/* * Copyright (C) 2007, 2011 Wolfgang Grandegger * Copyright (C) 2012 Stephane Grosjean * * Copyright (C) 2016 PEAK System-Technik GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the version 2 of the GNU General Public License * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include "peak_canfd_user.h" /* internal IP core cache size (used as default echo skbs max number) */ #define PCANFD_ECHO_SKB_MAX 24 /* bittiming ranges of the PEAK-System PC CAN-FD interfaces */ static const struct can_bittiming_const peak_canfd_nominal_const = { .name = "peak_canfd", .tseg1_min = 1, .tseg1_max = (1 << PUCAN_TSLOW_TSGEG1_BITS), .tseg2_min = 1, .tseg2_max = (1 << PUCAN_TSLOW_TSGEG2_BITS), .sjw_max = (1 << PUCAN_TSLOW_SJW_BITS), .brp_min = 1, .brp_max = (1 << PUCAN_TSLOW_BRP_BITS), .brp_inc = 1, }; static const struct can_bittiming_const peak_canfd_data_const = { .name = "peak_canfd", .tseg1_min = 1, .tseg1_max = (1 << PUCAN_TFAST_TSGEG1_BITS), .tseg2_min = 1, .tseg2_max = (1 << PUCAN_TFAST_TSGEG2_BITS), .sjw_max = (1 << PUCAN_TFAST_SJW_BITS), .brp_min = 1, .brp_max = (1 << PUCAN_TFAST_BRP_BITS), .brp_inc = 1, }; static struct peak_canfd_priv *pucan_init_cmd(struct peak_canfd_priv *priv) { priv->cmd_len = 0; return priv; } static void *pucan_add_cmd(struct peak_canfd_priv *priv, int cmd_op) { struct pucan_command *cmd; if (priv->cmd_len + sizeof(*cmd) > priv->cmd_maxlen) return NULL; cmd = priv->cmd_buffer + priv->cmd_len; /* reset all unused bit to default */ memset(cmd, 0, sizeof(*cmd)); cmd->opcode_channel = pucan_cmd_opcode_channel(priv->index, cmd_op); priv->cmd_len += sizeof(*cmd); return cmd; } static int pucan_write_cmd(struct peak_canfd_priv *priv) { int err; if (priv->pre_cmd) { err = priv->pre_cmd(priv); if (err) return err; } err = priv->write_cmd(priv); if (err) return err; if (priv->post_cmd) err = priv->post_cmd(priv); return err; } /* uCAN commands interface functions */ static int pucan_set_reset_mode(struct peak_canfd_priv *priv) { pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_RESET_MODE); return pucan_write_cmd(priv); } static int pucan_set_normal_mode(struct peak_canfd_priv *priv) { int err; pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_NORMAL_MODE); err = pucan_write_cmd(priv); if (!err) priv->can.state = CAN_STATE_ERROR_ACTIVE; return err; } static int pucan_set_listen_only_mode(struct peak_canfd_priv *priv) { int err; pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_LISTEN_ONLY_MODE); err = pucan_write_cmd(priv); if (!err) priv->can.state = CAN_STATE_ERROR_ACTIVE; return err; } static int pucan_set_timing_slow(struct peak_canfd_priv *priv, const struct can_bittiming *pbt) { struct pucan_timing_slow *cmd; cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_TIMING_SLOW); cmd->sjw_t = PUCAN_TSLOW_SJW_T(pbt->sjw - 1, priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES); cmd->tseg1 = PUCAN_TSLOW_TSEG1(pbt->prop_seg + pbt->phase_seg1 - 1); cmd->tseg2 = PUCAN_TSLOW_TSEG2(pbt->phase_seg2 - 1); cmd->brp = cpu_to_le16(PUCAN_TSLOW_BRP(pbt->brp - 1)); cmd->ewl = 96; /* default */ netdev_dbg(priv->ndev, "nominal: brp=%u tseg1=%u tseg2=%u sjw=%u\n", le16_to_cpu(cmd->brp), cmd->tseg1, cmd->tseg2, cmd->sjw_t); return pucan_write_cmd(priv); } static int pucan_set_timing_fast(struct peak_canfd_priv *priv, const struct can_bittiming *pbt) { struct pucan_timing_fast *cmd; cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_TIMING_FAST); cmd->sjw = PUCAN_TFAST_SJW(pbt->sjw - 1); cmd->tseg1 = PUCAN_TFAST_TSEG1(pbt->prop_seg + pbt->phase_seg1 - 1); cmd->tseg2 = PUCAN_TFAST_TSEG2(pbt->phase_seg2 - 1); cmd->brp = cpu_to_le16(PUCAN_TFAST_BRP(pbt->brp - 1)); netdev_dbg(priv->ndev, "data: brp=%u tseg1=%u tseg2=%u sjw=%u\n", le16_to_cpu(cmd->brp), cmd->tseg1, cmd->tseg2, cmd->sjw); return pucan_write_cmd(priv); } static int pucan_set_std_filter(struct peak_canfd_priv *priv, u8 row, u32 mask) { struct pucan_std_filter *cmd; cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_SET_STD_FILTER); /* all the 11-bits CAN ID values are represented by one bit in a * 64 rows array of 32 bits: the upper 6 bits of the CAN ID select the * row while the lowest 5 bits select the bit in that row. * * bit filter * 1 passed * 0 discarded */ /* select the row */ cmd->idx = row; /* set/unset bits in the row */ cmd->mask = cpu_to_le32(mask); return pucan_write_cmd(priv); } static int pucan_tx_abort(struct peak_canfd_priv *priv, u16 flags) { struct pucan_tx_abort *cmd; cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_TX_ABORT); cmd->flags = cpu_to_le16(flags); return pucan_write_cmd(priv); } static int pucan_clr_err_counters(struct peak_canfd_priv *priv) { struct pucan_wr_err_cnt *cmd; cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_WR_ERR_CNT); cmd->sel_mask = cpu_to_le16(PUCAN_WRERRCNT_TE | PUCAN_WRERRCNT_RE); cmd->tx_counter = 0; cmd->rx_counter = 0; return pucan_write_cmd(priv); } static int pucan_set_options(struct peak_canfd_priv *priv, u16 opt_mask) { struct pucan_options *cmd; cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_SET_EN_OPTION); cmd->options = cpu_to_le16(opt_mask); return pucan_write_cmd(priv); } static int pucan_clr_options(struct peak_canfd_priv *priv, u16 opt_mask) { struct pucan_options *cmd; cmd = pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_CLR_DIS_OPTION); cmd->options = cpu_to_le16(opt_mask); return pucan_write_cmd(priv); } static int pucan_setup_rx_barrier(struct peak_canfd_priv *priv) { pucan_add_cmd(pucan_init_cmd(priv), PUCAN_CMD_RX_BARRIER); return pucan_write_cmd(priv); } /* handle the reception of one CAN frame */ static int pucan_handle_can_rx(struct peak_canfd_priv *priv, struct pucan_rx_msg *msg) { struct net_device_stats *stats = &priv->ndev->stats; struct canfd_frame *cf; struct sk_buff *skb; const u16 rx_msg_flags = le16_to_cpu(msg->flags); u8 cf_len; if (rx_msg_flags & PUCAN_MSG_EXT_DATA_LEN) cf_len = can_dlc2len(get_canfd_dlc(pucan_msg_get_dlc(msg))); else cf_len = get_can_dlc(pucan_msg_get_dlc(msg)); /* if this frame is an echo, */ if (rx_msg_flags & PUCAN_MSG_LOOPED_BACK) { unsigned long flags; spin_lock_irqsave(&priv->echo_lock, flags); can_get_echo_skb(priv->ndev, msg->client); /* count bytes of the echo instead of skb */ stats->tx_bytes += cf_len; stats->tx_packets++; /* restart tx queue (a slot is free) */ netif_wake_queue(priv->ndev); spin_unlock_irqrestore(&priv->echo_lock, flags); /* if this frame is only an echo, stop here. Otherwise, * continue to push this application self-received frame into * its own rx queue. */ if (!(rx_msg_flags & PUCAN_MSG_SELF_RECEIVE)) return 0; } /* otherwise, it should be pushed into rx fifo */ if (rx_msg_flags & PUCAN_MSG_EXT_DATA_LEN) { /* CANFD frame case */ skb = alloc_canfd_skb(priv->ndev, &cf); if (!skb) return -ENOMEM; if (rx_msg_flags & PUCAN_MSG_BITRATE_SWITCH) cf->flags |= CANFD_BRS; if (rx_msg_flags & PUCAN_MSG_ERROR_STATE_IND) cf->flags |= CANFD_ESI; } else { /* CAN 2.0 frame case */ skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); if (!skb) return -ENOMEM; } cf->can_id = le32_to_cpu(msg->can_id); cf->len = cf_len; if (rx_msg_flags & PUCAN_MSG_EXT_ID) cf->can_id |= CAN_EFF_FLAG; if (rx_msg_flags & PUCAN_MSG_RTR) cf->can_id |= CAN_RTR_FLAG; else memcpy(cf->data, msg->d, cf->len); stats->rx_bytes += cf->len; stats->rx_packets++; netif_rx(skb); return 0; } /* handle rx/tx error counters notification */ static int pucan_handle_error(struct peak_canfd_priv *priv, struct pucan_error_msg *msg) { priv->bec.txerr = msg->tx_err_cnt; priv->bec.rxerr = msg->rx_err_cnt; return 0; } /* handle status notification */ static int pucan_handle_status(struct peak_canfd_priv *priv, struct pucan_status_msg *msg) { struct net_device *ndev = priv->ndev; struct net_device_stats *stats = &ndev->stats; struct can_frame *cf; struct sk_buff *skb; /* this STATUS is the CNF of the RX_BARRIER: Tx path can be setup */ if (pucan_status_is_rx_barrier(msg)) { if (priv->enable_tx_path) { int err = priv->enable_tx_path(priv); if (err) return err; } /* start network queue (echo_skb array is empty) */ netif_start_queue(ndev); return 0; } skb = alloc_can_err_skb(ndev, &cf); /* test state error bits according to their priority */ if (pucan_status_is_busoff(msg)) { netdev_dbg(ndev, "Bus-off entry status\n"); priv->can.state = CAN_STATE_BUS_OFF; priv->can.can_stats.bus_off++; can_bus_off(ndev); if (skb) cf->can_id |= CAN_ERR_BUSOFF; } else if (pucan_status_is_passive(msg)) { netdev_dbg(ndev, "Error passive status\n"); priv->can.state = CAN_STATE_ERROR_PASSIVE; priv->can.can_stats.error_passive++; if (skb) { cf->can_id |= CAN_ERR_CRTL; cf->data[1] = (priv->bec.txerr > priv->bec.rxerr) ? CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE; cf->data[6] = priv->bec.txerr; cf->data[7] = priv->bec.rxerr; } } else if (pucan_status_is_warning(msg)) { netdev_dbg(ndev, "Error warning status\n"); priv->can.state = CAN_STATE_ERROR_WARNING; priv->can.can_stats.error_warning++; if (skb) { cf->can_id |= CAN_ERR_CRTL; cf->data[1] = (priv->bec.txerr > priv->bec.rxerr) ? CAN_ERR_CRTL_TX_WARNING : CAN_ERR_CRTL_RX_WARNING; cf->data[6] = priv->bec.txerr; cf->data[7] = priv->bec.rxerr; } } else if (priv->can.state != CAN_STATE_ERROR_ACTIVE) { /* back to ERROR_ACTIVE */ netdev_dbg(ndev, "Error active status\n"); can_change_state(ndev, cf, CAN_STATE_ERROR_ACTIVE, CAN_STATE_ERROR_ACTIVE); } else { dev_kfree_skb(skb); return 0; } if (!skb) { stats->rx_dropped++; return -ENOMEM; } stats->rx_packets++; stats->rx_bytes += cf->can_dlc; netif_rx(skb); return 0; } /* handle uCAN Rx overflow notification */ static int pucan_handle_cache_critical(struct peak_canfd_priv *priv) { struct net_device_stats *stats = &priv->ndev->stats; struct can_frame *cf; struct sk_buff *skb; stats->rx_over_errors++; stats->rx_errors++; skb = alloc_can_err_skb(priv->ndev, &cf); if (!skb) { stats->rx_dropped++; return -ENOMEM; } cf->can_id |= CAN_ERR_CRTL; cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; cf->data[6] = priv->bec.txerr; cf->data[7] = priv->bec.rxerr; stats->rx_bytes += cf->can_dlc; stats->rx_packets++; netif_rx(skb); return 0; } /* handle a single uCAN message */ int peak_canfd_handle_msg(struct peak_canfd_priv *priv, struct pucan_rx_msg *msg) { u16 msg_type = le16_to_cpu(msg->type); int msg_size = le16_to_cpu(msg->size); int err; if (!msg_size || !msg_type) { /* null packet found: end of list */ goto exit; } switch (msg_type) { case PUCAN_MSG_CAN_RX: err = pucan_handle_can_rx(priv, (struct pucan_rx_msg *)msg); break; case PUCAN_MSG_ERROR: err = pucan_handle_error(priv, (struct pucan_error_msg *)msg); break; case PUCAN_MSG_STATUS: err = pucan_handle_status(priv, (struct pucan_status_msg *)msg); break; case PUCAN_MSG_CACHE_CRITICAL: err = pucan_handle_cache_critical(priv); break; default: err = 0; } if (err < 0) return err; exit: return msg_size; } /* handle a list of rx_count messages from rx_msg memory address */ int peak_canfd_handle_msgs_list(struct peak_canfd_priv *priv, struct pucan_rx_msg *msg_list, int msg_count) { void *msg_ptr = msg_list; int i, msg_size = 0; for (i = 0; i < msg_count; i++) { msg_size = peak_canfd_handle_msg(priv, msg_ptr); /* a null packet can be found at the end of a list */ if (msg_size <= 0) break; msg_ptr += ALIGN(msg_size, 4); } if (msg_size < 0) return msg_size; return i; } static int peak_canfd_start(struct peak_canfd_priv *priv) { int err; err = pucan_clr_err_counters(priv); if (err) goto err_exit; priv->echo_idx = 0; priv->bec.txerr = 0; priv->bec.rxerr = 0; if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) err = pucan_set_listen_only_mode(priv); else err = pucan_set_normal_mode(priv); err_exit: return err; } static void peak_canfd_stop(struct peak_canfd_priv *priv) { int err; /* go back to RESET mode */ err = pucan_set_reset_mode(priv); if (err) { netdev_err(priv->ndev, "channel %u reset failed\n", priv->index); } else { /* abort last Tx (MUST be done in RESET mode only!) */ pucan_tx_abort(priv, PUCAN_TX_ABORT_FLUSH); } } static int peak_canfd_set_mode(struct net_device *ndev, enum can_mode mode) { struct peak_canfd_priv *priv = netdev_priv(ndev); switch (mode) { case CAN_MODE_START: peak_canfd_start(priv); netif_wake_queue(ndev); break; default: return -EOPNOTSUPP; } return 0; } static int peak_canfd_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec) { struct peak_canfd_priv *priv = netdev_priv(ndev); *bec = priv->bec; return 0; } static int peak_canfd_open(struct net_device *ndev) { struct peak_canfd_priv *priv = netdev_priv(ndev); int i, err = 0; err = open_candev(ndev); if (err) { netdev_err(ndev, "open_candev() failed, error %d\n", err); goto err_exit; } err = pucan_set_reset_mode(priv); if (err) goto err_close; if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) err = pucan_clr_options(priv, PUCAN_OPTION_CANDFDISO); else err = pucan_set_options(priv, PUCAN_OPTION_CANDFDISO); if (err) goto err_close; } /* set option: get rx/tx error counters */ err = pucan_set_options(priv, PUCAN_OPTION_ERROR); if (err) goto err_close; /* accept all standard CAN ID */ for (i = 0; i <= PUCAN_FLTSTD_ROW_IDX_MAX; i++) pucan_set_std_filter(priv, i, 0xffffffff); err = peak_canfd_start(priv); if (err) goto err_close; /* receiving the RB status says when Tx path is ready */ err = pucan_setup_rx_barrier(priv); if (!err) goto err_exit; err_close: close_candev(ndev); err_exit: return err; } static int peak_canfd_set_bittiming(struct net_device *ndev) { struct peak_canfd_priv *priv = netdev_priv(ndev); return pucan_set_timing_slow(priv, &priv->can.bittiming); } static int peak_canfd_set_data_bittiming(struct net_device *ndev) { struct peak_canfd_priv *priv = netdev_priv(ndev); return pucan_set_timing_fast(priv, &priv->can.data_bittiming); } static int peak_canfd_close(struct net_device *ndev) { struct peak_canfd_priv *priv = netdev_priv(ndev); netif_stop_queue(ndev); peak_canfd_stop(priv); close_candev(ndev); return 0; } static netdev_tx_t peak_canfd_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct peak_canfd_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; struct canfd_frame *cf = (struct canfd_frame *)skb->data; struct pucan_tx_msg *msg; u16 msg_size, msg_flags; unsigned long flags; bool should_stop_tx_queue; int room_left; u8 can_dlc; if (can_dropped_invalid_skb(ndev, skb)) return NETDEV_TX_OK; msg_size = ALIGN(sizeof(*msg) + cf->len, 4); msg = priv->alloc_tx_msg(priv, msg_size, &room_left); /* should never happen except under bus-off condition and (auto-)restart * mechanism */ if (!msg) { stats->tx_dropped++; netif_stop_queue(ndev); return NETDEV_TX_BUSY; } msg->size = cpu_to_le16(msg_size); msg->type = cpu_to_le16(PUCAN_MSG_CAN_TX); msg_flags = 0; if (cf->can_id & CAN_EFF_FLAG) { msg_flags |= PUCAN_MSG_EXT_ID; msg->can_id = cpu_to_le32(cf->can_id & CAN_EFF_MASK); } else { msg->can_id = cpu_to_le32(cf->can_id & CAN_SFF_MASK); } if (can_is_canfd_skb(skb)) { /* CAN FD frame format */ can_dlc = can_len2dlc(cf->len); msg_flags |= PUCAN_MSG_EXT_DATA_LEN; if (cf->flags & CANFD_BRS) msg_flags |= PUCAN_MSG_BITRATE_SWITCH; if (cf->flags & CANFD_ESI) msg_flags |= PUCAN_MSG_ERROR_STATE_IND; } else { /* CAN 2.0 frame format */ can_dlc = cf->len; if (cf->can_id & CAN_RTR_FLAG) msg_flags |= PUCAN_MSG_RTR; } /* always ask loopback for echo management */ msg_flags |= PUCAN_MSG_LOOPED_BACK; /* set driver specific bit to differentiate with application loopback */ if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) msg_flags |= PUCAN_MSG_SELF_RECEIVE; msg->flags = cpu_to_le16(msg_flags); msg->channel_dlc = PUCAN_MSG_CHANNEL_DLC(priv->index, can_dlc); memcpy(msg->d, cf->data, cf->len); /* struct msg client field is used as an index in the echo skbs ring */ msg->client = priv->echo_idx; spin_lock_irqsave(&priv->echo_lock, flags); /* prepare and save echo skb in internal slot */ can_put_echo_skb(skb, ndev, priv->echo_idx); /* move echo index to the next slot */ priv->echo_idx = (priv->echo_idx + 1) % priv->can.echo_skb_max; /* if next slot is not free, stop network queue (no slot free in echo * skb ring means that the controller did not write these frames on * the bus: no need to continue). */ should_stop_tx_queue = !!(priv->can.echo_skb[priv->echo_idx]); /* stop network tx queue if not enough room to save one more msg too */ if (priv->can.ctrlmode & CAN_CTRLMODE_FD) should_stop_tx_queue |= (room_left < (sizeof(*msg) + CANFD_MAX_DLEN)); else should_stop_tx_queue |= (room_left < (sizeof(*msg) + CAN_MAX_DLEN)); if (should_stop_tx_queue) netif_stop_queue(ndev); spin_unlock_irqrestore(&priv->echo_lock, flags); /* write the skb on the interface */ priv->write_tx_msg(priv, msg); return NETDEV_TX_OK; } static const struct net_device_ops peak_canfd_netdev_ops = { .ndo_open = peak_canfd_open, .ndo_stop = peak_canfd_close, .ndo_start_xmit = peak_canfd_start_xmit, .ndo_change_mtu = can_change_mtu, }; struct net_device *alloc_peak_canfd_dev(int sizeof_priv, int index, int echo_skb_max) { struct net_device *ndev; struct peak_canfd_priv *priv; /* we DO support local echo */ if (echo_skb_max < 0) echo_skb_max = PCANFD_ECHO_SKB_MAX; /* allocate the candev object */ ndev = alloc_candev(sizeof_priv, echo_skb_max); if (!ndev) return NULL; priv = netdev_priv(ndev); /* complete now socket-can initialization side */ priv->can.state = CAN_STATE_STOPPED; priv->can.bittiming_const = &peak_canfd_nominal_const; priv->can.data_bittiming_const = &peak_canfd_data_const; priv->can.do_set_mode = peak_canfd_set_mode; priv->can.do_get_berr_counter = peak_canfd_get_berr_counter; priv->can.do_set_bittiming = peak_canfd_set_bittiming; priv->can.do_set_data_bittiming = peak_canfd_set_data_bittiming; priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO | CAN_CTRLMODE_BERR_REPORTING; priv->ndev = ndev; priv->index = index; priv->cmd_len = 0; spin_lock_init(&priv->echo_lock); ndev->flags |= IFF_ECHO; ndev->netdev_ops = &peak_canfd_netdev_ops; ndev->dev_id = index; return ndev; }