/* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "rxe.h" #include "rxe_net.h" #include "rxe_loc.h" static LIST_HEAD(rxe_dev_list); static DEFINE_SPINLOCK(dev_list_lock); /* spinlock for device list */ struct rxe_dev *net_to_rxe(struct net_device *ndev) { struct rxe_dev *rxe; struct rxe_dev *found = NULL; spin_lock_bh(&dev_list_lock); list_for_each_entry(rxe, &rxe_dev_list, list) { if (rxe->ndev == ndev) { found = rxe; break; } } spin_unlock_bh(&dev_list_lock); return found; } struct rxe_dev *get_rxe_by_name(const char *name) { struct rxe_dev *rxe; struct rxe_dev *found = NULL; spin_lock_bh(&dev_list_lock); list_for_each_entry(rxe, &rxe_dev_list, list) { if (!strcmp(name, rxe->ib_dev.name)) { found = rxe; break; } } spin_unlock_bh(&dev_list_lock); return found; } static struct rxe_recv_sockets recv_sockets; struct device *rxe_dma_device(struct rxe_dev *rxe) { struct net_device *ndev; ndev = rxe->ndev; if (is_vlan_dev(ndev)) ndev = vlan_dev_real_dev(ndev); return ndev->dev.parent; } int rxe_mcast_add(struct rxe_dev *rxe, union ib_gid *mgid) { int err; unsigned char ll_addr[ETH_ALEN]; ipv6_eth_mc_map((struct in6_addr *)mgid->raw, ll_addr); err = dev_mc_add(rxe->ndev, ll_addr); return err; } int rxe_mcast_delete(struct rxe_dev *rxe, union ib_gid *mgid) { int err; unsigned char ll_addr[ETH_ALEN]; ipv6_eth_mc_map((struct in6_addr *)mgid->raw, ll_addr); err = dev_mc_del(rxe->ndev, ll_addr); return err; } static struct dst_entry *rxe_find_route4(struct net_device *ndev, struct in_addr *saddr, struct in_addr *daddr) { struct rtable *rt; struct flowi4 fl = { { 0 } }; memset(&fl, 0, sizeof(fl)); fl.flowi4_oif = ndev->ifindex; memcpy(&fl.saddr, saddr, sizeof(*saddr)); memcpy(&fl.daddr, daddr, sizeof(*daddr)); fl.flowi4_proto = IPPROTO_UDP; rt = ip_route_output_key(&init_net, &fl); if (IS_ERR(rt)) { pr_err_ratelimited("no route to %pI4\n", &daddr->s_addr); return NULL; } return &rt->dst; } #if IS_ENABLED(CONFIG_IPV6) static struct dst_entry *rxe_find_route6(struct net_device *ndev, struct in6_addr *saddr, struct in6_addr *daddr) { struct dst_entry *ndst; struct flowi6 fl6 = { { 0 } }; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_oif = ndev->ifindex; memcpy(&fl6.saddr, saddr, sizeof(*saddr)); memcpy(&fl6.daddr, daddr, sizeof(*daddr)); fl6.flowi6_proto = IPPROTO_UDP; ndst = ipv6_stub->ipv6_dst_lookup_flow(sock_net(recv_sockets.sk6->sk), recv_sockets.sk6->sk, &fl6, NULL); if (unlikely(IS_ERR(ndst))) { pr_err_ratelimited("no route to %pI6\n", daddr); return NULL; } if (unlikely(ndst->error)) { pr_err("no route to %pI6\n", daddr); goto put; } return ndst; put: dst_release(ndst); return NULL; } #else static struct dst_entry *rxe_find_route6(struct net_device *ndev, struct in6_addr *saddr, struct in6_addr *daddr) { return NULL; } #endif static struct dst_entry *rxe_find_route(struct rxe_dev *rxe, struct rxe_qp *qp, struct rxe_av *av) { const struct ib_gid_attr *attr; struct dst_entry *dst = NULL; struct net_device *ndev; attr = rdma_get_gid_attr(&rxe->ib_dev, qp->attr.port_num, av->grh.sgid_index); if (IS_ERR(attr)) return NULL; ndev = attr->ndev; if (qp_type(qp) == IB_QPT_RC) dst = sk_dst_get(qp->sk->sk); if (!dst || !dst_check(dst, qp->dst_cookie)) { if (dst) dst_release(dst); if (av->network_type == RDMA_NETWORK_IPV4) { struct in_addr *saddr; struct in_addr *daddr; saddr = &av->sgid_addr._sockaddr_in.sin_addr; daddr = &av->dgid_addr._sockaddr_in.sin_addr; dst = rxe_find_route4(ndev, saddr, daddr); } else if (av->network_type == RDMA_NETWORK_IPV6) { struct in6_addr *saddr6; struct in6_addr *daddr6; saddr6 = &av->sgid_addr._sockaddr_in6.sin6_addr; daddr6 = &av->dgid_addr._sockaddr_in6.sin6_addr; dst = rxe_find_route6(ndev, saddr6, daddr6); #if IS_ENABLED(CONFIG_IPV6) if (dst) qp->dst_cookie = rt6_get_cookie((struct rt6_info *)dst); #endif } if (dst && (qp_type(qp) == IB_QPT_RC)) { dst_hold(dst); sk_dst_set(qp->sk->sk, dst); } } rdma_put_gid_attr(attr); return dst; } static int rxe_udp_encap_recv(struct sock *sk, struct sk_buff *skb) { struct udphdr *udph; struct net_device *ndev = skb->dev; struct net_device *rdev = ndev; struct rxe_dev *rxe = net_to_rxe(ndev); struct rxe_pkt_info *pkt = SKB_TO_PKT(skb); if (!rxe && is_vlan_dev(rdev)) { rdev = vlan_dev_real_dev(ndev); rxe = net_to_rxe(rdev); } if (!rxe) goto drop; if (skb_linearize(skb)) { pr_err("skb_linearize failed\n"); goto drop; } udph = udp_hdr(skb); pkt->rxe = rxe; pkt->port_num = 1; pkt->hdr = (u8 *)(udph + 1); pkt->mask = RXE_GRH_MASK; pkt->paylen = be16_to_cpu(udph->len) - sizeof(*udph); rxe_rcv(skb); return 0; drop: kfree_skb(skb); return 0; } static struct socket *rxe_setup_udp_tunnel(struct net *net, __be16 port, bool ipv6) { int err; struct socket *sock; struct udp_port_cfg udp_cfg = { }; struct udp_tunnel_sock_cfg tnl_cfg = { }; if (ipv6) { udp_cfg.family = AF_INET6; udp_cfg.ipv6_v6only = 1; } else { udp_cfg.family = AF_INET; } udp_cfg.local_udp_port = port; /* Create UDP socket */ err = udp_sock_create(net, &udp_cfg, &sock); if (err < 0) { pr_err("failed to create udp socket. err = %d\n", err); return ERR_PTR(err); } tnl_cfg.encap_type = 1; tnl_cfg.encap_rcv = rxe_udp_encap_recv; /* Setup UDP tunnel */ setup_udp_tunnel_sock(net, sock, &tnl_cfg); return sock; } static void rxe_release_udp_tunnel(struct socket *sk) { if (sk) udp_tunnel_sock_release(sk); } static void prepare_udp_hdr(struct sk_buff *skb, __be16 src_port, __be16 dst_port) { struct udphdr *udph; __skb_push(skb, sizeof(*udph)); skb_reset_transport_header(skb); udph = udp_hdr(skb); udph->dest = dst_port; udph->source = src_port; udph->len = htons(skb->len); udph->check = 0; } static void prepare_ipv4_hdr(struct dst_entry *dst, struct sk_buff *skb, __be32 saddr, __be32 daddr, __u8 proto, __u8 tos, __u8 ttl, __be16 df, bool xnet) { struct iphdr *iph; skb_scrub_packet(skb, xnet); skb_clear_hash(skb); skb_dst_set(skb, dst_clone(dst)); memset(IPCB(skb), 0, sizeof(*IPCB(skb))); skb_push(skb, sizeof(struct iphdr)); skb_reset_network_header(skb); iph = ip_hdr(skb); iph->version = IPVERSION; iph->ihl = sizeof(struct iphdr) >> 2; iph->frag_off = df; iph->protocol = proto; iph->tos = tos; iph->daddr = daddr; iph->saddr = saddr; iph->ttl = ttl; __ip_select_ident(dev_net(dst->dev), iph, skb_shinfo(skb)->gso_segs ?: 1); iph->tot_len = htons(skb->len); ip_send_check(iph); } static void prepare_ipv6_hdr(struct dst_entry *dst, struct sk_buff *skb, struct in6_addr *saddr, struct in6_addr *daddr, __u8 proto, __u8 prio, __u8 ttl) { struct ipv6hdr *ip6h; memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); IPCB(skb)->flags &= ~(IPSKB_XFRM_TUNNEL_SIZE | IPSKB_XFRM_TRANSFORMED | IPSKB_REROUTED); skb_dst_set(skb, dst_clone(dst)); __skb_push(skb, sizeof(*ip6h)); skb_reset_network_header(skb); ip6h = ipv6_hdr(skb); ip6_flow_hdr(ip6h, prio, htonl(0)); ip6h->payload_len = htons(skb->len); ip6h->nexthdr = proto; ip6h->hop_limit = ttl; ip6h->daddr = *daddr; ip6h->saddr = *saddr; ip6h->payload_len = htons(skb->len - sizeof(*ip6h)); } static int prepare4(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, struct sk_buff *skb, struct rxe_av *av) { struct rxe_qp *qp = pkt->qp; struct dst_entry *dst; bool xnet = false; __be16 df = htons(IP_DF); struct in_addr *saddr = &av->sgid_addr._sockaddr_in.sin_addr; struct in_addr *daddr = &av->dgid_addr._sockaddr_in.sin_addr; dst = rxe_find_route(rxe, qp, av); if (!dst) { pr_err("Host not reachable\n"); return -EHOSTUNREACH; } if (!memcmp(saddr, daddr, sizeof(*daddr))) pkt->mask |= RXE_LOOPBACK_MASK; prepare_udp_hdr(skb, htons(RXE_ROCE_V2_SPORT), htons(ROCE_V2_UDP_DPORT)); prepare_ipv4_hdr(dst, skb, saddr->s_addr, daddr->s_addr, IPPROTO_UDP, av->grh.traffic_class, av->grh.hop_limit, df, xnet); dst_release(dst); return 0; } static int prepare6(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, struct sk_buff *skb, struct rxe_av *av) { struct rxe_qp *qp = pkt->qp; struct dst_entry *dst; struct in6_addr *saddr = &av->sgid_addr._sockaddr_in6.sin6_addr; struct in6_addr *daddr = &av->dgid_addr._sockaddr_in6.sin6_addr; dst = rxe_find_route(rxe, qp, av); if (!dst) { pr_err("Host not reachable\n"); return -EHOSTUNREACH; } if (!memcmp(saddr, daddr, sizeof(*daddr))) pkt->mask |= RXE_LOOPBACK_MASK; prepare_udp_hdr(skb, htons(RXE_ROCE_V2_SPORT), htons(ROCE_V2_UDP_DPORT)); prepare_ipv6_hdr(dst, skb, saddr, daddr, IPPROTO_UDP, av->grh.traffic_class, av->grh.hop_limit); dst_release(dst); return 0; } int rxe_prepare(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, struct sk_buff *skb, u32 *crc) { int err = 0; struct rxe_av *av = rxe_get_av(pkt); if (av->network_type == RDMA_NETWORK_IPV4) err = prepare4(rxe, pkt, skb, av); else if (av->network_type == RDMA_NETWORK_IPV6) err = prepare6(rxe, pkt, skb, av); *crc = rxe_icrc_hdr(pkt, skb); return err; } static void rxe_skb_tx_dtor(struct sk_buff *skb) { struct sock *sk = skb->sk; struct rxe_qp *qp = sk->sk_user_data; int skb_out = atomic_dec_return(&qp->skb_out); if (unlikely(qp->need_req_skb && skb_out < RXE_INFLIGHT_SKBS_PER_QP_LOW)) rxe_run_task(&qp->req.task, 1); rxe_drop_ref(qp); } int rxe_send(struct rxe_pkt_info *pkt, struct sk_buff *skb) { struct rxe_av *av; int err; av = rxe_get_av(pkt); skb->destructor = rxe_skb_tx_dtor; skb->sk = pkt->qp->sk->sk; rxe_add_ref(pkt->qp); atomic_inc(&pkt->qp->skb_out); if (av->network_type == RDMA_NETWORK_IPV4) { err = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); } else if (av->network_type == RDMA_NETWORK_IPV6) { err = ip6_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); } else { pr_err("Unknown layer 3 protocol: %d\n", av->network_type); atomic_dec(&pkt->qp->skb_out); rxe_drop_ref(pkt->qp); kfree_skb(skb); return -EINVAL; } if (unlikely(net_xmit_eval(err))) { pr_debug("error sending packet: %d\n", err); return -EAGAIN; } return 0; } void rxe_loopback(struct sk_buff *skb) { if (skb->protocol == htons(ETH_P_IP)) skb_pull(skb, sizeof(struct iphdr)); else skb_pull(skb, sizeof(struct ipv6hdr)); rxe_rcv(skb); } static inline int addr_same(struct rxe_dev *rxe, struct rxe_av *av) { return rxe->port.port_guid == av->grh.dgid.global.interface_id; } struct sk_buff *rxe_init_packet(struct rxe_dev *rxe, struct rxe_av *av, int paylen, struct rxe_pkt_info *pkt) { unsigned int hdr_len; struct sk_buff *skb; struct net_device *ndev; const struct ib_gid_attr *attr; const int port_num = 1; attr = rdma_get_gid_attr(&rxe->ib_dev, port_num, av->grh.sgid_index); if (IS_ERR(attr)) return NULL; ndev = attr->ndev; if (av->network_type == RDMA_NETWORK_IPV4) hdr_len = ETH_HLEN + sizeof(struct udphdr) + sizeof(struct iphdr); else hdr_len = ETH_HLEN + sizeof(struct udphdr) + sizeof(struct ipv6hdr); skb = alloc_skb(paylen + hdr_len + LL_RESERVED_SPACE(ndev), GFP_ATOMIC); if (unlikely(!skb)) goto out; skb_reserve(skb, hdr_len + LL_RESERVED_SPACE(ndev)); /* FIXME: hold reference to this netdev until life of this skb. */ skb->dev = ndev; if (av->network_type == RDMA_NETWORK_IPV4) skb->protocol = htons(ETH_P_IP); else skb->protocol = htons(ETH_P_IPV6); pkt->rxe = rxe; pkt->port_num = port_num; pkt->hdr = skb_put_zero(skb, paylen); pkt->mask |= RXE_GRH_MASK; out: rdma_put_gid_attr(attr); return skb; } /* * this is required by rxe_cfg to match rxe devices in * /sys/class/infiniband up with their underlying ethernet devices */ const char *rxe_parent_name(struct rxe_dev *rxe, unsigned int port_num) { return rxe->ndev->name; } enum rdma_link_layer rxe_link_layer(struct rxe_dev *rxe, unsigned int port_num) { return IB_LINK_LAYER_ETHERNET; } struct rxe_dev *rxe_net_add(struct net_device *ndev) { int err; struct rxe_dev *rxe = NULL; rxe = (struct rxe_dev *)ib_alloc_device(sizeof(*rxe)); if (!rxe) return NULL; rxe->ndev = ndev; err = rxe_add(rxe, ndev->mtu); if (err) { ib_dealloc_device(&rxe->ib_dev); return NULL; } spin_lock_bh(&dev_list_lock); list_add_tail(&rxe->list, &rxe_dev_list); spin_unlock_bh(&dev_list_lock); return rxe; } void rxe_remove_all(void) { spin_lock_bh(&dev_list_lock); while (!list_empty(&rxe_dev_list)) { struct rxe_dev *rxe = list_first_entry(&rxe_dev_list, struct rxe_dev, list); list_del(&rxe->list); spin_unlock_bh(&dev_list_lock); rxe_remove(rxe); spin_lock_bh(&dev_list_lock); } spin_unlock_bh(&dev_list_lock); } static void rxe_port_event(struct rxe_dev *rxe, enum ib_event_type event) { struct ib_event ev; ev.device = &rxe->ib_dev; ev.element.port_num = 1; ev.event = event; ib_dispatch_event(&ev); } /* Caller must hold net_info_lock */ void rxe_port_up(struct rxe_dev *rxe) { struct rxe_port *port; port = &rxe->port; port->attr.state = IB_PORT_ACTIVE; port->attr.phys_state = IB_PHYS_STATE_LINK_UP; rxe_port_event(rxe, IB_EVENT_PORT_ACTIVE); pr_info("set %s active\n", rxe->ib_dev.name); } /* Caller must hold net_info_lock */ void rxe_port_down(struct rxe_dev *rxe) { struct rxe_port *port; port = &rxe->port; port->attr.state = IB_PORT_DOWN; port->attr.phys_state = IB_PHYS_STATE_LINK_DOWN; rxe_port_event(rxe, IB_EVENT_PORT_ERR); pr_info("set %s down\n", rxe->ib_dev.name); } static int rxe_notify(struct notifier_block *not_blk, unsigned long event, void *arg) { struct net_device *ndev = netdev_notifier_info_to_dev(arg); struct rxe_dev *rxe = net_to_rxe(ndev); if (!rxe) goto out; switch (event) { case NETDEV_UNREGISTER: list_del(&rxe->list); rxe_remove(rxe); break; case NETDEV_UP: rxe_port_up(rxe); break; case NETDEV_DOWN: rxe_port_down(rxe); break; case NETDEV_CHANGEMTU: pr_info("%s changed mtu to %d\n", ndev->name, ndev->mtu); rxe_set_mtu(rxe, ndev->mtu); break; case NETDEV_CHANGE: if (netif_running(ndev) && netif_carrier_ok(ndev)) rxe_port_up(rxe); else rxe_port_down(rxe); break; case NETDEV_REBOOT: case NETDEV_GOING_DOWN: case NETDEV_CHANGEADDR: case NETDEV_CHANGENAME: case NETDEV_FEAT_CHANGE: default: pr_info("ignoring netdev event = %ld for %s\n", event, ndev->name); break; } out: return NOTIFY_OK; } static struct notifier_block rxe_net_notifier = { .notifier_call = rxe_notify, }; static int rxe_net_ipv4_init(void) { recv_sockets.sk4 = rxe_setup_udp_tunnel(&init_net, htons(ROCE_V2_UDP_DPORT), false); if (IS_ERR(recv_sockets.sk4)) { recv_sockets.sk4 = NULL; pr_err("Failed to create IPv4 UDP tunnel\n"); return -1; } return 0; } static int rxe_net_ipv6_init(void) { #if IS_ENABLED(CONFIG_IPV6) recv_sockets.sk6 = rxe_setup_udp_tunnel(&init_net, htons(ROCE_V2_UDP_DPORT), true); if (IS_ERR(recv_sockets.sk6)) { recv_sockets.sk6 = NULL; pr_err("Failed to create IPv6 UDP tunnel\n"); return -1; } #endif return 0; } void rxe_net_exit(void) { rxe_release_udp_tunnel(recv_sockets.sk6); rxe_release_udp_tunnel(recv_sockets.sk4); unregister_netdevice_notifier(&rxe_net_notifier); } int rxe_net_init(void) { int err; recv_sockets.sk6 = NULL; err = rxe_net_ipv4_init(); if (err) return err; err = rxe_net_ipv6_init(); if (err) goto err_out; err = register_netdevice_notifier(&rxe_net_notifier); if (err) { pr_err("Failed to register netdev notifier\n"); goto err_out; } return 0; err_out: rxe_net_exit(); return err; }