// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ #include #include "ufshcd.h" #include "ufshcd-crypto.h" static bool ufshcd_cap_idx_valid(struct ufs_hba *hba, unsigned int cap_idx) { return cap_idx < hba->crypto_capabilities.num_crypto_cap; } static u8 get_data_unit_size_mask(unsigned int data_unit_size) { if (data_unit_size < 512 || data_unit_size > 65536 || !is_power_of_2(data_unit_size)) return 0; return data_unit_size / 512; } static size_t get_keysize_bytes(enum ufs_crypto_key_size size) { switch (size) { case UFS_CRYPTO_KEY_SIZE_128: return 16; case UFS_CRYPTO_KEY_SIZE_192: return 24; case UFS_CRYPTO_KEY_SIZE_256: return 32; case UFS_CRYPTO_KEY_SIZE_512: return 64; default: return 0; } } int ufshcd_crypto_cap_find(struct ufs_hba *hba, enum blk_crypto_mode_num crypto_mode, unsigned int data_unit_size) { enum ufs_crypto_alg ufs_alg; u8 data_unit_mask; int cap_idx; enum ufs_crypto_key_size ufs_key_size; union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array; if (!ufshcd_hba_is_crypto_supported(hba)) return -EINVAL; switch (crypto_mode) { case BLK_ENCRYPTION_MODE_AES_256_XTS: ufs_alg = UFS_CRYPTO_ALG_AES_XTS; ufs_key_size = UFS_CRYPTO_KEY_SIZE_256; break; default: return -EINVAL; } data_unit_mask = get_data_unit_size_mask(data_unit_size); for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap; cap_idx++) { if (ccap_array[cap_idx].algorithm_id == ufs_alg && (ccap_array[cap_idx].sdus_mask & data_unit_mask) && ccap_array[cap_idx].key_size == ufs_key_size) return cap_idx; } return -EINVAL; } EXPORT_SYMBOL_GPL(ufshcd_crypto_cap_find); /** * ufshcd_crypto_cfg_entry_write_key - Write a key into a crypto_cfg_entry * * Writes the key with the appropriate format - for AES_XTS, * the first half of the key is copied as is, the second half is * copied with an offset halfway into the cfg->crypto_key array. * For the other supported crypto algs, the key is just copied. * * @cfg: The crypto config to write to * @key: The key to write * @cap: The crypto capability (which specifies the crypto alg and key size) * * Returns 0 on success, or -EINVAL */ static int ufshcd_crypto_cfg_entry_write_key(union ufs_crypto_cfg_entry *cfg, const u8 *key, union ufs_crypto_cap_entry cap) { size_t key_size_bytes = get_keysize_bytes(cap.key_size); if (key_size_bytes == 0) return -EINVAL; switch (cap.algorithm_id) { case UFS_CRYPTO_ALG_AES_XTS: key_size_bytes *= 2; if (key_size_bytes > UFS_CRYPTO_KEY_MAX_SIZE) return -EINVAL; memcpy(cfg->crypto_key, key, key_size_bytes/2); memcpy(cfg->crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2, key + key_size_bytes/2, key_size_bytes/2); return 0; case UFS_CRYPTO_ALG_BITLOCKER_AES_CBC: /* fall through */ case UFS_CRYPTO_ALG_AES_ECB: /* fall through */ case UFS_CRYPTO_ALG_ESSIV_AES_CBC: memcpy(cfg->crypto_key, key, key_size_bytes); return 0; } return -EINVAL; } static int ufshcd_program_key(struct ufs_hba *hba, const union ufs_crypto_cfg_entry *cfg, int slot) { int i; u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg); int err; ufshcd_hold(hba, false); if (hba->vops->program_key) { err = hba->vops->program_key(hba, cfg, slot); goto out; } /* Clear the dword 16 */ ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); /* Ensure that CFGE is cleared before programming the key */ wmb(); for (i = 0; i < 16; i++) { ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]), slot_offset + i * sizeof(cfg->reg_val[0])); /* Spec says each dword in key must be written sequentially */ wmb(); } /* Write dword 17 */ ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]), slot_offset + 17 * sizeof(cfg->reg_val[0])); /* Dword 16 must be written last */ wmb(); /* Write dword 16 */ ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]), slot_offset + 16 * sizeof(cfg->reg_val[0])); wmb(); err = 0; out: ufshcd_release(hba); return err; } static void ufshcd_clear_keyslot(struct ufs_hba *hba, int slot) { union ufs_crypto_cfg_entry cfg = { 0 }; int err; err = ufshcd_program_key(hba, &cfg, slot); WARN_ON_ONCE(err); } /* Clear all keyslots at driver init time */ static void ufshcd_clear_all_keyslots(struct ufs_hba *hba) { int slot; for (slot = 0; slot < ufshcd_num_keyslots(hba); slot++) ufshcd_clear_keyslot(hba, slot); } static int ufshcd_crypto_keyslot_program(struct keyslot_manager *ksm, const struct blk_crypto_key *key, unsigned int slot) { struct ufs_hba *hba = keyslot_manager_private(ksm); int err = 0; u8 data_unit_mask; union ufs_crypto_cfg_entry cfg; int cap_idx; cap_idx = ufshcd_crypto_cap_find(hba, key->crypto_mode, key->data_unit_size); if (!ufshcd_is_crypto_enabled(hba) || !ufshcd_keyslot_valid(hba, slot) || !ufshcd_cap_idx_valid(hba, cap_idx)) return -EINVAL; data_unit_mask = get_data_unit_size_mask(key->data_unit_size); if (!(data_unit_mask & hba->crypto_cap_array[cap_idx].sdus_mask)) return -EINVAL; memset(&cfg, 0, sizeof(cfg)); cfg.data_unit_size = data_unit_mask; cfg.crypto_cap_idx = cap_idx; cfg.config_enable |= UFS_CRYPTO_CONFIGURATION_ENABLE; err = ufshcd_crypto_cfg_entry_write_key(&cfg, key->raw, hba->crypto_cap_array[cap_idx]); if (err) return err; err = ufshcd_program_key(hba, &cfg, slot); memzero_explicit(&cfg, sizeof(cfg)); return err; } static int ufshcd_crypto_keyslot_evict(struct keyslot_manager *ksm, const struct blk_crypto_key *key, unsigned int slot) { struct ufs_hba *hba = keyslot_manager_private(ksm); if (!ufshcd_is_crypto_enabled(hba) || !ufshcd_keyslot_valid(hba, slot)) return -EINVAL; /* * Clear the crypto cfg on the device. Clearing CFGE * might not be sufficient, so just clear the entire cfg. */ ufshcd_clear_keyslot(hba, slot); return 0; } /* Functions implementing UFSHCI v2.1 specification behaviour */ void ufshcd_crypto_enable_spec(struct ufs_hba *hba) { if (!ufshcd_hba_is_crypto_supported(hba)) return; hba->caps |= UFSHCD_CAP_CRYPTO; /* Reset might clear all keys, so reprogram all the keys. */ keyslot_manager_reprogram_all_keys(hba->ksm); } EXPORT_SYMBOL_GPL(ufshcd_crypto_enable_spec); void ufshcd_crypto_disable_spec(struct ufs_hba *hba) { hba->caps &= ~UFSHCD_CAP_CRYPTO; } EXPORT_SYMBOL_GPL(ufshcd_crypto_disable_spec); static const struct keyslot_mgmt_ll_ops ufshcd_ksm_ops = { .keyslot_program = ufshcd_crypto_keyslot_program, .keyslot_evict = ufshcd_crypto_keyslot_evict, }; enum blk_crypto_mode_num ufshcd_blk_crypto_mode_num_for_alg_dusize( enum ufs_crypto_alg ufs_crypto_alg, enum ufs_crypto_key_size key_size) { /* * This is currently the only mode that UFS and blk-crypto both support. */ if (ufs_crypto_alg == UFS_CRYPTO_ALG_AES_XTS && key_size == UFS_CRYPTO_KEY_SIZE_256) return BLK_ENCRYPTION_MODE_AES_256_XTS; return BLK_ENCRYPTION_MODE_INVALID; } /** * ufshcd_hba_init_crypto - Read crypto capabilities, init crypto fields in hba * @hba: Per adapter instance * * Return: 0 if crypto was initialized or is not supported, else a -errno value. */ int ufshcd_hba_init_crypto_spec(struct ufs_hba *hba, const struct keyslot_mgmt_ll_ops *ksm_ops) { int cap_idx = 0; int err = 0; unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX]; enum blk_crypto_mode_num blk_mode_num; /* Default to disabling crypto */ hba->caps &= ~UFSHCD_CAP_CRYPTO; /* Return 0 if crypto support isn't present */ if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) || (hba->quirks & UFSHCD_QUIRK_BROKEN_CRYPTO)) goto out; /* * Crypto Capabilities should never be 0, because the * config_array_ptr > 04h. So we use a 0 value to indicate that * crypto init failed, and can't be enabled. */ hba->crypto_capabilities.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP)); hba->crypto_cfg_register = (u32)hba->crypto_capabilities.config_array_ptr * 0x100; hba->crypto_cap_array = devm_kcalloc(hba->dev, hba->crypto_capabilities.num_crypto_cap, sizeof(hba->crypto_cap_array[0]), GFP_KERNEL); if (!hba->crypto_cap_array) { err = -ENOMEM; goto out; } memset(crypto_modes_supported, 0, sizeof(crypto_modes_supported)); /* * Store all the capabilities now so that we don't need to repeatedly * access the device each time we want to know its capabilities */ for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap; cap_idx++) { hba->crypto_cap_array[cap_idx].reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CRYPTOCAP + cap_idx * sizeof(__le32))); blk_mode_num = ufshcd_blk_crypto_mode_num_for_alg_dusize( hba->crypto_cap_array[cap_idx].algorithm_id, hba->crypto_cap_array[cap_idx].key_size); if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID) continue; crypto_modes_supported[blk_mode_num] |= hba->crypto_cap_array[cap_idx].sdus_mask * 512; } ufshcd_clear_all_keyslots(hba); hba->ksm = keyslot_manager_create(hba->dev, ufshcd_num_keyslots(hba), ksm_ops, BLK_CRYPTO_FEATURE_STANDARD_KEYS, crypto_modes_supported, hba); if (!hba->ksm) { err = -ENOMEM; goto out_free_caps; } keyslot_manager_set_max_dun_bytes(hba->ksm, sizeof(u64)); return 0; out_free_caps: devm_kfree(hba->dev, hba->crypto_cap_array); out: /* Indicate that init failed by setting crypto_capabilities to 0 */ hba->crypto_capabilities.reg_val = 0; return err; } EXPORT_SYMBOL_GPL(ufshcd_hba_init_crypto_spec); void ufshcd_crypto_setup_rq_keyslot_manager_spec(struct ufs_hba *hba, struct request_queue *q) { if (!ufshcd_hba_is_crypto_supported(hba) || !q) return; q->ksm = hba->ksm; } EXPORT_SYMBOL_GPL(ufshcd_crypto_setup_rq_keyslot_manager_spec); void ufshcd_crypto_destroy_rq_keyslot_manager_spec(struct ufs_hba *hba, struct request_queue *q) { keyslot_manager_destroy(hba->ksm); } EXPORT_SYMBOL_GPL(ufshcd_crypto_destroy_rq_keyslot_manager_spec); int ufshcd_prepare_lrbp_crypto_spec(struct ufs_hba *hba, struct scsi_cmnd *cmd, struct ufshcd_lrb *lrbp) { struct bio_crypt_ctx *bc; if (!bio_crypt_should_process(cmd->request)) { lrbp->crypto_enable = false; return 0; } bc = cmd->request->bio->bi_crypt_context; if (WARN_ON(!ufshcd_is_crypto_enabled(hba))) { /* * Upper layer asked us to do inline encryption * but that isn't enabled, so we fail this request. */ return -EINVAL; } if (!ufshcd_keyslot_valid(hba, bc->bc_keyslot)) return -EINVAL; lrbp->crypto_enable = true; lrbp->crypto_key_slot = bc->bc_keyslot; if (bc->hie_ext4 == true) lrbp->data_unit_num = blk_rq_pos(cmd->request) >> 3; else lrbp->data_unit_num = bc->bc_dun[0]; return 0; } EXPORT_SYMBOL_GPL(ufshcd_prepare_lrbp_crypto_spec); /* Crypto Variant Ops Support */ void ufshcd_crypto_enable(struct ufs_hba *hba) { if (hba->crypto_vops && hba->crypto_vops->enable) return hba->crypto_vops->enable(hba); return ufshcd_crypto_enable_spec(hba); } void ufshcd_crypto_disable(struct ufs_hba *hba) { if (hba->crypto_vops && hba->crypto_vops->disable) return hba->crypto_vops->disable(hba); return ufshcd_crypto_disable_spec(hba); } int ufshcd_hba_init_crypto(struct ufs_hba *hba) { if (hba->crypto_vops && hba->crypto_vops->hba_init_crypto) return hba->crypto_vops->hba_init_crypto(hba, &ufshcd_ksm_ops); return ufshcd_hba_init_crypto_spec(hba, &ufshcd_ksm_ops); } void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba, struct request_queue *q) { if (hba->crypto_vops && hba->crypto_vops->setup_rq_keyslot_manager) return hba->crypto_vops->setup_rq_keyslot_manager(hba, q); return ufshcd_crypto_setup_rq_keyslot_manager_spec(hba, q); } void ufshcd_crypto_destroy_rq_keyslot_manager(struct ufs_hba *hba, struct request_queue *q) { if (hba->crypto_vops && hba->crypto_vops->destroy_rq_keyslot_manager) return hba->crypto_vops->destroy_rq_keyslot_manager(hba, q); return ufshcd_crypto_destroy_rq_keyslot_manager_spec(hba, q); } int ufshcd_prepare_lrbp_crypto(struct ufs_hba *hba, struct scsi_cmnd *cmd, struct ufshcd_lrb *lrbp) { if (hba->crypto_vops && hba->crypto_vops->prepare_lrbp_crypto) return hba->crypto_vops->prepare_lrbp_crypto(hba, cmd, lrbp); return ufshcd_prepare_lrbp_crypto_spec(hba, cmd, lrbp); } int ufshcd_map_sg_crypto(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { if (hba->crypto_vops && hba->crypto_vops->map_sg_crypto) return hba->crypto_vops->map_sg_crypto(hba, lrbp); return 0; } int ufshcd_complete_lrbp_crypto(struct ufs_hba *hba, struct scsi_cmnd *cmd, struct ufshcd_lrb *lrbp) { if (hba->crypto_vops && hba->crypto_vops->complete_lrbp_crypto) return hba->crypto_vops->complete_lrbp_crypto(hba, cmd, lrbp); return 0; } void ufshcd_crypto_debug(struct ufs_hba *hba) { if (hba->crypto_vops && hba->crypto_vops->debug) hba->crypto_vops->debug(hba); } int ufshcd_crypto_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) { if (hba->crypto_vops && hba->crypto_vops->suspend) return hba->crypto_vops->suspend(hba, pm_op); return 0; } int ufshcd_crypto_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { if (hba->crypto_vops && hba->crypto_vops->resume) return hba->crypto_vops->resume(hba, pm_op); return 0; } void ufshcd_crypto_set_vops(struct ufs_hba *hba, struct ufs_hba_crypto_variant_ops *crypto_vops) { hba->crypto_vops = crypto_vops; }