/* * Xen event channels * * Xen models interrupts with abstract event channels. Because each * domain gets 1024 event channels, but NR_IRQ is not that large, we * must dynamically map irqs<->event channels. The event channels * interface with the rest of the kernel by defining a xen interrupt * chip. When an event is received, it is mapped to an irq and sent * through the normal interrupt processing path. * * There are four kinds of events which can be mapped to an event * channel: * * 1. Inter-domain notifications. This includes all the virtual * device events, since they're driven by front-ends in another domain * (typically dom0). * 2. VIRQs, typically used for timers. These are per-cpu events. * 3. IPIs. * 4. PIRQs - Hardware interrupts. * * Jeremy Fitzhardinge , XenSource Inc, 2007 */ #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86 #include #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "events_internal.h" #undef MODULE_PARAM_PREFIX #define MODULE_PARAM_PREFIX "xen." static uint __read_mostly event_loop_timeout = 2; module_param(event_loop_timeout, uint, 0644); static uint __read_mostly event_eoi_delay = 10; module_param(event_eoi_delay, uint, 0644); const struct evtchn_ops *evtchn_ops; /* * This lock protects updates to the following mapping and reference-count * arrays. The lock does not need to be acquired to read the mapping tables. */ static DEFINE_MUTEX(irq_mapping_update_lock); /* * Lock protecting event handling loop against removing event channels. * Adding of event channels is no issue as the associated IRQ becomes active * only after everything is setup (before request_[threaded_]irq() the handler * can't be entered for an event, as the event channel will be unmasked only * then). */ static DEFINE_RWLOCK(evtchn_rwlock); /* * Lock hierarchy: * * irq_mapping_update_lock * evtchn_rwlock * IRQ-desc lock * percpu eoi_list_lock * irq_info->lock */ static LIST_HEAD(xen_irq_list_head); /* IRQ <-> VIRQ mapping. */ static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1}; /* IRQ <-> IPI mapping */ static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1}; int **evtchn_to_irq; #ifdef CONFIG_X86 static unsigned long *pirq_eoi_map; #endif static bool (*pirq_needs_eoi)(unsigned irq); #define EVTCHN_ROW(e) (e / (PAGE_SIZE/sizeof(**evtchn_to_irq))) #define EVTCHN_COL(e) (e % (PAGE_SIZE/sizeof(**evtchn_to_irq))) #define EVTCHN_PER_ROW (PAGE_SIZE / sizeof(**evtchn_to_irq)) /* Xen will never allocate port zero for any purpose. */ #define VALID_EVTCHN(chn) ((chn) != 0) static struct irq_info *legacy_info_ptrs[NR_IRQS_LEGACY]; static struct irq_chip xen_dynamic_chip; static struct irq_chip xen_lateeoi_chip; static struct irq_chip xen_percpu_chip; static struct irq_chip xen_pirq_chip; static void enable_dynirq(struct irq_data *data); static void disable_dynirq(struct irq_data *data); static DEFINE_PER_CPU(unsigned int, irq_epoch); static void clear_evtchn_to_irq_row(unsigned row) { unsigned col; for (col = 0; col < EVTCHN_PER_ROW; col++) WRITE_ONCE(evtchn_to_irq[row][col], -1); } static void clear_evtchn_to_irq_all(void) { unsigned row; for (row = 0; row < EVTCHN_ROW(xen_evtchn_max_channels()); row++) { if (evtchn_to_irq[row] == NULL) continue; clear_evtchn_to_irq_row(row); } } static int set_evtchn_to_irq(unsigned evtchn, unsigned irq) { unsigned row; unsigned col; if (evtchn >= xen_evtchn_max_channels()) return -EINVAL; row = EVTCHN_ROW(evtchn); col = EVTCHN_COL(evtchn); if (evtchn_to_irq[row] == NULL) { /* Unallocated irq entries return -1 anyway */ if (irq == -1) return 0; evtchn_to_irq[row] = (int *)get_zeroed_page(GFP_KERNEL); if (evtchn_to_irq[row] == NULL) return -ENOMEM; clear_evtchn_to_irq_row(row); } WRITE_ONCE(evtchn_to_irq[row][col], irq); return 0; } int get_evtchn_to_irq(unsigned evtchn) { if (evtchn >= xen_evtchn_max_channels()) return -1; if (evtchn_to_irq[EVTCHN_ROW(evtchn)] == NULL) return -1; return READ_ONCE(evtchn_to_irq[EVTCHN_ROW(evtchn)][EVTCHN_COL(evtchn)]); } /* Get info for IRQ */ struct irq_info *info_for_irq(unsigned irq) { if (irq < nr_legacy_irqs()) return legacy_info_ptrs[irq]; else return irq_get_chip_data(irq); } static void set_info_for_irq(unsigned int irq, struct irq_info *info) { if (irq < nr_legacy_irqs()) legacy_info_ptrs[irq] = info; else irq_set_chip_data(irq, info); } /* Constructors for packed IRQ information. */ static int xen_irq_info_common_setup(struct irq_info *info, unsigned irq, enum xen_irq_type type, unsigned evtchn, unsigned short cpu) { int ret; BUG_ON(info->type != IRQT_UNBOUND && info->type != type); info->type = type; info->irq = irq; info->evtchn = evtchn; info->cpu = cpu; info->mask_reason = EVT_MASK_REASON_EXPLICIT; raw_spin_lock_init(&info->lock); ret = set_evtchn_to_irq(evtchn, irq); if (ret < 0) return ret; irq_clear_status_flags(irq, IRQ_NOREQUEST|IRQ_NOAUTOEN); return xen_evtchn_port_setup(info); } static int xen_irq_info_evtchn_setup(unsigned irq, unsigned evtchn) { struct irq_info *info = info_for_irq(irq); return xen_irq_info_common_setup(info, irq, IRQT_EVTCHN, evtchn, 0); } static int xen_irq_info_ipi_setup(unsigned cpu, unsigned irq, unsigned evtchn, enum ipi_vector ipi) { struct irq_info *info = info_for_irq(irq); info->u.ipi = ipi; per_cpu(ipi_to_irq, cpu)[ipi] = irq; return xen_irq_info_common_setup(info, irq, IRQT_IPI, evtchn, 0); } static int xen_irq_info_virq_setup(unsigned cpu, unsigned irq, unsigned evtchn, unsigned virq) { struct irq_info *info = info_for_irq(irq); info->u.virq = virq; per_cpu(virq_to_irq, cpu)[virq] = irq; return xen_irq_info_common_setup(info, irq, IRQT_VIRQ, evtchn, 0); } static int xen_irq_info_pirq_setup(unsigned irq, unsigned evtchn, unsigned pirq, unsigned gsi, uint16_t domid, unsigned char flags) { struct irq_info *info = info_for_irq(irq); info->u.pirq.pirq = pirq; info->u.pirq.gsi = gsi; info->u.pirq.domid = domid; info->u.pirq.flags = flags; return xen_irq_info_common_setup(info, irq, IRQT_PIRQ, evtchn, 0); } static void xen_irq_info_cleanup(struct irq_info *info) { set_evtchn_to_irq(info->evtchn, -1); xen_evtchn_port_remove(info->evtchn, info->cpu); info->evtchn = 0; } /* * Accessors for packed IRQ information. */ unsigned int evtchn_from_irq(unsigned irq) { const struct irq_info *info = NULL; if (likely(irq < nr_irqs)) info = info_for_irq(irq); if (!info) return 0; return info->evtchn; } unsigned irq_from_evtchn(unsigned int evtchn) { return get_evtchn_to_irq(evtchn); } EXPORT_SYMBOL_GPL(irq_from_evtchn); int irq_from_virq(unsigned int cpu, unsigned int virq) { return per_cpu(virq_to_irq, cpu)[virq]; } static enum ipi_vector ipi_from_irq(unsigned irq) { struct irq_info *info = info_for_irq(irq); BUG_ON(info == NULL); BUG_ON(info->type != IRQT_IPI); return info->u.ipi; } static unsigned virq_from_irq(unsigned irq) { struct irq_info *info = info_for_irq(irq); BUG_ON(info == NULL); BUG_ON(info->type != IRQT_VIRQ); return info->u.virq; } static unsigned pirq_from_irq(unsigned irq) { struct irq_info *info = info_for_irq(irq); BUG_ON(info == NULL); BUG_ON(info->type != IRQT_PIRQ); return info->u.pirq.pirq; } static enum xen_irq_type type_from_irq(unsigned irq) { return info_for_irq(irq)->type; } unsigned cpu_from_irq(unsigned irq) { return info_for_irq(irq)->cpu; } unsigned int cpu_from_evtchn(unsigned int evtchn) { int irq = get_evtchn_to_irq(evtchn); unsigned ret = 0; if (irq != -1) ret = cpu_from_irq(irq); return ret; } static void do_mask(struct irq_info *info, u8 reason) { unsigned long flags; raw_spin_lock_irqsave(&info->lock, flags); if (!info->mask_reason) mask_evtchn(info->evtchn); info->mask_reason |= reason; raw_spin_unlock_irqrestore(&info->lock, flags); } static void do_unmask(struct irq_info *info, u8 reason) { unsigned long flags; raw_spin_lock_irqsave(&info->lock, flags); info->mask_reason &= ~reason; if (!info->mask_reason) unmask_evtchn(info->evtchn); raw_spin_unlock_irqrestore(&info->lock, flags); } #ifdef CONFIG_X86 static bool pirq_check_eoi_map(unsigned irq) { return test_bit(pirq_from_irq(irq), pirq_eoi_map); } #endif static bool pirq_needs_eoi_flag(unsigned irq) { struct irq_info *info = info_for_irq(irq); BUG_ON(info->type != IRQT_PIRQ); return info->u.pirq.flags & PIRQ_NEEDS_EOI; } static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu) { int irq = get_evtchn_to_irq(chn); struct irq_info *info = info_for_irq(irq); BUG_ON(irq == -1); #ifdef CONFIG_SMP cpumask_copy(irq_get_affinity_mask(irq), cpumask_of(cpu)); #endif xen_evtchn_port_bind_to_cpu(info, cpu); info->cpu = cpu; } /** * notify_remote_via_irq - send event to remote end of event channel via irq * @irq: irq of event channel to send event to * * Unlike notify_remote_via_evtchn(), this is safe to use across * save/restore. Notifications on a broken connection are silently * dropped. */ void notify_remote_via_irq(int irq) { int evtchn = evtchn_from_irq(irq); if (VALID_EVTCHN(evtchn)) notify_remote_via_evtchn(evtchn); } EXPORT_SYMBOL_GPL(notify_remote_via_irq); struct lateeoi_work { struct delayed_work delayed; spinlock_t eoi_list_lock; struct list_head eoi_list; }; static DEFINE_PER_CPU(struct lateeoi_work, lateeoi); static void lateeoi_list_del(struct irq_info *info) { struct lateeoi_work *eoi = &per_cpu(lateeoi, info->eoi_cpu); unsigned long flags; spin_lock_irqsave(&eoi->eoi_list_lock, flags); list_del_init(&info->eoi_list); spin_unlock_irqrestore(&eoi->eoi_list_lock, flags); } static void lateeoi_list_add(struct irq_info *info) { struct lateeoi_work *eoi = &per_cpu(lateeoi, info->eoi_cpu); struct irq_info *elem; u64 now = get_jiffies_64(); unsigned long delay; unsigned long flags; if (now < info->eoi_time) delay = info->eoi_time - now; else delay = 1; spin_lock_irqsave(&eoi->eoi_list_lock, flags); if (list_empty(&eoi->eoi_list)) { list_add(&info->eoi_list, &eoi->eoi_list); mod_delayed_work_on(info->eoi_cpu, system_wq, &eoi->delayed, delay); } else { list_for_each_entry_reverse(elem, &eoi->eoi_list, eoi_list) { if (elem->eoi_time <= info->eoi_time) break; } list_add(&info->eoi_list, &elem->eoi_list); } spin_unlock_irqrestore(&eoi->eoi_list_lock, flags); } static void xen_irq_lateeoi_locked(struct irq_info *info, bool spurious) { evtchn_port_t evtchn; unsigned int cpu; unsigned int delay = 0; evtchn = info->evtchn; if (!VALID_EVTCHN(evtchn) || !list_empty(&info->eoi_list)) return; if (spurious) { if ((1 << info->spurious_cnt) < (HZ << 2)) info->spurious_cnt++; if (info->spurious_cnt > 1) { delay = 1 << (info->spurious_cnt - 2); if (delay > HZ) delay = HZ; if (!info->eoi_time) info->eoi_cpu = smp_processor_id(); info->eoi_time = get_jiffies_64() + delay; } } else { info->spurious_cnt = 0; } cpu = info->eoi_cpu; if (info->eoi_time && (info->irq_epoch == per_cpu(irq_epoch, cpu) || delay)) { lateeoi_list_add(info); return; } info->eoi_time = 0; do_unmask(info, EVT_MASK_REASON_EOI_PENDING); } static void xen_irq_lateeoi_worker(struct work_struct *work) { struct lateeoi_work *eoi; struct irq_info *info; u64 now = get_jiffies_64(); unsigned long flags; eoi = container_of(to_delayed_work(work), struct lateeoi_work, delayed); read_lock_irqsave(&evtchn_rwlock, flags); while (true) { spin_lock(&eoi->eoi_list_lock); info = list_first_entry_or_null(&eoi->eoi_list, struct irq_info, eoi_list); if (info == NULL || now < info->eoi_time) { spin_unlock(&eoi->eoi_list_lock); break; } list_del_init(&info->eoi_list); spin_unlock(&eoi->eoi_list_lock); info->eoi_time = 0; xen_irq_lateeoi_locked(info, false); } if (info) mod_delayed_work_on(info->eoi_cpu, system_wq, &eoi->delayed, info->eoi_time - now); read_unlock_irqrestore(&evtchn_rwlock, flags); } static void xen_cpu_init_eoi(unsigned int cpu) { struct lateeoi_work *eoi = &per_cpu(lateeoi, cpu); INIT_DELAYED_WORK(&eoi->delayed, xen_irq_lateeoi_worker); spin_lock_init(&eoi->eoi_list_lock); INIT_LIST_HEAD(&eoi->eoi_list); } void xen_irq_lateeoi(unsigned int irq, unsigned int eoi_flags) { struct irq_info *info; unsigned long flags; read_lock_irqsave(&evtchn_rwlock, flags); info = info_for_irq(irq); if (info) xen_irq_lateeoi_locked(info, eoi_flags & XEN_EOI_FLAG_SPURIOUS); read_unlock_irqrestore(&evtchn_rwlock, flags); } EXPORT_SYMBOL_GPL(xen_irq_lateeoi); static void xen_irq_init(unsigned irq) { struct irq_info *info; #ifdef CONFIG_SMP /* By default all event channels notify CPU#0. */ cpumask_copy(irq_get_affinity_mask(irq), cpumask_of(0)); #endif info = kzalloc(sizeof(*info), GFP_KERNEL); if (info == NULL) panic("Unable to allocate metadata for IRQ%d\n", irq); info->type = IRQT_UNBOUND; info->refcnt = -1; set_info_for_irq(irq, info); INIT_LIST_HEAD(&info->eoi_list); list_add_tail(&info->list, &xen_irq_list_head); } static int __must_check xen_allocate_irqs_dynamic(int nvec) { int i, irq = irq_alloc_descs(-1, 0, nvec, -1); if (irq >= 0) { for (i = 0; i < nvec; i++) xen_irq_init(irq + i); } return irq; } static inline int __must_check xen_allocate_irq_dynamic(void) { return xen_allocate_irqs_dynamic(1); } static int __must_check xen_allocate_irq_gsi(unsigned gsi) { int irq; /* * A PV guest has no concept of a GSI (since it has no ACPI * nor access to/knowledge of the physical APICs). Therefore * all IRQs are dynamically allocated from the entire IRQ * space. */ if (xen_pv_domain() && !xen_initial_domain()) return xen_allocate_irq_dynamic(); /* Legacy IRQ descriptors are already allocated by the arch. */ if (gsi < nr_legacy_irqs()) irq = gsi; else irq = irq_alloc_desc_at(gsi, -1); xen_irq_init(irq); return irq; } static void xen_free_irq(unsigned irq) { struct irq_info *info = info_for_irq(irq); unsigned long flags; if (WARN_ON(!info)) return; write_lock_irqsave(&evtchn_rwlock, flags); if (!list_empty(&info->eoi_list)) lateeoi_list_del(info); list_del(&info->list); set_info_for_irq(irq, NULL); WARN_ON(info->refcnt > 0); write_unlock_irqrestore(&evtchn_rwlock, flags); kfree(info); /* Legacy IRQ descriptors are managed by the arch. */ if (irq < nr_legacy_irqs()) return; irq_free_desc(irq); } static void xen_evtchn_close(unsigned int port) { struct evtchn_close close; close.port = port; if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0) BUG(); } static void event_handler_exit(struct irq_info *info) { smp_store_release(&info->is_active, 0); clear_evtchn(info->evtchn); } static void pirq_query_unmask(int irq) { struct physdev_irq_status_query irq_status; struct irq_info *info = info_for_irq(irq); BUG_ON(info->type != IRQT_PIRQ); irq_status.irq = pirq_from_irq(irq); if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status)) irq_status.flags = 0; info->u.pirq.flags &= ~PIRQ_NEEDS_EOI; if (irq_status.flags & XENIRQSTAT_needs_eoi) info->u.pirq.flags |= PIRQ_NEEDS_EOI; } static void eoi_pirq(struct irq_data *data) { struct irq_info *info = info_for_irq(data->irq); int evtchn = info ? info->evtchn : 0; struct physdev_eoi eoi = { .irq = pirq_from_irq(data->irq) }; int rc = 0; if (!VALID_EVTCHN(evtchn)) return; if (unlikely(irqd_is_setaffinity_pending(data)) && likely(!irqd_irq_disabled(data))) { do_mask(info, EVT_MASK_REASON_TEMPORARY); event_handler_exit(info); irq_move_masked_irq(data); do_unmask(info, EVT_MASK_REASON_TEMPORARY); } else event_handler_exit(info); if (pirq_needs_eoi(data->irq)) { rc = HYPERVISOR_physdev_op(PHYSDEVOP_eoi, &eoi); WARN_ON(rc); } } static void mask_ack_pirq(struct irq_data *data) { disable_dynirq(data); eoi_pirq(data); } static unsigned int __startup_pirq(unsigned int irq) { struct evtchn_bind_pirq bind_pirq; struct irq_info *info = info_for_irq(irq); int evtchn = evtchn_from_irq(irq); int rc; BUG_ON(info->type != IRQT_PIRQ); if (VALID_EVTCHN(evtchn)) goto out; bind_pirq.pirq = pirq_from_irq(irq); /* NB. We are happy to share unless we are probing. */ bind_pirq.flags = info->u.pirq.flags & PIRQ_SHAREABLE ? BIND_PIRQ__WILL_SHARE : 0; rc = HYPERVISOR_event_channel_op(EVTCHNOP_bind_pirq, &bind_pirq); if (rc != 0) { pr_warn("Failed to obtain physical IRQ %d\n", irq); return 0; } evtchn = bind_pirq.port; pirq_query_unmask(irq); rc = set_evtchn_to_irq(evtchn, irq); if (rc) goto err; info->evtchn = evtchn; bind_evtchn_to_cpu(evtchn, 0); rc = xen_evtchn_port_setup(info); if (rc) goto err; out: do_unmask(info, EVT_MASK_REASON_EXPLICIT); eoi_pirq(irq_get_irq_data(irq)); return 0; err: pr_err("irq%d: Failed to set port to irq mapping (%d)\n", irq, rc); xen_evtchn_close(evtchn); return 0; } static unsigned int startup_pirq(struct irq_data *data) { return __startup_pirq(data->irq); } static void shutdown_pirq(struct irq_data *data) { unsigned int irq = data->irq; struct irq_info *info = info_for_irq(irq); unsigned evtchn = evtchn_from_irq(irq); BUG_ON(info->type != IRQT_PIRQ); if (!VALID_EVTCHN(evtchn)) return; do_mask(info, EVT_MASK_REASON_EXPLICIT); xen_evtchn_close(evtchn); xen_irq_info_cleanup(info); } static void enable_pirq(struct irq_data *data) { enable_dynirq(data); } static void disable_pirq(struct irq_data *data) { disable_dynirq(data); } int xen_irq_from_gsi(unsigned gsi) { struct irq_info *info; list_for_each_entry(info, &xen_irq_list_head, list) { if (info->type != IRQT_PIRQ) continue; if (info->u.pirq.gsi == gsi) return info->irq; } return -1; } EXPORT_SYMBOL_GPL(xen_irq_from_gsi); static void __unbind_from_irq(unsigned int irq) { int evtchn = evtchn_from_irq(irq); struct irq_info *info = info_for_irq(irq); if (info->refcnt > 0) { info->refcnt--; if (info->refcnt != 0) return; } if (VALID_EVTCHN(evtchn)) { unsigned int cpu = cpu_from_irq(irq); xen_evtchn_close(evtchn); switch (type_from_irq(irq)) { case IRQT_VIRQ: per_cpu(virq_to_irq, cpu)[virq_from_irq(irq)] = -1; break; case IRQT_IPI: per_cpu(ipi_to_irq, cpu)[ipi_from_irq(irq)] = -1; break; default: break; } xen_irq_info_cleanup(info); } xen_free_irq(irq); } /* * Do not make any assumptions regarding the relationship between the * IRQ number returned here and the Xen pirq argument. * * Note: We don't assign an event channel until the irq actually started * up. Return an existing irq if we've already got one for the gsi. * * Shareable implies level triggered, not shareable implies edge * triggered here. */ int xen_bind_pirq_gsi_to_irq(unsigned gsi, unsigned pirq, int shareable, char *name) { int irq = -1; struct physdev_irq irq_op; int ret; mutex_lock(&irq_mapping_update_lock); irq = xen_irq_from_gsi(gsi); if (irq != -1) { pr_info("%s: returning irq %d for gsi %u\n", __func__, irq, gsi); goto out; } irq = xen_allocate_irq_gsi(gsi); if (irq < 0) goto out; irq_op.irq = irq; irq_op.vector = 0; /* Only the privileged domain can do this. For non-priv, the pcifront * driver provides a PCI bus that does the call to do exactly * this in the priv domain. */ if (xen_initial_domain() && HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op)) { xen_free_irq(irq); irq = -ENOSPC; goto out; } ret = xen_irq_info_pirq_setup(irq, 0, pirq, gsi, DOMID_SELF, shareable ? PIRQ_SHAREABLE : 0); if (ret < 0) { __unbind_from_irq(irq); irq = ret; goto out; } pirq_query_unmask(irq); /* We try to use the handler with the appropriate semantic for the * type of interrupt: if the interrupt is an edge triggered * interrupt we use handle_edge_irq. * * On the other hand if the interrupt is level triggered we use * handle_fasteoi_irq like the native code does for this kind of * interrupts. * * Depending on the Xen version, pirq_needs_eoi might return true * not only for level triggered interrupts but for edge triggered * interrupts too. In any case Xen always honors the eoi mechanism, * not injecting any more pirqs of the same kind if the first one * hasn't received an eoi yet. Therefore using the fasteoi handler * is the right choice either way. */ if (shareable) irq_set_chip_and_handler_name(irq, &xen_pirq_chip, handle_fasteoi_irq, name); else irq_set_chip_and_handler_name(irq, &xen_pirq_chip, handle_edge_irq, name); out: mutex_unlock(&irq_mapping_update_lock); return irq; } #ifdef CONFIG_PCI_MSI int xen_allocate_pirq_msi(struct pci_dev *dev, struct msi_desc *msidesc) { int rc; struct physdev_get_free_pirq op_get_free_pirq; op_get_free_pirq.type = MAP_PIRQ_TYPE_MSI; rc = HYPERVISOR_physdev_op(PHYSDEVOP_get_free_pirq, &op_get_free_pirq); WARN_ONCE(rc == -ENOSYS, "hypervisor does not support the PHYSDEVOP_get_free_pirq interface\n"); return rc ? -1 : op_get_free_pirq.pirq; } int xen_bind_pirq_msi_to_irq(struct pci_dev *dev, struct msi_desc *msidesc, int pirq, int nvec, const char *name, domid_t domid) { int i, irq, ret; mutex_lock(&irq_mapping_update_lock); irq = xen_allocate_irqs_dynamic(nvec); if (irq < 0) goto out; for (i = 0; i < nvec; i++) { irq_set_chip_and_handler_name(irq + i, &xen_pirq_chip, handle_edge_irq, name); ret = xen_irq_info_pirq_setup(irq + i, 0, pirq + i, 0, domid, i == 0 ? 0 : PIRQ_MSI_GROUP); if (ret < 0) goto error_irq; } ret = irq_set_msi_desc(irq, msidesc); if (ret < 0) goto error_irq; out: mutex_unlock(&irq_mapping_update_lock); return irq; error_irq: while (nvec--) __unbind_from_irq(irq + nvec); mutex_unlock(&irq_mapping_update_lock); return ret; } #endif int xen_destroy_irq(int irq) { struct physdev_unmap_pirq unmap_irq; struct irq_info *info = info_for_irq(irq); int rc = -ENOENT; mutex_lock(&irq_mapping_update_lock); /* * If trying to remove a vector in a MSI group different * than the first one skip the PIRQ unmap unless this vector * is the first one in the group. */ if (xen_initial_domain() && !(info->u.pirq.flags & PIRQ_MSI_GROUP)) { unmap_irq.pirq = info->u.pirq.pirq; unmap_irq.domid = info->u.pirq.domid; rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_irq); /* If another domain quits without making the pci_disable_msix * call, the Xen hypervisor takes care of freeing the PIRQs * (free_domain_pirqs). */ if ((rc == -ESRCH && info->u.pirq.domid != DOMID_SELF)) pr_info("domain %d does not have %d anymore\n", info->u.pirq.domid, info->u.pirq.pirq); else if (rc) { pr_warn("unmap irq failed %d\n", rc); goto out; } } xen_free_irq(irq); out: mutex_unlock(&irq_mapping_update_lock); return rc; } int xen_irq_from_pirq(unsigned pirq) { int irq; struct irq_info *info; mutex_lock(&irq_mapping_update_lock); list_for_each_entry(info, &xen_irq_list_head, list) { if (info->type != IRQT_PIRQ) continue; irq = info->irq; if (info->u.pirq.pirq == pirq) goto out; } irq = -1; out: mutex_unlock(&irq_mapping_update_lock); return irq; } int xen_pirq_from_irq(unsigned irq) { return pirq_from_irq(irq); } EXPORT_SYMBOL_GPL(xen_pirq_from_irq); static int bind_evtchn_to_irq_chip(evtchn_port_t evtchn, struct irq_chip *chip) { int irq; int ret; if (evtchn >= xen_evtchn_max_channels()) return -ENOMEM; mutex_lock(&irq_mapping_update_lock); irq = get_evtchn_to_irq(evtchn); if (irq == -1) { irq = xen_allocate_irq_dynamic(); if (irq < 0) goto out; irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "event"); ret = xen_irq_info_evtchn_setup(irq, evtchn); if (ret < 0) { __unbind_from_irq(irq); irq = ret; goto out; } /* New interdomain events are bound to VCPU 0. */ bind_evtchn_to_cpu(evtchn, 0); } else { struct irq_info *info = info_for_irq(irq); WARN_ON(info == NULL || info->type != IRQT_EVTCHN); } out: mutex_unlock(&irq_mapping_update_lock); return irq; } int bind_evtchn_to_irq(evtchn_port_t evtchn) { return bind_evtchn_to_irq_chip(evtchn, &xen_dynamic_chip); } EXPORT_SYMBOL_GPL(bind_evtchn_to_irq); int bind_evtchn_to_irq_lateeoi(evtchn_port_t evtchn) { return bind_evtchn_to_irq_chip(evtchn, &xen_lateeoi_chip); } EXPORT_SYMBOL_GPL(bind_evtchn_to_irq_lateeoi); static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu) { struct evtchn_bind_ipi bind_ipi; int evtchn, irq; int ret; mutex_lock(&irq_mapping_update_lock); irq = per_cpu(ipi_to_irq, cpu)[ipi]; if (irq == -1) { irq = xen_allocate_irq_dynamic(); if (irq < 0) goto out; irq_set_chip_and_handler_name(irq, &xen_percpu_chip, handle_percpu_irq, "ipi"); bind_ipi.vcpu = xen_vcpu_nr(cpu); if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi, &bind_ipi) != 0) BUG(); evtchn = bind_ipi.port; ret = xen_irq_info_ipi_setup(cpu, irq, evtchn, ipi); if (ret < 0) { __unbind_from_irq(irq); irq = ret; goto out; } bind_evtchn_to_cpu(evtchn, cpu); } else { struct irq_info *info = info_for_irq(irq); WARN_ON(info == NULL || info->type != IRQT_IPI); } out: mutex_unlock(&irq_mapping_update_lock); return irq; } static int bind_interdomain_evtchn_to_irq_chip(unsigned int remote_domain, evtchn_port_t remote_port, struct irq_chip *chip) { struct evtchn_bind_interdomain bind_interdomain; int err; bind_interdomain.remote_dom = remote_domain; bind_interdomain.remote_port = remote_port; err = HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain, &bind_interdomain); return err ? : bind_evtchn_to_irq_chip(bind_interdomain.local_port, chip); } int bind_interdomain_evtchn_to_irq(unsigned int remote_domain, evtchn_port_t remote_port) { return bind_interdomain_evtchn_to_irq_chip(remote_domain, remote_port, &xen_dynamic_chip); } EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irq); int bind_interdomain_evtchn_to_irq_lateeoi(unsigned int remote_domain, evtchn_port_t remote_port) { return bind_interdomain_evtchn_to_irq_chip(remote_domain, remote_port, &xen_lateeoi_chip); } EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irq_lateeoi); static int find_virq(unsigned int virq, unsigned int cpu) { struct evtchn_status status; int port, rc = -ENOENT; memset(&status, 0, sizeof(status)); for (port = 0; port < xen_evtchn_max_channels(); port++) { status.dom = DOMID_SELF; status.port = port; rc = HYPERVISOR_event_channel_op(EVTCHNOP_status, &status); if (rc < 0) continue; if (status.status != EVTCHNSTAT_virq) continue; if (status.u.virq == virq && status.vcpu == xen_vcpu_nr(cpu)) { rc = port; break; } } return rc; } /** * xen_evtchn_nr_channels - number of usable event channel ports * * This may be less than the maximum supported by the current * hypervisor ABI. Use xen_evtchn_max_channels() for the maximum * supported. */ unsigned xen_evtchn_nr_channels(void) { return evtchn_ops->nr_channels(); } EXPORT_SYMBOL_GPL(xen_evtchn_nr_channels); int bind_virq_to_irq(unsigned int virq, unsigned int cpu, bool percpu) { struct evtchn_bind_virq bind_virq; int evtchn, irq, ret; mutex_lock(&irq_mapping_update_lock); irq = per_cpu(virq_to_irq, cpu)[virq]; if (irq == -1) { irq = xen_allocate_irq_dynamic(); if (irq < 0) goto out; if (percpu) irq_set_chip_and_handler_name(irq, &xen_percpu_chip, handle_percpu_irq, "virq"); else irq_set_chip_and_handler_name(irq, &xen_dynamic_chip, handle_edge_irq, "virq"); bind_virq.virq = virq; bind_virq.vcpu = xen_vcpu_nr(cpu); ret = HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq, &bind_virq); if (ret == 0) evtchn = bind_virq.port; else { if (ret == -EEXIST) ret = find_virq(virq, cpu); BUG_ON(ret < 0); evtchn = ret; } ret = xen_irq_info_virq_setup(cpu, irq, evtchn, virq); if (ret < 0) { __unbind_from_irq(irq); irq = ret; goto out; } bind_evtchn_to_cpu(evtchn, cpu); } else { struct irq_info *info = info_for_irq(irq); WARN_ON(info == NULL || info->type != IRQT_VIRQ); } out: mutex_unlock(&irq_mapping_update_lock); return irq; } static void unbind_from_irq(unsigned int irq) { mutex_lock(&irq_mapping_update_lock); __unbind_from_irq(irq); mutex_unlock(&irq_mapping_update_lock); } static int bind_evtchn_to_irqhandler_chip(evtchn_port_t evtchn, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id, struct irq_chip *chip) { int irq, retval; irq = bind_evtchn_to_irq_chip(evtchn, chip); if (irq < 0) return irq; retval = request_irq(irq, handler, irqflags, devname, dev_id); if (retval != 0) { unbind_from_irq(irq); return retval; } return irq; } int bind_evtchn_to_irqhandler(evtchn_port_t evtchn, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { return bind_evtchn_to_irqhandler_chip(evtchn, handler, irqflags, devname, dev_id, &xen_dynamic_chip); } EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler); int bind_evtchn_to_irqhandler_lateeoi(evtchn_port_t evtchn, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { return bind_evtchn_to_irqhandler_chip(evtchn, handler, irqflags, devname, dev_id, &xen_lateeoi_chip); } EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler_lateeoi); static int bind_interdomain_evtchn_to_irqhandler_chip( unsigned int remote_domain, evtchn_port_t remote_port, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id, struct irq_chip *chip) { int irq, retval; irq = bind_interdomain_evtchn_to_irq_chip(remote_domain, remote_port, chip); if (irq < 0) return irq; retval = request_irq(irq, handler, irqflags, devname, dev_id); if (retval != 0) { unbind_from_irq(irq); return retval; } return irq; } int bind_interdomain_evtchn_to_irqhandler(unsigned int remote_domain, evtchn_port_t remote_port, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { return bind_interdomain_evtchn_to_irqhandler_chip(remote_domain, remote_port, handler, irqflags, devname, dev_id, &xen_dynamic_chip); } EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irqhandler); int bind_interdomain_evtchn_to_irqhandler_lateeoi(unsigned int remote_domain, evtchn_port_t remote_port, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { return bind_interdomain_evtchn_to_irqhandler_chip(remote_domain, remote_port, handler, irqflags, devname, dev_id, &xen_lateeoi_chip); } EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irqhandler_lateeoi); int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { int irq, retval; irq = bind_virq_to_irq(virq, cpu, irqflags & IRQF_PERCPU); if (irq < 0) return irq; retval = request_irq(irq, handler, irqflags, devname, dev_id); if (retval != 0) { unbind_from_irq(irq); return retval; } return irq; } EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler); int bind_ipi_to_irqhandler(enum ipi_vector ipi, unsigned int cpu, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { int irq, retval; irq = bind_ipi_to_irq(ipi, cpu); if (irq < 0) return irq; irqflags |= IRQF_NO_SUSPEND | IRQF_FORCE_RESUME | IRQF_EARLY_RESUME; retval = request_irq(irq, handler, irqflags, devname, dev_id); if (retval != 0) { unbind_from_irq(irq); return retval; } return irq; } void unbind_from_irqhandler(unsigned int irq, void *dev_id) { struct irq_info *info = info_for_irq(irq); if (WARN_ON(!info)) return; free_irq(irq, dev_id); unbind_from_irq(irq); } EXPORT_SYMBOL_GPL(unbind_from_irqhandler); /** * xen_set_irq_priority() - set an event channel priority. * @irq:irq bound to an event channel. * @priority: priority between XEN_IRQ_PRIORITY_MAX and XEN_IRQ_PRIORITY_MIN. */ int xen_set_irq_priority(unsigned irq, unsigned priority) { struct evtchn_set_priority set_priority; set_priority.port = evtchn_from_irq(irq); set_priority.priority = priority; return HYPERVISOR_event_channel_op(EVTCHNOP_set_priority, &set_priority); } EXPORT_SYMBOL_GPL(xen_set_irq_priority); int evtchn_make_refcounted(unsigned int evtchn) { int irq = get_evtchn_to_irq(evtchn); struct irq_info *info; if (irq == -1) return -ENOENT; info = info_for_irq(irq); if (!info) return -ENOENT; WARN_ON(info->refcnt != -1); info->refcnt = 1; return 0; } EXPORT_SYMBOL_GPL(evtchn_make_refcounted); int evtchn_get(unsigned int evtchn) { int irq; struct irq_info *info; int err = -ENOENT; if (evtchn >= xen_evtchn_max_channels()) return -EINVAL; mutex_lock(&irq_mapping_update_lock); irq = get_evtchn_to_irq(evtchn); if (irq == -1) goto done; info = info_for_irq(irq); if (!info) goto done; err = -EINVAL; if (info->refcnt <= 0 || info->refcnt == SHRT_MAX) goto done; info->refcnt++; err = 0; done: mutex_unlock(&irq_mapping_update_lock); return err; } EXPORT_SYMBOL_GPL(evtchn_get); void evtchn_put(unsigned int evtchn) { int irq = get_evtchn_to_irq(evtchn); if (WARN_ON(irq == -1)) return; unbind_from_irq(irq); } EXPORT_SYMBOL_GPL(evtchn_put); void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector) { int irq; #ifdef CONFIG_X86 if (unlikely(vector == XEN_NMI_VECTOR)) { int rc = HYPERVISOR_vcpu_op(VCPUOP_send_nmi, xen_vcpu_nr(cpu), NULL); if (rc < 0) printk(KERN_WARNING "Sending nmi to CPU%d failed (rc:%d)\n", cpu, rc); return; } #endif irq = per_cpu(ipi_to_irq, cpu)[vector]; BUG_ON(irq < 0); notify_remote_via_irq(irq); } struct evtchn_loop_ctrl { ktime_t timeout; unsigned count; bool defer_eoi; }; void handle_irq_for_port(evtchn_port_t port, struct evtchn_loop_ctrl *ctrl) { int irq; struct irq_info *info; irq = get_evtchn_to_irq(port); if (irq == -1) return; /* * Check for timeout every 256 events. * We are setting the timeout value only after the first 256 * events in order to not hurt the common case of few loop * iterations. The 256 is basically an arbitrary value. * * In case we are hitting the timeout we need to defer all further * EOIs in order to ensure to leave the event handling loop rather * sooner than later. */ if (!ctrl->defer_eoi && !(++ctrl->count & 0xff)) { ktime_t kt = ktime_get(); if (!ctrl->timeout) { kt = ktime_add_ms(kt, jiffies_to_msecs(event_loop_timeout)); ctrl->timeout = kt; } else if (kt > ctrl->timeout) { ctrl->defer_eoi = true; } } info = info_for_irq(irq); if (xchg_acquire(&info->is_active, 1)) return; if (ctrl->defer_eoi) { info->eoi_cpu = smp_processor_id(); info->irq_epoch = __this_cpu_read(irq_epoch); info->eoi_time = get_jiffies_64() + event_eoi_delay; } generic_handle_irq(irq); } static DEFINE_PER_CPU(unsigned, xed_nesting_count); static void __xen_evtchn_do_upcall(void) { struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu); int cpu = get_cpu(); unsigned count; struct evtchn_loop_ctrl ctrl = { 0 }; read_lock(&evtchn_rwlock); do { vcpu_info->evtchn_upcall_pending = 0; if (__this_cpu_inc_return(xed_nesting_count) - 1) goto out; xen_evtchn_handle_events(cpu, &ctrl); BUG_ON(!irqs_disabled()); count = __this_cpu_read(xed_nesting_count); __this_cpu_write(xed_nesting_count, 0); } while (count != 1 || vcpu_info->evtchn_upcall_pending); out: read_unlock(&evtchn_rwlock); /* * Increment irq_epoch only now to defer EOIs only for * xen_irq_lateeoi() invocations occurring from inside the loop * above. */ __this_cpu_inc(irq_epoch); put_cpu(); } void xen_evtchn_do_upcall(struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); irq_enter(); #ifdef CONFIG_X86 inc_irq_stat(irq_hv_callback_count); #endif __xen_evtchn_do_upcall(); irq_exit(); set_irq_regs(old_regs); } void xen_hvm_evtchn_do_upcall(void) { __xen_evtchn_do_upcall(); } EXPORT_SYMBOL_GPL(xen_hvm_evtchn_do_upcall); /* Rebind a new event channel to an existing irq. */ void rebind_evtchn_irq(int evtchn, int irq) { struct irq_info *info = info_for_irq(irq); if (WARN_ON(!info)) return; /* Make sure the irq is masked, since the new event channel will also be masked. */ disable_irq(irq); mutex_lock(&irq_mapping_update_lock); /* After resume the irq<->evtchn mappings are all cleared out */ BUG_ON(get_evtchn_to_irq(evtchn) != -1); /* Expect irq to have been bound before, so there should be a proper type */ BUG_ON(info->type == IRQT_UNBOUND); (void)xen_irq_info_evtchn_setup(irq, evtchn); mutex_unlock(&irq_mapping_update_lock); bind_evtchn_to_cpu(evtchn, info->cpu); /* This will be deferred until interrupt is processed */ irq_set_affinity(irq, cpumask_of(info->cpu)); /* Unmask the event channel. */ enable_irq(irq); } /* Rebind an evtchn so that it gets delivered to a specific cpu */ static int xen_rebind_evtchn_to_cpu(struct irq_info *info, unsigned int tcpu) { struct evtchn_bind_vcpu bind_vcpu; evtchn_port_t evtchn = info ? info->evtchn : 0; if (!VALID_EVTCHN(evtchn)) return -1; if (!xen_support_evtchn_rebind()) return -1; /* Send future instances of this interrupt to other vcpu. */ bind_vcpu.port = evtchn; bind_vcpu.vcpu = xen_vcpu_nr(tcpu); /* * Mask the event while changing the VCPU binding to prevent * it being delivered on an unexpected VCPU. */ do_mask(info, EVT_MASK_REASON_TEMPORARY); /* * If this fails, it usually just indicates that we're dealing with a * virq or IPI channel, which don't actually need to be rebound. Ignore * it, but don't do the xenlinux-level rebind in that case. */ if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0) bind_evtchn_to_cpu(evtchn, tcpu); do_unmask(info, EVT_MASK_REASON_TEMPORARY); return 0; } static int set_affinity_irq(struct irq_data *data, const struct cpumask *dest, bool force) { unsigned tcpu = cpumask_first_and(dest, cpu_online_mask); int ret = xen_rebind_evtchn_to_cpu(info_for_irq(data->irq), tcpu); if (!ret) irq_data_update_effective_affinity(data, cpumask_of(tcpu)); return ret; } /* To be called with desc->lock held. */ int xen_set_affinity_evtchn(struct irq_desc *desc, unsigned int tcpu) { struct irq_data *d = irq_desc_get_irq_data(desc); return set_affinity_irq(d, cpumask_of(tcpu), false); } EXPORT_SYMBOL_GPL(xen_set_affinity_evtchn); static void enable_dynirq(struct irq_data *data) { struct irq_info *info = info_for_irq(data->irq); evtchn_port_t evtchn = info ? info->evtchn : 0; if (VALID_EVTCHN(evtchn)) do_unmask(info, EVT_MASK_REASON_EXPLICIT); } static void disable_dynirq(struct irq_data *data) { struct irq_info *info = info_for_irq(data->irq); evtchn_port_t evtchn = info ? info->evtchn : 0; if (VALID_EVTCHN(evtchn)) do_mask(info, EVT_MASK_REASON_EXPLICIT); } static void ack_dynirq(struct irq_data *data) { struct irq_info *info = info_for_irq(data->irq); evtchn_port_t evtchn = info ? info->evtchn : 0; if (!VALID_EVTCHN(evtchn)) return; if (unlikely(irqd_is_setaffinity_pending(data)) && likely(!irqd_irq_disabled(data))) { do_mask(info, EVT_MASK_REASON_TEMPORARY); event_handler_exit(info); irq_move_masked_irq(data); do_unmask(info, EVT_MASK_REASON_TEMPORARY); } else event_handler_exit(info); } static void mask_ack_dynirq(struct irq_data *data) { disable_dynirq(data); ack_dynirq(data); } static void lateeoi_ack_dynirq(struct irq_data *data) { struct irq_info *info = info_for_irq(data->irq); evtchn_port_t evtchn = info ? info->evtchn : 0; if (VALID_EVTCHN(evtchn)) { do_mask(info, EVT_MASK_REASON_EOI_PENDING); ack_dynirq(data); } } static void lateeoi_mask_ack_dynirq(struct irq_data *data) { struct irq_info *info = info_for_irq(data->irq); evtchn_port_t evtchn = info ? info->evtchn : 0; if (VALID_EVTCHN(evtchn)) { do_mask(info, EVT_MASK_REASON_EXPLICIT); ack_dynirq(data); } } static int retrigger_dynirq(struct irq_data *data) { struct irq_info *info = info_for_irq(data->irq); evtchn_port_t evtchn = info ? info->evtchn : 0; if (!VALID_EVTCHN(evtchn)) return 0; do_mask(info, EVT_MASK_REASON_TEMPORARY); set_evtchn(evtchn); do_unmask(info, EVT_MASK_REASON_TEMPORARY); return 1; } static void restore_pirqs(void) { int pirq, rc, irq, gsi; struct physdev_map_pirq map_irq; struct irq_info *info; list_for_each_entry(info, &xen_irq_list_head, list) { if (info->type != IRQT_PIRQ) continue; pirq = info->u.pirq.pirq; gsi = info->u.pirq.gsi; irq = info->irq; /* save/restore of PT devices doesn't work, so at this point the * only devices present are GSI based emulated devices */ if (!gsi) continue; map_irq.domid = DOMID_SELF; map_irq.type = MAP_PIRQ_TYPE_GSI; map_irq.index = gsi; map_irq.pirq = pirq; rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq); if (rc) { pr_warn("xen map irq failed gsi=%d irq=%d pirq=%d rc=%d\n", gsi, irq, pirq, rc); xen_free_irq(irq); continue; } printk(KERN_DEBUG "xen: --> irq=%d, pirq=%d\n", irq, map_irq.pirq); __startup_pirq(irq); } } static void restore_cpu_virqs(unsigned int cpu) { struct evtchn_bind_virq bind_virq; int virq, irq, evtchn; for (virq = 0; virq < NR_VIRQS; virq++) { if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1) continue; BUG_ON(virq_from_irq(irq) != virq); /* Get a new binding from Xen. */ bind_virq.virq = virq; bind_virq.vcpu = xen_vcpu_nr(cpu); if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq, &bind_virq) != 0) BUG(); evtchn = bind_virq.port; /* Record the new mapping. */ (void)xen_irq_info_virq_setup(cpu, irq, evtchn, virq); bind_evtchn_to_cpu(evtchn, cpu); } } static void restore_cpu_ipis(unsigned int cpu) { struct evtchn_bind_ipi bind_ipi; int ipi, irq, evtchn; for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) { if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1) continue; BUG_ON(ipi_from_irq(irq) != ipi); /* Get a new binding from Xen. */ bind_ipi.vcpu = xen_vcpu_nr(cpu); if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi, &bind_ipi) != 0) BUG(); evtchn = bind_ipi.port; /* Record the new mapping. */ (void)xen_irq_info_ipi_setup(cpu, irq, evtchn, ipi); bind_evtchn_to_cpu(evtchn, cpu); } } /* Clear an irq's pending state, in preparation for polling on it */ void xen_clear_irq_pending(int irq) { struct irq_info *info = info_for_irq(irq); evtchn_port_t evtchn = info ? info->evtchn : 0; if (VALID_EVTCHN(evtchn)) event_handler_exit(info); } EXPORT_SYMBOL(xen_clear_irq_pending); void xen_set_irq_pending(int irq) { int evtchn = evtchn_from_irq(irq); if (VALID_EVTCHN(evtchn)) set_evtchn(evtchn); } bool xen_test_irq_pending(int irq) { int evtchn = evtchn_from_irq(irq); bool ret = false; if (VALID_EVTCHN(evtchn)) ret = test_evtchn(evtchn); return ret; } /* Poll waiting for an irq to become pending with timeout. In the usual case, * the irq will be disabled so it won't deliver an interrupt. */ void xen_poll_irq_timeout(int irq, u64 timeout) { evtchn_port_t evtchn = evtchn_from_irq(irq); if (VALID_EVTCHN(evtchn)) { struct sched_poll poll; poll.nr_ports = 1; poll.timeout = timeout; set_xen_guest_handle(poll.ports, &evtchn); if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0) BUG(); } } EXPORT_SYMBOL(xen_poll_irq_timeout); /* Poll waiting for an irq to become pending. In the usual case, the * irq will be disabled so it won't deliver an interrupt. */ void xen_poll_irq(int irq) { xen_poll_irq_timeout(irq, 0 /* no timeout */); } /* Check whether the IRQ line is shared with other guests. */ int xen_test_irq_shared(int irq) { struct irq_info *info = info_for_irq(irq); struct physdev_irq_status_query irq_status; if (WARN_ON(!info)) return -ENOENT; irq_status.irq = info->u.pirq.pirq; if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status)) return 0; return !(irq_status.flags & XENIRQSTAT_shared); } EXPORT_SYMBOL_GPL(xen_test_irq_shared); void xen_irq_resume(void) { unsigned int cpu; struct irq_info *info; /* New event-channel space is not 'live' yet. */ xen_evtchn_resume(); /* No IRQ <-> event-channel mappings. */ list_for_each_entry(info, &xen_irq_list_head, list) info->evtchn = 0; /* zap event-channel binding */ clear_evtchn_to_irq_all(); for_each_possible_cpu(cpu) { restore_cpu_virqs(cpu); restore_cpu_ipis(cpu); } restore_pirqs(); } static struct irq_chip xen_dynamic_chip __read_mostly = { .name = "xen-dyn", .irq_disable = disable_dynirq, .irq_mask = disable_dynirq, .irq_unmask = enable_dynirq, .irq_ack = ack_dynirq, .irq_mask_ack = mask_ack_dynirq, .irq_set_affinity = set_affinity_irq, .irq_retrigger = retrigger_dynirq, }; static struct irq_chip xen_lateeoi_chip __read_mostly = { /* The chip name needs to contain "xen-dyn" for irqbalance to work. */ .name = "xen-dyn-lateeoi", .irq_disable = disable_dynirq, .irq_mask = disable_dynirq, .irq_unmask = enable_dynirq, .irq_ack = lateeoi_ack_dynirq, .irq_mask_ack = lateeoi_mask_ack_dynirq, .irq_set_affinity = set_affinity_irq, .irq_retrigger = retrigger_dynirq, }; static struct irq_chip xen_pirq_chip __read_mostly = { .name = "xen-pirq", .irq_startup = startup_pirq, .irq_shutdown = shutdown_pirq, .irq_enable = enable_pirq, .irq_disable = disable_pirq, .irq_mask = disable_dynirq, .irq_unmask = enable_dynirq, .irq_ack = eoi_pirq, .irq_eoi = eoi_pirq, .irq_mask_ack = mask_ack_pirq, .irq_set_affinity = set_affinity_irq, .irq_retrigger = retrigger_dynirq, }; static struct irq_chip xen_percpu_chip __read_mostly = { .name = "xen-percpu", .irq_disable = disable_dynirq, .irq_mask = disable_dynirq, .irq_unmask = enable_dynirq, .irq_ack = ack_dynirq, }; #ifdef CONFIG_XEN_PVHVM /* Vector callbacks are better than PCI interrupts to receive event * channel notifications because we can receive vector callbacks on any * vcpu and we don't need PCI support or APIC interactions. */ void xen_callback_vector(void) { int rc; uint64_t callback_via; if (xen_have_vector_callback) { callback_via = HVM_CALLBACK_VECTOR(HYPERVISOR_CALLBACK_VECTOR); rc = xen_set_callback_via(callback_via); if (rc) { pr_err("Request for Xen HVM callback vector failed\n"); xen_have_vector_callback = 0; return; } pr_info_once("Xen HVM callback vector for event delivery is enabled\n"); alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, xen_hvm_callback_vector); } } #else void xen_callback_vector(void) {} #endif static bool fifo_events = true; module_param(fifo_events, bool, 0); static int xen_evtchn_cpu_prepare(unsigned int cpu) { int ret = 0; xen_cpu_init_eoi(cpu); if (evtchn_ops->percpu_init) ret = evtchn_ops->percpu_init(cpu); return ret; } static int xen_evtchn_cpu_dead(unsigned int cpu) { int ret = 0; if (evtchn_ops->percpu_deinit) ret = evtchn_ops->percpu_deinit(cpu); return ret; } void __init xen_init_IRQ(void) { int ret = -EINVAL; unsigned int evtchn; if (fifo_events) ret = xen_evtchn_fifo_init(); if (ret < 0) xen_evtchn_2l_init(); xen_cpu_init_eoi(smp_processor_id()); cpuhp_setup_state_nocalls(CPUHP_XEN_EVTCHN_PREPARE, "xen/evtchn:prepare", xen_evtchn_cpu_prepare, xen_evtchn_cpu_dead); evtchn_to_irq = kcalloc(EVTCHN_ROW(xen_evtchn_max_channels()), sizeof(*evtchn_to_irq), GFP_KERNEL); BUG_ON(!evtchn_to_irq); /* No event channels are 'live' right now. */ for (evtchn = 0; evtchn < xen_evtchn_nr_channels(); evtchn++) mask_evtchn(evtchn); pirq_needs_eoi = pirq_needs_eoi_flag; #ifdef CONFIG_X86 if (xen_pv_domain()) { irq_ctx_init(smp_processor_id()); if (xen_initial_domain()) pci_xen_initial_domain(); } if (xen_feature(XENFEAT_hvm_callback_vector)) xen_callback_vector(); if (xen_hvm_domain()) { native_init_IRQ(); /* pci_xen_hvm_init must be called after native_init_IRQ so that * __acpi_register_gsi can point at the right function */ pci_xen_hvm_init(); } else { int rc; struct physdev_pirq_eoi_gmfn eoi_gmfn; pirq_eoi_map = (void *)__get_free_page(GFP_KERNEL|__GFP_ZERO); eoi_gmfn.gmfn = virt_to_gfn(pirq_eoi_map); rc = HYPERVISOR_physdev_op(PHYSDEVOP_pirq_eoi_gmfn_v2, &eoi_gmfn); if (rc != 0) { free_page((unsigned long) pirq_eoi_map); pirq_eoi_map = NULL; } else pirq_needs_eoi = pirq_check_eoi_map; } #endif }