// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2020 Google LLC */ #include #include #include #include "cqhci-crypto.h" #define CQHCI_CRYPTO_CONFIG_INDEX(x) (((u64)(x) & 0xFF) << 32) #define CQHCI_CRYPTO_ENABLE_BIT (((u64)1) << 47) /* Blk-crypto modes supported by CQHCI MMC crypto */ static const struct cqhci_crypto_alg_entry { enum cqhci_crypto_alg cqhci_alg; enum cqhci_crypto_key_size cqhci_key_size; } cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = { [BLK_ENCRYPTION_MODE_AES_256_XTS] = { .cqhci_alg = CQHCI_CRYPTO_ALG_AES_XTS, .cqhci_key_size = CQHCI_CRYPTO_KEY_SIZE_256, }, }; static void cqhci_crypto_program_key(struct cqhci_host *host, const union cqhci_crypto_cfg_entry *cfg, int slot) { u32 slot_offset = host->crypto_cfg_register + slot * sizeof(*cfg); int i; msdc_ungate_clock(host->mmc); /* Ensure that CFGE is cleared before programming the key */ cqhci_writel(host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); for (i = 0; i < 16; i++) { cqhci_writel(host, le32_to_cpu(cfg->reg_val[i]), slot_offset + i * sizeof(cfg->reg_val[0])); } /* Write dword 17 */ cqhci_writel(host, le32_to_cpu(cfg->reg_val[17]), slot_offset + 17 * sizeof(cfg->reg_val[0])); /* Write dword 16 */ cqhci_writel(host, le32_to_cpu(cfg->reg_val[16]), slot_offset + 16 * sizeof(cfg->reg_val[0])); msdc_gate_clock(host->mmc); } static int cqhci_crypto_keyslot_program(struct keyslot_manager *ksm, const struct blk_crypto_key *key, unsigned int slot) { struct cqhci_host *host = keyslot_manager_private(ksm); const union cqhci_crypto_cap_entry *ccap_array = host->crypto_cap_array; const struct cqhci_crypto_alg_entry *alg = &cqhci_crypto_algs[key->crypto_mode]; u8 data_unit_mask = key->data_unit_size / 512; int i; int cap_idx = -1; union cqhci_crypto_cfg_entry cfg = { { 0 } }; BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); for (i = 0; i < host->crypto_capabilities.num_crypto_cap; i++) { if (ccap_array[i].algorithm_id == alg->cqhci_alg && ccap_array[i].key_size == alg->cqhci_key_size && (ccap_array[i].sdus_mask & data_unit_mask)) { cap_idx = i; break; } } if (WARN_ON(cap_idx < 0)) return -EOPNOTSUPP; cfg.data_unit_size = data_unit_mask; #ifdef CONFIG_MMC_CRYPTO_LEGACY /* used fsrypt v2 in OTA fscrypt v1 environment */ if (key->hie_duint_size != 4096) cfg.data_unit_size = 1; #endif cfg.crypto_cap_idx = cap_idx; cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE; if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) { /* In XTS mode, the blk_crypto_key's size is already doubled */ memcpy(cfg.crypto_key, key->raw, key->size/2); memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2, key->raw + key->size/2, key->size/2); } else { memcpy(cfg.crypto_key, key->raw, key->size); } cqhci_crypto_program_key(host, &cfg, slot); memzero_explicit(&cfg, sizeof(cfg)); return 0; } static void cqhci_crypto_clear_keyslot(struct cqhci_host *host, int slot) { /* * Clear the crypto cfg on the device. Clearing CFGE * might not be sufficient, so just clear the entire cfg. */ union cqhci_crypto_cfg_entry cfg = { { 0 } }; cqhci_crypto_program_key(host, &cfg, slot); } static int cqhci_crypto_keyslot_evict(struct keyslot_manager *ksm, const struct blk_crypto_key *key, unsigned int slot) { cqhci_crypto_clear_keyslot(keyslot_manager_private(ksm), slot); return 0; } static const struct keyslot_mgmt_ll_ops cqhci_ksm_ops = { .keyslot_program = cqhci_crypto_keyslot_program, .keyslot_evict = cqhci_crypto_keyslot_evict, }; bool cqhci_crypto_enable(struct cqhci_host *host) { if (!(host->mmc->caps2 & MMC_CAP2_CRYPTO)) return false; /* Reset might clear all keys, so reprogram all the keys. */ if (host->mmc->ksm) keyslot_manager_reprogram_all_keys(host->mmc->ksm); return true; } static enum blk_crypto_mode_num cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap) { int i; for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) { BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); if (cqhci_crypto_algs[i].cqhci_alg == cap.algorithm_id && cqhci_crypto_algs[i].cqhci_key_size == cap.key_size) { return i; } } return BLK_ENCRYPTION_MODE_INVALID; } /** * cqhci_host_init_crypto - Read crypto capabilities, init crypto fields in host * @host: Per adapter instance * * Return: 0 if crypto was initialized, or is not supported, else a -errno value */ int cqhci_host_init_crypto(struct cqhci_host *host) { int cap_idx = 0; int err = 0; enum blk_crypto_mode_num blk_mode_num; int slot = 0; struct device *dev = &host->mmc->class_dev; unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX] = {0}; int num_keyslots; struct keyslot_manager *ksm; if (host->mmc->ksm) return 0; /* * Don't use crypto if the vendor specific driver doesn't set the * standard crypto capability bit *or* the hardware doesn't advertise * that crypto is supported. */ if (!(host->mmc->caps2 & MMC_CAP2_CRYPTO) || !(cqhci_readl(host, CQHCI_CAP) & CQHCI_CAP_CS)) return 0; host->crypto_capabilities.reg_val = cpu_to_le32(cqhci_readl(host, CQHCI_CCAP)); host->crypto_cfg_register = (u32)host->crypto_capabilities.config_array_ptr * 0x100; host->crypto_cap_array = devm_kcalloc(dev, host->crypto_capabilities.num_crypto_cap, sizeof(host->crypto_cap_array[0]), GFP_KERNEL); if (!host->crypto_cap_array) { err = -ENOMEM; goto out; } for (cap_idx = 0; cap_idx < host->crypto_capabilities.num_crypto_cap; cap_idx++) { host->crypto_cap_array[cap_idx].reg_val = cpu_to_le32(cqhci_readl(host, CQHCI_CRYPTOCAP + cap_idx * sizeof(__le32))); blk_mode_num = cqhci_find_blk_crypto_mode( host->crypto_cap_array[cap_idx]); if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID) continue; crypto_modes_supported[blk_mode_num] |= host->crypto_cap_array[cap_idx].sdus_mask * 512; } /* The actual number of configurations supported is (CFGC+1) */ num_keyslots = host->crypto_capabilities.config_count + 1; ksm = keyslot_manager_create(dev, num_keyslots, &cqhci_ksm_ops, BLK_CRYPTO_FEATURE_STANDARD_KEYS, crypto_modes_supported, host); if (!ksm) { err = -ENOMEM; goto out_free_caps; } /* eMMC 5.2 only support 4 bytes DUN */ keyslot_manager_set_max_dun_bytes(ksm, 4); host->mmc->ksm = ksm; for (slot = 0; slot < num_keyslots; slot++) cqhci_crypto_clear_keyslot(host, slot); /* CQHCI crypto uses 128-bit task descriptor */ host->caps |= CQHCI_TASK_DESC_SZ_128; return 0; out_free_caps: devm_kfree(dev, host->crypto_cap_array); out: /* Indicate that init failed by clearing MMC_CAP2_CRYPTO */ host->mmc->caps2 &= ~MMC_CAP2_CRYPTO; return err; } int cqhci_prep_crypto_desc(struct mmc_request *mrq, __le64 *task_desc) { u64 crypto_desc = 0; if (mmc_request_crypto_enabled(mrq)) { /* eMMC v5.2 only supports 32 bits for DUN */ if (WARN_ON_ONCE(upper_32_bits(mrq->data_unit_num) != 0)) return -EINVAL; crypto_desc = lower_32_bits(mrq->data_unit_num) | CQHCI_CRYPTO_CONFIG_INDEX(mrq->crypto_key_slot) | CQHCI_CRYPTO_ENABLE_BIT; } /* * Assign upper 64bits data of 128 bits task descriptor * with the crypto context */ task_desc[1] = cpu_to_le64(crypto_desc); return 0; } void cqhci_crypto_recovery_finish(struct cqhci_host *host) { /* Reset/Recovery might clear all keys, so reprogram all the keys. */ keyslot_manager_reprogram_all_keys(host->mmc->ksm); }