/* * linux/arch/arm/kernel/entry-armv.S * * Copyright (C) 1996,1997,1998 Russell King. * ARM700 fix by Matthew Godbolt (linux-user@willothewisp.demon.co.uk) * nommu support by Hyok S. Choi (hyok.choi@samsung.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Low-level vector interface routines * * Note: there is a StrongARM bug in the STMIA rn, {regs}^ instruction * that causes it to save wrong values... Be aware! */ #include #include #include #include #include #include #ifndef CONFIG_GENERIC_IRQ_MULTI_HANDLER #include #endif #include #include #include #include #include #include #include "entry-header.S" #include #include /* * Interrupt handling. */ .macro irq_handler #ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER ldr r1, =handle_arch_irq mov r0, sp badr lr, 9997f ldr pc, [r1] #else arch_irq_handler_default #endif 9997: .endm .macro pabt_helper @ PABORT handler takes pt_regs in r2, fault address in r4 and psr in r5 #ifdef MULTI_PABORT ldr ip, .LCprocfns mov lr, pc ldr pc, [ip, #PROCESSOR_PABT_FUNC] #else bl CPU_PABORT_HANDLER #endif .endm .macro dabt_helper @ @ Call the processor-specific abort handler: @ @ r2 - pt_regs @ r4 - aborted context pc @ r5 - aborted context psr @ @ The abort handler must return the aborted address in r0, and @ the fault status register in r1. r9 must be preserved. @ #ifdef MULTI_DABORT ldr ip, .LCprocfns mov lr, pc ldr pc, [ip, #PROCESSOR_DABT_FUNC] #else bl CPU_DABORT_HANDLER #endif .endm .section .entry.text,"ax",%progbits /* * Invalid mode handlers */ .macro inv_entry, reason sub sp, sp, #PT_REGS_SIZE ARM( stmib sp, {r1 - lr} ) THUMB( stmia sp, {r0 - r12} ) THUMB( str sp, [sp, #S_SP] ) THUMB( str lr, [sp, #S_LR] ) mov r1, #\reason .endm __pabt_invalid: inv_entry BAD_PREFETCH b common_invalid ENDPROC(__pabt_invalid) __dabt_invalid: inv_entry BAD_DATA b common_invalid ENDPROC(__dabt_invalid) __irq_invalid: inv_entry BAD_IRQ b common_invalid ENDPROC(__irq_invalid) __und_invalid: inv_entry BAD_UNDEFINSTR @ @ XXX fall through to common_invalid @ @ @ common_invalid - generic code for failed exception (re-entrant version of handlers) @ common_invalid: zero_fp ldmia r0, {r4 - r6} add r0, sp, #S_PC @ here for interlock avoidance mov r7, #-1 @ "" "" "" "" str r4, [sp] @ save preserved r0 stmia r0, {r5 - r7} @ lr_, @ cpsr_, "old_r0" mov r0, sp b bad_mode ENDPROC(__und_invalid) /* * SVC mode handlers */ #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) #define SPFIX(code...) code #else #define SPFIX(code...) #endif .macro svc_entry, stack_hole=0, trace=1, uaccess=1 UNWIND(.fnstart ) UNWIND(.save {r0 - pc} ) sub sp, sp, #(SVC_REGS_SIZE + \stack_hole - 4) #ifdef CONFIG_THUMB2_KERNEL SPFIX( str r0, [sp] ) @ temporarily saved SPFIX( mov r0, sp ) SPFIX( tst r0, #4 ) @ test original stack alignment SPFIX( ldr r0, [sp] ) @ restored #else SPFIX( tst sp, #4 ) #endif SPFIX( subeq sp, sp, #4 ) stmia sp, {r1 - r12} ldmia r0, {r3 - r5} add r7, sp, #S_SP - 4 @ here for interlock avoidance mov r6, #-1 @ "" "" "" "" add r2, sp, #(SVC_REGS_SIZE + \stack_hole - 4) SPFIX( addeq r2, r2, #4 ) str r3, [sp, #-4]! @ save the "real" r0 copied @ from the exception stack mov r3, lr @ @ We are now ready to fill in the remaining blanks on the stack: @ @ r2 - sp_svc @ r3 - lr_svc @ r4 - lr_, already fixed up for correct return/restart @ r5 - spsr_ @ r6 - orig_r0 (see pt_regs definition in ptrace.h) @ stmia r7, {r2 - r6} get_thread_info tsk uaccess_entry tsk, r0, r1, r2, \uaccess .if \trace #ifdef CONFIG_TRACE_IRQFLAGS bl trace_hardirqs_off #endif .endif .endm .align 5 __dabt_svc: svc_entry uaccess=0 mov r2, sp dabt_helper THUMB( ldr r5, [sp, #S_PSR] ) @ potentially updated CPSR svc_exit r5 @ return from exception UNWIND(.fnend ) ENDPROC(__dabt_svc) .align 5 __irq_svc: svc_entry irq_handler #ifdef CONFIG_PREEMPT ldr r8, [tsk, #TI_PREEMPT] @ get preempt count ldr r0, [tsk, #TI_FLAGS] @ get flags teq r8, #0 @ if preempt count != 0 movne r0, #0 @ force flags to 0 tst r0, #_TIF_NEED_RESCHED blne svc_preempt #endif svc_exit r5, irq = 1 @ return from exception UNWIND(.fnend ) ENDPROC(__irq_svc) .ltorg #ifdef CONFIG_PREEMPT svc_preempt: mov r8, lr 1: bl preempt_schedule_irq @ irq en/disable is done inside ldr r0, [tsk, #TI_FLAGS] @ get new tasks TI_FLAGS tst r0, #_TIF_NEED_RESCHED reteq r8 @ go again b 1b #endif __und_fault: @ Correct the PC such that it is pointing at the instruction @ which caused the fault. If the faulting instruction was ARM @ the PC will be pointing at the next instruction, and have to @ subtract 4. Otherwise, it is Thumb, and the PC will be @ pointing at the second half of the Thumb instruction. We @ have to subtract 2. ldr r2, [r0, #S_PC] sub r2, r2, r1 str r2, [r0, #S_PC] b do_undefinstr ENDPROC(__und_fault) .align 5 __und_svc: #ifdef CONFIG_KPROBES @ If a kprobe is about to simulate a "stmdb sp..." instruction, @ it obviously needs free stack space which then will belong to @ the saved context. svc_entry MAX_STACK_SIZE #else svc_entry #endif @ @ call emulation code, which returns using r9 if it has emulated @ the instruction, or the more conventional lr if we are to treat @ this as a real undefined instruction @ @ r0 - instruction @ #ifndef CONFIG_THUMB2_KERNEL ldr r0, [r4, #-4] #else mov r1, #2 ldrh r0, [r4, #-2] @ Thumb instruction at LR - 2 cmp r0, #0xe800 @ 32-bit instruction if xx >= 0 blo __und_svc_fault ldrh r9, [r4] @ bottom 16 bits add r4, r4, #2 str r4, [sp, #S_PC] orr r0, r9, r0, lsl #16 #endif badr r9, __und_svc_finish mov r2, r4 bl call_fpe mov r1, #4 @ PC correction to apply __und_svc_fault: mov r0, sp @ struct pt_regs *regs bl __und_fault __und_svc_finish: get_thread_info tsk ldr r5, [sp, #S_PSR] @ Get SVC cpsr svc_exit r5 @ return from exception UNWIND(.fnend ) ENDPROC(__und_svc) .align 5 __pabt_svc: svc_entry mov r2, sp @ regs pabt_helper svc_exit r5 @ return from exception UNWIND(.fnend ) ENDPROC(__pabt_svc) .align 5 __fiq_svc: svc_entry trace=0 mov r0, sp @ struct pt_regs *regs bl handle_fiq_as_nmi svc_exit_via_fiq UNWIND(.fnend ) ENDPROC(__fiq_svc) .align 5 .LCcralign: .word cr_alignment #ifdef MULTI_DABORT .LCprocfns: .word processor #endif .LCfp: .word fp_enter /* * Abort mode handlers */ @ @ Taking a FIQ in abort mode is similar to taking a FIQ in SVC mode @ and reuses the same macros. However in abort mode we must also @ save/restore lr_abt and spsr_abt to make nested aborts safe. @ .align 5 __fiq_abt: svc_entry trace=0 ARM( msr cpsr_c, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( mov r0, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( msr cpsr_c, r0 ) mov r1, lr @ Save lr_abt mrs r2, spsr @ Save spsr_abt, abort is now safe ARM( msr cpsr_c, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( mov r0, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( msr cpsr_c, r0 ) stmfd sp!, {r1 - r2} add r0, sp, #8 @ struct pt_regs *regs bl handle_fiq_as_nmi ldmfd sp!, {r1 - r2} ARM( msr cpsr_c, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( mov r0, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( msr cpsr_c, r0 ) mov lr, r1 @ Restore lr_abt, abort is unsafe msr spsr_cxsf, r2 @ Restore spsr_abt ARM( msr cpsr_c, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( mov r0, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( msr cpsr_c, r0 ) svc_exit_via_fiq UNWIND(.fnend ) ENDPROC(__fiq_abt) /* * User mode handlers * * EABI note: sp_svc is always 64-bit aligned here, so should PT_REGS_SIZE */ #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) && (PT_REGS_SIZE & 7) #error "sizeof(struct pt_regs) must be a multiple of 8" #endif .macro usr_entry, trace=1, uaccess=1 UNWIND(.fnstart ) UNWIND(.cantunwind ) @ don't unwind the user space sub sp, sp, #PT_REGS_SIZE ARM( stmib sp, {r1 - r12} ) THUMB( stmia sp, {r0 - r12} ) ATRAP( mrc p15, 0, r7, c1, c0, 0) ATRAP( ldr r8, .LCcralign) ldmia r0, {r3 - r5} add r0, sp, #S_PC @ here for interlock avoidance mov r6, #-1 @ "" "" "" "" str r3, [sp] @ save the "real" r0 copied @ from the exception stack ATRAP( ldr r8, [r8, #0]) @ @ We are now ready to fill in the remaining blanks on the stack: @ @ r4 - lr_, already fixed up for correct return/restart @ r5 - spsr_ @ r6 - orig_r0 (see pt_regs definition in ptrace.h) @ @ Also, separately save sp_usr and lr_usr @ stmia r0, {r4 - r6} ARM( stmdb r0, {sp, lr}^ ) THUMB( store_user_sp_lr r0, r1, S_SP - S_PC ) .if \uaccess uaccess_disable ip .endif @ Enable the alignment trap while in kernel mode ATRAP( teq r8, r7) ATRAP( mcrne p15, 0, r8, c1, c0, 0) @ @ Clear FP to mark the first stack frame @ zero_fp .if \trace #ifdef CONFIG_TRACE_IRQFLAGS bl trace_hardirqs_off #endif ct_user_exit save = 0 .endif .endm .macro kuser_cmpxchg_check #if !defined(CONFIG_CPU_32v6K) && defined(CONFIG_KUSER_HELPERS) #ifndef CONFIG_MMU #warning "NPTL on non MMU needs fixing" #else @ Make sure our user space atomic helper is restarted @ if it was interrupted in a critical region. Here we @ perform a quick test inline since it should be false @ 99.9999% of the time. The rest is done out of line. cmp r4, #TASK_SIZE blhs kuser_cmpxchg64_fixup #endif #endif .endm .align 5 __dabt_usr: usr_entry uaccess=0 kuser_cmpxchg_check mov r2, sp dabt_helper b ret_from_exception UNWIND(.fnend ) ENDPROC(__dabt_usr) .align 5 __irq_usr: usr_entry kuser_cmpxchg_check irq_handler get_thread_info tsk mov why, #0 b ret_to_user_from_irq UNWIND(.fnend ) ENDPROC(__irq_usr) .ltorg .align 5 __und_usr: usr_entry uaccess=0 mov r2, r4 mov r3, r5 @ r2 = regs->ARM_pc, which is either 2 or 4 bytes ahead of the @ faulting instruction depending on Thumb mode. @ r3 = regs->ARM_cpsr @ @ The emulation code returns using r9 if it has emulated the @ instruction, or the more conventional lr if we are to treat @ this as a real undefined instruction @ badr r9, ret_from_exception @ IRQs must be enabled before attempting to read the instruction from @ user space since that could cause a page/translation fault if the @ page table was modified by another CPU. enable_irq tst r3, #PSR_T_BIT @ Thumb mode? bne __und_usr_thumb sub r4, r2, #4 @ ARM instr at LR - 4 1: ldrt r0, [r4] ARM_BE8(rev r0, r0) @ little endian instruction uaccess_disable ip @ r0 = 32-bit ARM instruction which caused the exception @ r2 = PC value for the following instruction (:= regs->ARM_pc) @ r4 = PC value for the faulting instruction @ lr = 32-bit undefined instruction function badr lr, __und_usr_fault_32 b call_fpe __und_usr_thumb: @ Thumb instruction sub r4, r2, #2 @ First half of thumb instr at LR - 2 #if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7 /* * Thumb-2 instruction handling. Note that because pre-v6 and >= v6 platforms * can never be supported in a single kernel, this code is not applicable at * all when __LINUX_ARM_ARCH__ < 6. This allows simplifying assumptions to be * made about .arch directives. */ #if __LINUX_ARM_ARCH__ < 7 /* If the target CPU may not be Thumb-2-capable, a run-time check is needed: */ #define NEED_CPU_ARCHITECTURE ldr r5, .LCcpu_architecture ldr r5, [r5] cmp r5, #CPU_ARCH_ARMv7 blo __und_usr_fault_16 @ 16bit undefined instruction /* * The following code won't get run unless the running CPU really is v7, so * coding round the lack of ldrht on older arches is pointless. Temporarily * override the assembler target arch with the minimum required instead: */ .arch armv6t2 #endif 2: ldrht r5, [r4] ARM_BE8(rev16 r5, r5) @ little endian instruction cmp r5, #0xe800 @ 32bit instruction if xx != 0 blo __und_usr_fault_16_pan @ 16bit undefined instruction 3: ldrht r0, [r2] ARM_BE8(rev16 r0, r0) @ little endian instruction uaccess_disable ip add r2, r2, #2 @ r2 is PC + 2, make it PC + 4 str r2, [sp, #S_PC] @ it's a 2x16bit instr, update orr r0, r0, r5, lsl #16 badr lr, __und_usr_fault_32 @ r0 = the two 16-bit Thumb instructions which caused the exception @ r2 = PC value for the following Thumb instruction (:= regs->ARM_pc) @ r4 = PC value for the first 16-bit Thumb instruction @ lr = 32bit undefined instruction function #if __LINUX_ARM_ARCH__ < 7 /* If the target arch was overridden, change it back: */ #ifdef CONFIG_CPU_32v6K .arch armv6k #else .arch armv6 #endif #endif /* __LINUX_ARM_ARCH__ < 7 */ #else /* !(CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7) */ b __und_usr_fault_16 #endif UNWIND(.fnend) ENDPROC(__und_usr) /* * The out of line fixup for the ldrt instructions above. */ .pushsection .text.fixup, "ax" .align 2 4: str r4, [sp, #S_PC] @ retry current instruction ret r9 .popsection .pushsection __ex_table,"a" .long 1b, 4b #if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7 .long 2b, 4b .long 3b, 4b #endif .popsection /* * Check whether the instruction is a co-processor instruction. * If yes, we need to call the relevant co-processor handler. * * Note that we don't do a full check here for the co-processor * instructions; all instructions with bit 27 set are well * defined. The only instructions that should fault are the * co-processor instructions. However, we have to watch out * for the ARM6/ARM7 SWI bug. * * NEON is a special case that has to be handled here. Not all * NEON instructions are co-processor instructions, so we have * to make a special case of checking for them. Plus, there's * five groups of them, so we have a table of mask/opcode pairs * to check against, and if any match then we branch off into the * NEON handler code. * * Emulators may wish to make use of the following registers: * r0 = instruction opcode (32-bit ARM or two 16-bit Thumb) * r2 = PC value to resume execution after successful emulation * r9 = normal "successful" return address * r10 = this threads thread_info structure * lr = unrecognised instruction return address * IRQs enabled, FIQs enabled. */ @ @ Fall-through from Thumb-2 __und_usr @ #ifdef CONFIG_NEON get_thread_info r10 @ get current thread adr r6, .LCneon_thumb_opcodes b 2f #endif call_fpe: get_thread_info r10 @ get current thread #ifdef CONFIG_NEON adr r6, .LCneon_arm_opcodes 2: ldr r5, [r6], #4 @ mask value ldr r7, [r6], #4 @ opcode bits matching in mask cmp r5, #0 @ end mask? beq 1f and r8, r0, r5 cmp r8, r7 @ NEON instruction? bne 2b mov r7, #1 strb r7, [r10, #TI_USED_CP + 10] @ mark CP#10 as used strb r7, [r10, #TI_USED_CP + 11] @ mark CP#11 as used b do_vfp @ let VFP handler handle this 1: #endif tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27 tstne r0, #0x04000000 @ bit 26 set on both ARM and Thumb-2 reteq lr and r8, r0, #0x00000f00 @ mask out CP number THUMB( lsr r8, r8, #8 ) mov r7, #1 add r6, r10, #TI_USED_CP ARM( strb r7, [r6, r8, lsr #8] ) @ set appropriate used_cp[] THUMB( strb r7, [r6, r8] ) @ set appropriate used_cp[] #ifdef CONFIG_IWMMXT @ Test if we need to give access to iWMMXt coprocessors ldr r5, [r10, #TI_FLAGS] rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only movcss r7, r5, lsr #(TIF_USING_IWMMXT + 1) bcs iwmmxt_task_enable #endif ARM( add pc, pc, r8, lsr #6 ) THUMB( lsl r8, r8, #2 ) THUMB( add pc, r8 ) nop ret.w lr @ CP#0 W(b) do_fpe @ CP#1 (FPE) W(b) do_fpe @ CP#2 (FPE) ret.w lr @ CP#3 #ifdef CONFIG_CRUNCH b crunch_task_enable @ CP#4 (MaverickCrunch) b crunch_task_enable @ CP#5 (MaverickCrunch) b crunch_task_enable @ CP#6 (MaverickCrunch) #else ret.w lr @ CP#4 ret.w lr @ CP#5 ret.w lr @ CP#6 #endif ret.w lr @ CP#7 ret.w lr @ CP#8 ret.w lr @ CP#9 #ifdef CONFIG_VFP W(b) do_vfp @ CP#10 (VFP) W(b) do_vfp @ CP#11 (VFP) #else ret.w lr @ CP#10 (VFP) ret.w lr @ CP#11 (VFP) #endif ret.w lr @ CP#12 ret.w lr @ CP#13 ret.w lr @ CP#14 (Debug) ret.w lr @ CP#15 (Control) #ifdef NEED_CPU_ARCHITECTURE .align 2 .LCcpu_architecture: .word __cpu_architecture #endif #ifdef CONFIG_NEON .align 6 .LCneon_arm_opcodes: .word 0xfe000000 @ mask .word 0xf2000000 @ opcode .word 0xff100000 @ mask .word 0xf4000000 @ opcode .word 0x00000000 @ mask .word 0x00000000 @ opcode .LCneon_thumb_opcodes: .word 0xef000000 @ mask .word 0xef000000 @ opcode .word 0xff100000 @ mask .word 0xf9000000 @ opcode .word 0x00000000 @ mask .word 0x00000000 @ opcode #endif do_fpe: ldr r4, .LCfp add r10, r10, #TI_FPSTATE @ r10 = workspace ldr pc, [r4] @ Call FP module USR entry point /* * The FP module is called with these registers set: * r0 = instruction * r2 = PC+4 * r9 = normal "successful" return address * r10 = FP workspace * lr = unrecognised FP instruction return address */ .pushsection .data .align 2 ENTRY(fp_enter) .word no_fp .popsection ENTRY(no_fp) ret lr ENDPROC(no_fp) __und_usr_fault_32: mov r1, #4 b 1f __und_usr_fault_16_pan: uaccess_disable ip __und_usr_fault_16: mov r1, #2 1: mov r0, sp badr lr, ret_from_exception b __und_fault ENDPROC(__und_usr_fault_32) ENDPROC(__und_usr_fault_16) .align 5 __pabt_usr: usr_entry mov r2, sp @ regs pabt_helper UNWIND(.fnend ) /* fall through */ /* * This is the return code to user mode for abort handlers */ ENTRY(ret_from_exception) UNWIND(.fnstart ) UNWIND(.cantunwind ) get_thread_info tsk mov why, #0 b ret_to_user UNWIND(.fnend ) ENDPROC(__pabt_usr) ENDPROC(ret_from_exception) .align 5 __fiq_usr: usr_entry trace=0 kuser_cmpxchg_check mov r0, sp @ struct pt_regs *regs bl handle_fiq_as_nmi get_thread_info tsk restore_user_regs fast = 0, offset = 0 UNWIND(.fnend ) ENDPROC(__fiq_usr) /* * Register switch for ARMv3 and ARMv4 processors * r0 = previous task_struct, r1 = previous thread_info, r2 = next thread_info * previous and next are guaranteed not to be the same. */ ENTRY(__switch_to) UNWIND(.fnstart ) UNWIND(.cantunwind ) add ip, r1, #TI_CPU_SAVE ARM( stmia ip!, {r4 - sl, fp, sp, lr} ) @ Store most regs on stack THUMB( stmia ip!, {r4 - sl, fp} ) @ Store most regs on stack THUMB( str sp, [ip], #4 ) THUMB( str lr, [ip], #4 ) ldr r4, [r2, #TI_TP_VALUE] ldr r5, [r2, #TI_TP_VALUE + 4] #ifdef CONFIG_CPU_USE_DOMAINS mrc p15, 0, r6, c3, c0, 0 @ Get domain register str r6, [r1, #TI_CPU_DOMAIN] @ Save old domain register ldr r6, [r2, #TI_CPU_DOMAIN] #endif switch_tls r1, r4, r5, r3, r7 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP) ldr r7, [r2, #TI_TASK] ldr r8, =__stack_chk_guard .if (TSK_STACK_CANARY > IMM12_MASK) add r7, r7, #TSK_STACK_CANARY & ~IMM12_MASK .endif ldr r7, [r7, #TSK_STACK_CANARY & IMM12_MASK] #endif #ifdef CONFIG_CPU_USE_DOMAINS mcr p15, 0, r6, c3, c0, 0 @ Set domain register #endif mov r5, r0 add r4, r2, #TI_CPU_SAVE ldr r0, =thread_notify_head mov r1, #THREAD_NOTIFY_SWITCH bl atomic_notifier_call_chain #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP) str r7, [r8] #endif THUMB( mov ip, r4 ) mov r0, r5 ARM( ldmia r4, {r4 - sl, fp, sp, pc} ) @ Load all regs saved previously THUMB( ldmia ip!, {r4 - sl, fp} ) @ Load all regs saved previously THUMB( ldr sp, [ip], #4 ) THUMB( ldr pc, [ip] ) UNWIND(.fnend ) ENDPROC(__switch_to) __INIT /* * User helpers. * * Each segment is 32-byte aligned and will be moved to the top of the high * vector page. New segments (if ever needed) must be added in front of * existing ones. This mechanism should be used only for things that are * really small and justified, and not be abused freely. * * See Documentation/arm/kernel_user_helpers.txt for formal definitions. */ THUMB( .arm ) .macro usr_ret, reg #ifdef CONFIG_ARM_THUMB bx \reg #else ret \reg #endif .endm .macro kuser_pad, sym, size .if (. - \sym) & 3 .rept 4 - (. - \sym) & 3 .byte 0 .endr .endif .rept (\size - (. - \sym)) / 4 .word 0xe7fddef1 .endr .endm #ifdef CONFIG_KUSER_HELPERS .align 5 .globl __kuser_helper_start __kuser_helper_start: /* * Due to the length of some sequences, __kuser_cmpxchg64 spans 2 regular * kuser "slots", therefore 0xffff0f80 is not used as a valid entry point. */ __kuser_cmpxchg64: @ 0xffff0f60 #if defined(CONFIG_CPU_32v6K) stmfd sp!, {r4, r5, r6, r7} ldrd r4, r5, [r0] @ load old val ldrd r6, r7, [r1] @ load new val smp_dmb arm 1: ldrexd r0, r1, [r2] @ load current val eors r3, r0, r4 @ compare with oldval (1) eoreqs r3, r1, r5 @ compare with oldval (2) strexdeq r3, r6, r7, [r2] @ store newval if eq teqeq r3, #1 @ success? beq 1b @ if no then retry smp_dmb arm rsbs r0, r3, #0 @ set returned val and C flag ldmfd sp!, {r4, r5, r6, r7} usr_ret lr #elif !defined(CONFIG_SMP) #ifdef CONFIG_MMU /* * The only thing that can break atomicity in this cmpxchg64 * implementation is either an IRQ or a data abort exception * causing another process/thread to be scheduled in the middle of * the critical sequence. The same strategy as for cmpxchg is used. */ stmfd sp!, {r4, r5, r6, lr} ldmia r0, {r4, r5} @ load old val ldmia r1, {r6, lr} @ load new val 1: ldmia r2, {r0, r1} @ load current val eors r3, r0, r4 @ compare with oldval (1) eoreqs r3, r1, r5 @ compare with oldval (2) 2: stmeqia r2, {r6, lr} @ store newval if eq rsbs r0, r3, #0 @ set return val and C flag ldmfd sp!, {r4, r5, r6, pc} .text kuser_cmpxchg64_fixup: @ Called from kuser_cmpxchg_fixup. @ r4 = address of interrupted insn (must be preserved). @ sp = saved regs. r7 and r8 are clobbered. @ 1b = first critical insn, 2b = last critical insn. @ If r4 >= 1b and r4 <= 2b then saved pc_usr is set to 1b. mov r7, #0xffff0fff sub r7, r7, #(0xffff0fff - (0xffff0f60 + (1b - __kuser_cmpxchg64))) subs r8, r4, r7 rsbcss r8, r8, #(2b - 1b) strcs r7, [sp, #S_PC] #if __LINUX_ARM_ARCH__ < 6 bcc kuser_cmpxchg32_fixup #endif ret lr .previous #else #warning "NPTL on non MMU needs fixing" mov r0, #-1 adds r0, r0, #0 usr_ret lr #endif #else #error "incoherent kernel configuration" #endif kuser_pad __kuser_cmpxchg64, 64 __kuser_memory_barrier: @ 0xffff0fa0 smp_dmb arm usr_ret lr kuser_pad __kuser_memory_barrier, 32 __kuser_cmpxchg: @ 0xffff0fc0 #if __LINUX_ARM_ARCH__ < 6 #ifdef CONFIG_MMU /* * The only thing that can break atomicity in this cmpxchg * implementation is either an IRQ or a data abort exception * causing another process/thread to be scheduled in the middle * of the critical sequence. To prevent this, code is added to * the IRQ and data abort exception handlers to set the pc back * to the beginning of the critical section if it is found to be * within that critical section (see kuser_cmpxchg_fixup). */ 1: ldr r3, [r2] @ load current val subs r3, r3, r0 @ compare with oldval 2: streq r1, [r2] @ store newval if eq rsbs r0, r3, #0 @ set return val and C flag usr_ret lr .text kuser_cmpxchg32_fixup: @ Called from kuser_cmpxchg_check macro. @ r4 = address of interrupted insn (must be preserved). @ sp = saved regs. r7 and r8 are clobbered. @ 1b = first critical insn, 2b = last critical insn. @ If r4 >= 1b and r4 <= 2b then saved pc_usr is set to 1b. mov r7, #0xffff0fff sub r7, r7, #(0xffff0fff - (0xffff0fc0 + (1b - __kuser_cmpxchg))) subs r8, r4, r7 rsbcss r8, r8, #(2b - 1b) strcs r7, [sp, #S_PC] ret lr .previous #else #warning "NPTL on non MMU needs fixing" mov r0, #-1 adds r0, r0, #0 usr_ret lr #endif #else smp_dmb arm 1: ldrex r3, [r2] subs r3, r3, r0 strexeq r3, r1, [r2] teqeq r3, #1 beq 1b rsbs r0, r3, #0 /* beware -- each __kuser slot must be 8 instructions max */ ALT_SMP(b __kuser_memory_barrier) ALT_UP(usr_ret lr) #endif kuser_pad __kuser_cmpxchg, 32 __kuser_get_tls: @ 0xffff0fe0 ldr r0, [pc, #(16 - 8)] @ read TLS, set in kuser_get_tls_init usr_ret lr mrc p15, 0, r0, c13, c0, 3 @ 0xffff0fe8 hardware TLS code kuser_pad __kuser_get_tls, 16 .rep 3 .word 0 @ 0xffff0ff0 software TLS value, then .endr @ pad up to __kuser_helper_version __kuser_helper_version: @ 0xffff0ffc .word ((__kuser_helper_end - __kuser_helper_start) >> 5) .globl __kuser_helper_end __kuser_helper_end: #endif THUMB( .thumb ) /* * Vector stubs. * * This code is copied to 0xffff1000 so we can use branches in the * vectors, rather than ldr's. Note that this code must not exceed * a page size. * * Common stub entry macro: * Enter in IRQ mode, spsr = SVC/USR CPSR, lr = SVC/USR PC * * SP points to a minimal amount of processor-private memory, the address * of which is copied into r0 for the mode specific abort handler. */ .macro vector_stub, name, mode, correction=0 .align 5 vector_\name: .if \correction sub lr, lr, #\correction .endif @ @ Save r0, lr_ (parent PC) and spsr_ @ (parent CPSR) @ stmia sp, {r0, lr} @ save r0, lr mrs lr, spsr str lr, [sp, #8] @ save spsr @ @ Prepare for SVC32 mode. IRQs remain disabled. @ mrs r0, cpsr eor r0, r0, #(\mode ^ SVC_MODE | PSR_ISETSTATE) msr spsr_cxsf, r0 @ @ the branch table must immediately follow this code @ and lr, lr, #0x0f THUMB( adr r0, 1f ) THUMB( ldr lr, [r0, lr, lsl #2] ) mov r0, sp ARM( ldr lr, [pc, lr, lsl #2] ) movs pc, lr @ branch to handler in SVC mode ENDPROC(vector_\name) .align 2 @ handler addresses follow this label 1: .endm .section .stubs, "ax", %progbits @ This must be the first word .word vector_swi vector_rst: ARM( swi SYS_ERROR0 ) THUMB( svc #0 ) THUMB( nop ) b vector_und /* * Interrupt dispatcher */ vector_stub irq, IRQ_MODE, 4 .long __irq_usr @ 0 (USR_26 / USR_32) .long __irq_invalid @ 1 (FIQ_26 / FIQ_32) .long __irq_invalid @ 2 (IRQ_26 / IRQ_32) .long __irq_svc @ 3 (SVC_26 / SVC_32) .long __irq_invalid @ 4 .long __irq_invalid @ 5 .long __irq_invalid @ 6 .long __irq_invalid @ 7 .long __irq_invalid @ 8 .long __irq_invalid @ 9 .long __irq_invalid @ a .long __irq_invalid @ b .long __irq_invalid @ c .long __irq_invalid @ d .long __irq_invalid @ e .long __irq_invalid @ f /* * Data abort dispatcher * Enter in ABT mode, spsr = USR CPSR, lr = USR PC */ vector_stub dabt, ABT_MODE, 8 .long __dabt_usr @ 0 (USR_26 / USR_32) .long __dabt_invalid @ 1 (FIQ_26 / FIQ_32) .long __dabt_invalid @ 2 (IRQ_26 / IRQ_32) .long __dabt_svc @ 3 (SVC_26 / SVC_32) .long __dabt_invalid @ 4 .long __dabt_invalid @ 5 .long __dabt_invalid @ 6 .long __dabt_invalid @ 7 .long __dabt_invalid @ 8 .long __dabt_invalid @ 9 .long __dabt_invalid @ a .long __dabt_invalid @ b .long __dabt_invalid @ c .long __dabt_invalid @ d .long __dabt_invalid @ e .long __dabt_invalid @ f /* * Prefetch abort dispatcher * Enter in ABT mode, spsr = USR CPSR, lr = USR PC */ vector_stub pabt, ABT_MODE, 4 .long __pabt_usr @ 0 (USR_26 / USR_32) .long __pabt_invalid @ 1 (FIQ_26 / FIQ_32) .long __pabt_invalid @ 2 (IRQ_26 / IRQ_32) .long __pabt_svc @ 3 (SVC_26 / SVC_32) .long __pabt_invalid @ 4 .long __pabt_invalid @ 5 .long __pabt_invalid @ 6 .long __pabt_invalid @ 7 .long __pabt_invalid @ 8 .long __pabt_invalid @ 9 .long __pabt_invalid @ a .long __pabt_invalid @ b .long __pabt_invalid @ c .long __pabt_invalid @ d .long __pabt_invalid @ e .long __pabt_invalid @ f /* * Undef instr entry dispatcher * Enter in UND mode, spsr = SVC/USR CPSR, lr = SVC/USR PC */ vector_stub und, UND_MODE .long __und_usr @ 0 (USR_26 / USR_32) .long __und_invalid @ 1 (FIQ_26 / FIQ_32) .long __und_invalid @ 2 (IRQ_26 / IRQ_32) .long __und_svc @ 3 (SVC_26 / SVC_32) .long __und_invalid @ 4 .long __und_invalid @ 5 .long __und_invalid @ 6 .long __und_invalid @ 7 .long __und_invalid @ 8 .long __und_invalid @ 9 .long __und_invalid @ a .long __und_invalid @ b .long __und_invalid @ c .long __und_invalid @ d .long __und_invalid @ e .long __und_invalid @ f .align 5 /*============================================================================= * Address exception handler *----------------------------------------------------------------------------- * These aren't too critical. * (they're not supposed to happen, and won't happen in 32-bit data mode). */ vector_addrexcptn: b vector_addrexcptn /*============================================================================= * FIQ "NMI" handler *----------------------------------------------------------------------------- * Handle a FIQ using the SVC stack allowing FIQ act like NMI on x86 * systems. */ vector_stub fiq, FIQ_MODE, 4 .long __fiq_usr @ 0 (USR_26 / USR_32) .long __fiq_svc @ 1 (FIQ_26 / FIQ_32) .long __fiq_svc @ 2 (IRQ_26 / IRQ_32) .long __fiq_svc @ 3 (SVC_26 / SVC_32) .long __fiq_svc @ 4 .long __fiq_svc @ 5 .long __fiq_svc @ 6 .long __fiq_abt @ 7 .long __fiq_svc @ 8 .long __fiq_svc @ 9 .long __fiq_svc @ a .long __fiq_svc @ b .long __fiq_svc @ c .long __fiq_svc @ d .long __fiq_svc @ e .long __fiq_svc @ f .globl vector_fiq .section .vectors, "ax", %progbits .L__vectors_start: W(b) vector_rst W(b) vector_und W(ldr) pc, .L__vectors_start + 0x1000 W(b) vector_pabt W(b) vector_dabt W(b) vector_addrexcptn W(b) vector_irq W(b) vector_fiq .data .align 2 .globl cr_alignment cr_alignment: .space 4