.e. start with an address, followed by any number of bitmaps. The * address entry encodes 1 relocation. The subsequent bitmap entries * encode up to 63 relocations each, at subsequent offsets following * the last address entry. * * The bitmap entries must have 1 in the least significant bit. The * assumption here is that an address cannot have 1 in lsb. Odd * addresses are not supported. Any odd addresses are stored in the RELA * section, which is handled above. * * Excluding the least significant bit in the bitmap, each non-zero * bit in the bitmap represents a relocation to be applied to * a corresponding machine word that follows the base address * word. The second least significant bit represents the machine * word immediately following the initial address, and each bit * that follows represents the next word, in linear order. As such, * a single bitmap can encode up to 63 relocations in a 64-bit object. * * In this implementation we store the address of the next RELR table * entry in x9, the address being relocated by the current address or * bitmap entry in x13 and the address being relocated by the current * bit in x14. * * Because addends are stored in place in the binary, RELR relocations * cannot be applied idempotently. We use x24 to keep track of the * currently applied displacement so that we can correctly relocate if * __relocate_kernel is called twice with non-zero displacements (i.e. * if there is both a physical misalignment and a KASLR displacement). */ ldr w9, =__relr_offset // offset to reloc table ldr w10, =__relr_size // size of reloc table add x9, x9, x11 // __va(.relr) add x10, x9, x10 // __va(.relr) + sizeof(.relr) sub x15, x23, x24 // delta from previous offset cbz x15, 7f // nothing to do if unchanged mov x24, x23 // save new offset 2: cmp x9, x10 b.hs 7f ldr x11, [x9], #8 tbnz x11, #0, 3f // branch to handle bitmaps add x13, x11, x23 ldr x12, [x13] // relocate address entry add x12, x12, x15 str x12, [x13], #8 // adjust to start of bitmap b 2b 3: mov x14, x13 4: lsr x11, x11, #1 cbz x11, 6f tbz x11, #0, 5f // skip bit if not set ldr x12, [x14] // relocate bit add x12, x12, x15 str x12, [x14] 5: add x14, x14, #8 // move to next bit's address b 4b 6: /* * Move to the next bitmap's address. 8 is the word size, and 63 is the * number of significant bits in a bitmap entry. */ add x13, x13, #(8 * 63) b 2b 7: #endif ret ENDPROC(__relocate_kernel) #endif __primary_switch: #ifdef CONFIG_RANDOMIZE_BASE mov x19, x0 // preserve new SCTLR_EL1 value mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value #endif bl __enable_mmu #ifdef CONFIG_RELOCATABLE #ifdef CONFIG_RELR mov x24, #0 // no RELR displacement yet #endif bl __relocate_kernel #ifdef CONFIG_RANDOMIZE_BASE ldr x8, =__primary_switched adrp x0, __PHYS_OFFSET blr x8 /* * If we return here, we have a KASLR displacement in x23 which we need * to take into account by discarding the current kernel mapping and * creating a new one. */ pre_disable_mmu_workaround msr sctlr_el1, x20 // disable the MMU isb bl __create_page_tables // recreate kernel mapping tlbi vmalle1 // Remove any stale TLB entries dsb nsh isb msr sctlr_el1, x19 // re-enable the MMU isb ic iallu // flush instructions fetched dsb nsh // via old mapping isb bl __relocate_kernel #endif #endif ldr x8, =__primary_switched adrp x0, __PHYS_OFFSET br x8 ENDPROC(__primary_switch)