/* * Copyright (C) 2015 Cavium, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include "nic_reg.h" #include "nic.h" #include "q_struct.h" #include "nicvf_queues.h" static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry, int size, u64 data); static void nicvf_get_page(struct nicvf *nic) { if (!nic->rb_pageref || !nic->rb_page) return; page_ref_add(nic->rb_page, nic->rb_pageref); nic->rb_pageref = 0; } /* Poll a register for a specific value */ static int nicvf_poll_reg(struct nicvf *nic, int qidx, u64 reg, int bit_pos, int bits, int val) { u64 bit_mask; u64 reg_val; int timeout = 10; bit_mask = (1ULL << bits) - 1; bit_mask = (bit_mask << bit_pos); while (timeout) { reg_val = nicvf_queue_reg_read(nic, reg, qidx); if (((reg_val & bit_mask) >> bit_pos) == val) return 0; usleep_range(1000, 2000); timeout--; } netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg); return 1; } /* Allocate memory for a queue's descriptors */ static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem, int q_len, int desc_size, int align_bytes) { dmem->q_len = q_len; dmem->size = (desc_size * q_len) + align_bytes; /* Save address, need it while freeing */ dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size, &dmem->dma, GFP_KERNEL); if (!dmem->unalign_base) return -ENOMEM; /* Align memory address for 'align_bytes' */ dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes); dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma); return 0; } /* Free queue's descriptor memory */ static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem) { if (!dmem) return; dma_free_coherent(&nic->pdev->dev, dmem->size, dmem->unalign_base, dmem->dma); dmem->unalign_base = NULL; dmem->base = NULL; } #define XDP_PAGE_REFCNT_REFILL 256 /* Allocate a new page or recycle one if possible * * We cannot optimize dma mapping here, since * 1. It's only one RBDR ring for 8 Rx queues. * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed * and not idx into RBDR ring, so can't refer to saved info. * 3. There are multiple receive buffers per page */ static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic, struct rbdr *rbdr, gfp_t gfp) { int ref_count; struct page *page = NULL; struct pgcache *pgcache, *next; /* Check if page is already allocated */ pgcache = &rbdr->pgcache[rbdr->pgidx]; page = pgcache->page; /* Check if page can be recycled */ if (page) { ref_count = page_ref_count(page); /* This page can be recycled if internal ref_count and page's * ref_count are equal, indicating that the page has been used * once for packet transmission. For non-XDP mode, internal * ref_count is always '1'. */ if (rbdr->is_xdp) { if (ref_count == pgcache->ref_count) pgcache->ref_count--; else page = NULL; } else if (ref_count != 1) { page = NULL; } } if (!page) { page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0); if (!page) return NULL; this_cpu_inc(nic->pnicvf->drv_stats->page_alloc); /* Check for space */ if (rbdr->pgalloc >= rbdr->pgcnt) { /* Page can still be used */ nic->rb_page = page; return NULL; } /* Save the page in page cache */ pgcache->page = page; pgcache->dma_addr = 0; pgcache->ref_count = 0; rbdr->pgalloc++; } /* Take additional page references for recycling */ if (rbdr->is_xdp) { /* Since there is single RBDR (i.e single core doing * page recycling) per 8 Rx queues, in XDP mode adjusting * page references atomically is the biggest bottleneck, so * take bunch of references at a time. * * So here, below reference counts defer by '1'. */ if (!pgcache->ref_count) { pgcache->ref_count = XDP_PAGE_REFCNT_REFILL; page_ref_add(page, XDP_PAGE_REFCNT_REFILL); } } else { /* In non-XDP case, single 64K page is divided across multiple * receive buffers, so cost of recycling is less anyway. * So we can do with just one extra reference. */ page_ref_add(page, 1); } rbdr->pgidx++; rbdr->pgidx &= (rbdr->pgcnt - 1); /* Prefetch refcount of next page in page cache */ next = &rbdr->pgcache[rbdr->pgidx]; page = next->page; if (page) prefetch(&page->_refcount); return pgcache; } /* Allocate buffer for packet reception */ static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr, gfp_t gfp, u32 buf_len, u64 *rbuf) { struct pgcache *pgcache = NULL; /* Check if request can be accomodated in previous allocated page. * But in XDP mode only one buffer per page is permitted. */ if (!rbdr->is_xdp && nic->rb_page && ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) { nic->rb_pageref++; goto ret; } nicvf_get_page(nic); nic->rb_page = NULL; /* Get new page, either recycled or new one */ pgcache = nicvf_alloc_page(nic, rbdr, gfp); if (!pgcache && !nic->rb_page) { this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures); return -ENOMEM; } nic->rb_page_offset = 0; /* Reserve space for header modifications by BPF program */ if (rbdr->is_xdp) buf_len += XDP_PACKET_HEADROOM; /* Check if it's recycled */ if (pgcache) nic->rb_page = pgcache->page; ret: if (rbdr->is_xdp && pgcache && pgcache->dma_addr) { *rbuf = pgcache->dma_addr; } else { /* HW will ensure data coherency, CPU sync not required */ *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page, nic->rb_page_offset, buf_len, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) { if (!nic->rb_page_offset) __free_pages(nic->rb_page, 0); nic->rb_page = NULL; return -ENOMEM; } if (pgcache) pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM; nic->rb_page_offset += buf_len; } return 0; } /* Build skb around receive buffer */ static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic, u64 rb_ptr, int len) { void *data; struct sk_buff *skb; data = phys_to_virt(rb_ptr); /* Now build an skb to give to stack */ skb = build_skb(data, RCV_FRAG_LEN); if (!skb) { put_page(virt_to_page(data)); return NULL; } prefetch(skb->data); return skb; } /* Allocate RBDR ring and populate receive buffers */ static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len, int buf_size) { int idx; u64 rbuf; struct rbdr_entry_t *desc; int err; err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len, sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES); if (err) return err; rbdr->desc = rbdr->dmem.base; /* Buffer size has to be in multiples of 128 bytes */ rbdr->dma_size = buf_size; rbdr->enable = true; rbdr->thresh = RBDR_THRESH; rbdr->head = 0; rbdr->tail = 0; /* Initialize page recycling stuff. * * Can't use single buffer per page especially with 64K pages. * On embedded platforms i.e 81xx/83xx available memory itself * is low and minimum ring size of RBDR is 8K, that takes away * lots of memory. * * But for XDP it has to be a single buffer per page. */ if (!nic->pnicvf->xdp_prog) { rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size); rbdr->is_xdp = false; } else { rbdr->pgcnt = ring_len; rbdr->is_xdp = true; } rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt); rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache), GFP_KERNEL); if (!rbdr->pgcache) return -ENOMEM; rbdr->pgidx = 0; rbdr->pgalloc = 0; nic->rb_page = NULL; for (idx = 0; idx < ring_len; idx++) { err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL, RCV_FRAG_LEN, &rbuf); if (err) { /* To free already allocated and mapped ones */ rbdr->tail = idx - 1; return err; } desc = GET_RBDR_DESC(rbdr, idx); desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1); } nicvf_get_page(nic); return 0; } /* Free RBDR ring and its receive buffers */ static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr) { int head, tail; u64 buf_addr, phys_addr; struct pgcache *pgcache; struct rbdr_entry_t *desc; if (!rbdr) return; rbdr->enable = false; if (!rbdr->dmem.base) return; head = rbdr->head; tail = rbdr->tail; /* Release page references */ while (head != tail) { desc = GET_RBDR_DESC(rbdr, head); buf_addr = desc->buf_addr; phys_addr = nicvf_iova_to_phys(nic, buf_addr); dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); if (phys_addr) put_page(virt_to_page(phys_to_virt(phys_addr))); head++; head &= (rbdr->dmem.q_len - 1); } /* Release buffer of tail desc */ desc = GET_RBDR_DESC(rbdr, tail); buf_addr = desc->buf_addr; phys_addr = nicvf_iova_to_phys(nic, buf_addr); dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); if (phys_addr) put_page(virt_to_page(phys_to_virt(phys_addr))); /* Sync page cache info */ smp_rmb(); /* Release additional page references held for recycling */ head = 0; while (head < rbdr->pgcnt) { pgcache = &rbdr->pgcache[head]; if (pgcache->page && page_ref_count(pgcache->page) != 0) { if (rbdr->is_xdp) { page_ref_sub(pgcache->page, pgcache->ref_count - 1); } put_page(pgcache->page); } head++; } /* Free RBDR ring */ nicvf_free_q_desc_mem(nic, &rbdr->dmem); } /* Refill receive buffer descriptors with new buffers. */ static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp) { struct queue_set *qs = nic->qs; int rbdr_idx = qs->rbdr_cnt; int tail, qcount; int refill_rb_cnt; struct rbdr *rbdr; struct rbdr_entry_t *desc; u64 rbuf; int new_rb = 0; refill: if (!rbdr_idx) return; rbdr_idx--; rbdr = &qs->rbdr[rbdr_idx]; /* Check if it's enabled */ if (!rbdr->enable) goto next_rbdr; /* Get no of desc's to be refilled */ qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx); qcount &= 0x7FFFF; /* Doorbell can be ringed with a max of ring size minus 1 */ if (qcount >= (qs->rbdr_len - 1)) goto next_rbdr; else refill_rb_cnt = qs->rbdr_len - qcount - 1; /* Sync page cache info */ smp_rmb(); /* Start filling descs from tail */ tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3; while (refill_rb_cnt) { tail++; tail &= (rbdr->dmem.q_len - 1); if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf)) break; desc = GET_RBDR_DESC(rbdr, tail); desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1); refill_rb_cnt--; new_rb++; } nicvf_get_page(nic); /* make sure all memory stores are done before ringing doorbell */ smp_wmb(); /* Check if buffer allocation failed */ if (refill_rb_cnt) nic->rb_alloc_fail = true; else nic->rb_alloc_fail = false; /* Notify HW */ nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, rbdr_idx, new_rb); next_rbdr: /* Re-enable RBDR interrupts only if buffer allocation is success */ if (!nic->rb_alloc_fail && rbdr->enable && netif_running(nic->pnicvf->netdev)) nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx); if (rbdr_idx) goto refill; } /* Alloc rcv buffers in non-atomic mode for better success */ void nicvf_rbdr_work(struct work_struct *work) { struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work); nicvf_refill_rbdr(nic, GFP_KERNEL); if (nic->rb_alloc_fail) schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10)); else nic->rb_work_scheduled = false; } /* In Softirq context, alloc rcv buffers in atomic mode */ void nicvf_rbdr_task(unsigned long data) { struct nicvf *nic = (struct nicvf *)data; nicvf_refill_rbdr(nic, GFP_ATOMIC); if (nic->rb_alloc_fail) { nic->rb_work_scheduled = true; schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10)); } } /* Initialize completion queue */ static int nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len) { int err; err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE, NICVF_CQ_BASE_ALIGN_BYTES); if (err) return err; cq->desc = cq->dmem.base; cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH; nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1; return 0; } static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq) { if (!cq) return; if (!cq->dmem.base) return; nicvf_free_q_desc_mem(nic, &cq->dmem); } /* Initialize transmit queue */ static int nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len, int qidx) { int err; err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE, NICVF_SQ_BASE_ALIGN_BYTES); if (err) return err; sq->desc = sq->dmem.base; sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL); if (!sq->skbuff) return -ENOMEM; sq->head = 0; sq->tail = 0; sq->thresh = SND_QUEUE_THRESH; /* Check if this SQ is a XDP TX queue */ if (nic->sqs_mode) qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS); if (qidx < nic->pnicvf->xdp_tx_queues) { /* Alloc memory to save page pointers for XDP_TX */ sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL); if (!sq->xdp_page) return -ENOMEM; sq->xdp_desc_cnt = 0; sq->xdp_free_cnt = q_len - 1; sq->is_xdp = true; } else { sq->xdp_page = NULL; sq->xdp_desc_cnt = 0; sq->xdp_free_cnt = 0; sq->is_xdp = false; atomic_set(&sq->free_cnt, q_len - 1); /* Preallocate memory for TSO segment's header */ sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev, q_len * TSO_HEADER_SIZE, &sq->tso_hdrs_phys, GFP_KERNEL); if (!sq->tso_hdrs) return -ENOMEM; } return 0; } void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq, int hdr_sqe, u8 subdesc_cnt) { u8 idx; struct sq_gather_subdesc *gather; /* Unmap DMA mapped skb data buffers */ for (idx = 0; idx < subdesc_cnt; idx++) { hdr_sqe++; hdr_sqe &= (sq->dmem.q_len - 1); gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe); /* HW will ensure data coherency, CPU sync not required */ dma_unmap_page_attrs(&nic->pdev->dev, gather->addr, gather->size, DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); } } static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq) { struct sk_buff *skb; struct page *page; struct sq_hdr_subdesc *hdr; struct sq_hdr_subdesc *tso_sqe; if (!sq) return; if (!sq->dmem.base) return; if (sq->tso_hdrs) { dma_free_coherent(&nic->pdev->dev, sq->dmem.q_len * TSO_HEADER_SIZE, sq->tso_hdrs, sq->tso_hdrs_phys); sq->tso_hdrs = NULL; } /* Free pending skbs in the queue */ smp_rmb(); while (sq->head != sq->tail) { skb = (struct sk_buff *)sq->skbuff[sq->head]; if (!skb || !sq->xdp_page) goto next; page = (struct page *)sq->xdp_page[sq->head]; if (!page) goto next; else put_page(page); hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head); /* Check for dummy descriptor used for HW TSO offload on 88xx */ if (hdr->dont_send) { /* Get actual TSO descriptors and unmap them */ tso_sqe = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2); nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2, tso_sqe->subdesc_cnt); } else { nicvf_unmap_sndq_buffers(nic, sq, sq->head, hdr->subdesc_cnt); } if (skb) dev_kfree_skb_any(skb); next: sq->head++; sq->head &= (sq->dmem.q_len - 1); } kfree(sq->skbuff); kfree(sq->xdp_page); nicvf_free_q_desc_mem(nic, &sq->dmem); } static void nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx) { /* Disable send queue */ nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0); /* Check if SQ is stopped */ if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01)) return; /* Reset send queue */ nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET); } static void nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx) { union nic_mbx mbx = {}; /* Make sure all packets in the pipeline are written back into mem */ mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC; nicvf_send_msg_to_pf(nic, &mbx); } static void nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx) { /* Disable timer threshold (doesn't get reset upon CQ reset */ nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0); /* Disable completion queue */ nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0); /* Reset completion queue */ nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET); } static void nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx) { u64 tmp, fifo_state; int timeout = 10; /* Save head and tail pointers for feeing up buffers */ rbdr->head = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3; rbdr->tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3; /* If RBDR FIFO is in 'FAIL' state then do a reset first * before relaiming. */ fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx); if (((fifo_state >> 62) & 0x03) == 0x3) nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, NICVF_RBDR_RESET); /* Disable RBDR */ nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0); if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00)) return; while (1) { tmp = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx); if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF)) break; usleep_range(1000, 2000); timeout--; if (!timeout) { netdev_err(nic->netdev, "Failed polling on prefetch status\n"); return; } } nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, NICVF_RBDR_RESET); if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02)) return; nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00); if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00)) return; } void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features) { u64 rq_cfg; int sqs; rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0); /* Enable first VLAN stripping */ if (features & NETIF_F_HW_VLAN_CTAG_RX) rq_cfg |= (1ULL << 25); else rq_cfg &= ~(1ULL << 25); nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg); /* Configure Secondary Qsets, if any */ for (sqs = 0; sqs < nic->sqs_count; sqs++) if (nic->snicvf[sqs]) nicvf_queue_reg_write(nic->snicvf[sqs], NIC_QSET_RQ_GEN_CFG, 0, rq_cfg); } static void nicvf_reset_rcv_queue_stats(struct nicvf *nic) { union nic_mbx mbx = {}; /* Reset all RQ/SQ and VF stats */ mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER; mbx.reset_stat.rx_stat_mask = 0x3FFF; mbx.reset_stat.tx_stat_mask = 0x1F; mbx.reset_stat.rq_stat_mask = 0xFFFF; mbx.reset_stat.sq_stat_mask = 0xFFFF; nicvf_send_msg_to_pf(nic, &mbx); } /* Configures receive queue */ static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx, bool enable) { union nic_mbx mbx = {}; struct rcv_queue *rq; struct rq_cfg rq_cfg; rq = &qs->rq[qidx]; rq->enable = enable; /* Disable receive queue */ nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0); if (!rq->enable) { nicvf_reclaim_rcv_queue(nic, qs, qidx); xdp_rxq_info_unreg(&rq->xdp_rxq); return; } rq->cq_qs = qs->vnic_id; rq->cq_idx = qidx; rq->start_rbdr_qs = qs->vnic_id; rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1; rq->cont_rbdr_qs = qs->vnic_id; rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1; /* all writes of RBDR data to be loaded into L2 Cache as well*/ rq->caching = 1; /* Driver have no proper error path for failed XDP RX-queue info reg */ WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx) < 0); /* Send a mailbox msg to PF to config RQ */ mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG; mbx.rq.qs_num = qs->vnic_id; mbx.rq.rq_num = qidx; mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) | (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) | (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx); nicvf_send_msg_to_pf(nic, &mbx); mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG; mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) | (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) | (qs->vnic_id << 0); nicvf_send_msg_to_pf(nic, &mbx); /* RQ drop config * Enable CQ drop to reserve sufficient CQEs for all tx packets */ mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG; mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) | (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) | (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8); nicvf_send_msg_to_pf(nic, &mbx); if (!nic->sqs_mode && (qidx == 0)) { /* Enable checking L3/L4 length and TCP/UDP checksums * Also allow IPv6 pkts with zero UDP checksum. */ nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, (BIT(24) | BIT(23) | BIT(21) | BIT(20))); nicvf_config_vlan_stripping(nic, nic->netdev->features); } /* Enable Receive queue */ memset(&rq_cfg, 0, sizeof(struct rq_cfg)); rq_cfg.ena = 1; rq_cfg.tcp_ena = 0; nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg); } /* Configures completion queue */ void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx, bool enable) { struct cmp_queue *cq; struct cq_cfg cq_cfg; cq = &qs->cq[qidx]; cq->enable = enable; if (!cq->enable) { nicvf_reclaim_cmp_queue(nic, qs, qidx); return; } /* Reset completion queue */ nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET); if (!cq->enable) return; spin_lock_init(&cq->lock); /* Set completion queue base address */ nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx, (u64)(cq->dmem.phys_base)); /* Enable Completion queue */ memset(&cq_cfg, 0, sizeof(struct cq_cfg)); cq_cfg.ena = 1; cq_cfg.reset = 0; cq_cfg.caching = 0; cq_cfg.qsize = ilog2(qs->cq_len >> 10); cq_cfg.avg_con = 0; nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg); /* Set threshold value for interrupt generation */ nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh); nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, CMP_QUEUE_TIMER_THRESH); } /* Configures transmit queue */ static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx, bool enable) { union nic_mbx mbx = {}; struct snd_queue *sq; struct sq_cfg sq_cfg; sq = &qs->sq[qidx]; sq->enable = enable; if (!sq->enable) { nicvf_reclaim_snd_queue(nic, qs, qidx); return; } /* Reset send queue */ nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET); sq->cq_qs = qs->vnic_id; sq->cq_idx = qidx; /* Send a mailbox msg to PF to config SQ */ mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG; mbx.sq.qs_num = qs->vnic_id; mbx.sq.sq_num = qidx; mbx.sq.sqs_mode = nic->sqs_mode; mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx; nicvf_send_msg_to_pf(nic, &mbx); /* Set queue base address */ nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx, (u64)(sq->dmem.phys_base)); /* Enable send queue & set queue size */ memset(&sq_cfg, 0, sizeof(struct sq_cfg)); sq_cfg.ena = 1; sq_cfg.reset = 0; sq_cfg.ldwb = 0; sq_cfg.qsize = ilog2(qs->sq_len >> 10); sq_cfg.tstmp_bgx_intf = 0; /* CQ's level at which HW will stop processing SQEs to avoid * transmitting a pkt with no space in CQ to post CQE_TX. */ sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len; nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg); /* Set threshold value for interrupt generation */ nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh); /* Set queue:cpu affinity for better load distribution */ if (cpu_online(qidx)) { cpumask_set_cpu(qidx, &sq->affinity_mask); netif_set_xps_queue(nic->netdev, &sq->affinity_mask, qidx); } } /* Configures receive buffer descriptor ring */ static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx, bool enable) { struct rbdr *rbdr; struct rbdr_cfg rbdr_cfg; rbdr = &qs->rbdr[qidx]; nicvf_reclaim_rbdr(nic, rbdr, qidx); if (!enable) return; /* Set descriptor base address */ nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx, (u64)(rbdr->dmem.phys_base)); /* Enable RBDR & set queue size */ /* Buffer size should be in multiples of 128 bytes */ memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg)); rbdr_cfg.ena = 1; rbdr_cfg.reset = 0; rbdr_cfg.ldwb = 0; rbdr_cfg.qsize = RBDR_SIZE; rbdr_cfg.avg_con = 0; rbdr_cfg.lines = rbdr->dma_size / 128; nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, *(u64 *)&rbdr_cfg); /* Notify HW */ nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx, qs->rbdr_len - 1); /* Set threshold value for interrupt generation */ nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx, rbdr->thresh - 1); } /* Requests PF to assign and enable Qset */ void nicvf_qset_config(struct nicvf *nic, bool enable) { union nic_mbx mbx = {}; struct queue_set *qs = nic->qs; struct qs_cfg *qs_cfg; if (!qs) { netdev_warn(nic->netdev, "Qset is still not allocated, don't init queues\n"); return; } qs->enable = enable; qs->vnic_id = nic->vf_id; /* Send a mailbox msg to PF to config Qset */ mbx.qs.msg = NIC_MBOX_MSG_QS_CFG; mbx.qs.num = qs->vnic_id; mbx.qs.sqs_count = nic->sqs_count; mbx.qs.cfg = 0; qs_cfg = (struct qs_cfg *)&mbx.qs.cfg; if (qs->enable) { qs_cfg->ena = 1; #ifdef __BIG_ENDIAN qs_cfg->be = 1; #endif qs_cfg->vnic = qs->vnic_id; /* Enable Tx timestamping capability */ if (nic->ptp_clock) qs_cfg->send_tstmp_ena = 1; } nicvf_send_msg_to_pf(nic, &mbx); } static void nicvf_free_resources(struct nicvf *nic) { int qidx; struct queue_set *qs = nic->qs; /* Free receive buffer descriptor ring */ for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) nicvf_free_rbdr(nic, &qs->rbdr[qidx]); /* Free completion queue */ for (qidx = 0; qidx < qs->cq_cnt; qidx++) nicvf_free_cmp_queue(nic, &qs->cq[qidx]); /* Free send queue */ for (qidx = 0; qidx < qs->sq_cnt; qidx++) nicvf_free_snd_queue(nic, &qs->sq[qidx]); } static int nicvf_alloc_resources(struct nicvf *nic) { int qidx; struct queue_set *qs = nic->qs; /* Alloc receive buffer descriptor ring */ for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) { if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len, DMA_BUFFER_LEN)) goto alloc_fail; } /* Alloc send queue */ for (qidx = 0; qidx < qs->sq_cnt; qidx++) { if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx)) goto alloc_fail; } /* Alloc completion queue */ for (qidx = 0; qidx < qs->cq_cnt; qidx++) { if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len)) goto alloc_fail; } return 0; alloc_fail: nicvf_free_resources(nic); return -ENOMEM; } int nicvf_set_qset_resources(struct nicvf *nic) { struct queue_set *qs; qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL); if (!qs) return -ENOMEM; nic->qs = qs; /* Set count of each queue */ qs->rbdr_cnt = DEFAULT_RBDR_CNT; qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus()); qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus()); qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt); /* Set queue lengths */ qs->rbdr_len = RCV_BUF_COUNT; qs->sq_len = SND_QUEUE_LEN; qs->cq_len = CMP_QUEUE_LEN; nic->rx_queues = qs->rq_cnt; nic->tx_queues = qs->sq_cnt; nic->xdp_tx_queues = 0; return 0; } int nicvf_config_data_transfer(struct nicvf *nic, bool enable) { bool disable = false; struct queue_set *qs = nic->qs; struct queue_set *pqs = nic->pnicvf->qs; int qidx; if (!qs) return 0; /* Take primary VF's queue lengths. * This is needed to take queue lengths set from ethtool * into consideration. */ if (nic->sqs_mode && pqs) { qs->cq_len = pqs->cq_len; qs->sq_len = pqs->sq_len; } if (enable) { if (nicvf_alloc_resources(nic)) return -ENOMEM; for (qidx = 0; qidx < qs->sq_cnt; qidx++) nicvf_snd_queue_config(nic, qs, qidx, enable); for (qidx = 0; qidx < qs->cq_cnt; qidx++) nicvf_cmp_queue_config(nic, qs, qidx, enable); for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) nicvf_rbdr_config(nic, qs, qidx, enable); for (qidx = 0; qidx < qs->rq_cnt; qidx++) nicvf_rcv_queue_config(nic, qs, qidx, enable); } else { for (qidx = 0; qidx < qs->rq_cnt; qidx++) nicvf_rcv_queue_config(nic, qs, qidx, disable); for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) nicvf_rbdr_config(nic, qs, qidx, disable); for (qidx = 0; qidx < qs->sq_cnt; qidx++) nicvf_snd_queue_config(nic, qs, qidx, disable); for (qidx = 0; qidx < qs->cq_cnt; qidx++) nicvf_cmp_queue_config(nic, qs, qidx, disable); nicvf_free_resources(nic); } /* Reset RXQ's stats. * SQ's stats will get reset automatically once SQ is reset. */ nicvf_reset_rcv_queue_stats(nic); return 0; } /* Get a free desc from SQ * returns descriptor ponter & descriptor number */ static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt) { int qentry; qentry = sq->tail; if (!sq->is_xdp) atomic_sub(desc_cnt, &sq->free_cnt); else sq->xdp_free_cnt -= desc_cnt; sq->tail += desc_cnt; sq->tail &= (sq->dmem.q_len - 1); return qentry; } /* Rollback to previous tail pointer when descriptors not used */ static inline void nicvf_rollback_sq_desc(struct snd_queue *sq, int qentry, int desc_cnt) { sq->tail = qentry; atomic_add(desc_cnt, &sq->free_cnt); } /* Free descriptor back to SQ for future use */ void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt) { if (!sq->is_xdp) atomic_add(desc_cnt, &sq->free_cnt); else sq->xdp_free_cnt += desc_cnt; sq->head += desc_cnt; sq->head &= (sq->dmem.q_len - 1); } static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry) { qentry++; qentry &= (sq->dmem.q_len - 1); return qentry; } void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx) { u64 sq_cfg; sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx); sq_cfg |= NICVF_SQ_EN; nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg); /* Ring doorbell so that H/W restarts processing SQEs */ nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0); } void nicvf_sq_disable(struct nicvf *nic, int qidx) { u64 sq_cfg; sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx); sq_cfg &= ~NICVF_SQ_EN; nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg); } void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq, int qidx) { u64 head, tail; struct sk_buff *skb; struct nicvf *nic = netdev_priv(netdev); struct sq_hdr_subdesc *hdr; head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4; tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4; while (sq->head != head) { hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head); if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) { nicvf_put_sq_desc(sq, 1); continue; } skb = (struct sk_buff *)sq->skbuff[sq->head]; if (skb) dev_kfree_skb_any(skb); atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets); atomic64_add(hdr->tot_len, (atomic64_t *)&netdev->stats.tx_bytes); nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1); } } /* XDP Transmit APIs */ void nicvf_xdp_sq_doorbell(struct nicvf *nic, struct snd_queue *sq, int sq_num) { if (!sq->xdp_desc_cnt) return; /* make sure all memory stores are done before ringing doorbell */ wmb(); /* Inform HW to xmit all TSO segments */ nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, sq_num, sq->xdp_desc_cnt); sq->xdp_desc_cnt = 0; } static inline void nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry, int subdesc_cnt, u64 data, int len) { struct sq_hdr_subdesc *hdr; hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); memset(hdr, 0, SND_QUEUE_DESC_SIZE); hdr->subdesc_type = SQ_DESC_TYPE_HEADER; hdr->subdesc_cnt = subdesc_cnt; hdr->tot_len = len; hdr->post_cqe = 1; sq->xdp_page[qentry] = (u64)virt_to_page((void *)data); } int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq, u64 bufaddr, u64 dma_addr, u16 len) { int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT; int qentry; if (subdesc_cnt > sq->xdp_free_cnt) return 0; qentry = nicvf_get_sq_desc(sq, subdesc_cnt); nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len); qentry = nicvf_get_nxt_sqentry(sq, qentry); nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr); sq->xdp_desc_cnt += subdesc_cnt; return 1; } /* Calculate no of SQ subdescriptors needed to transmit all * segments of this TSO packet. * Taken from 'Tilera network driver' with a minor modification. */ static int nicvf_tso_count_subdescs(struct sk_buff *skb) { struct skb_shared_info *sh = skb_shinfo(skb); unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb); unsigned int data_len = skb->len - sh_len; unsigned int p_len = sh->gso_size; long f_id = -1; /* id of the current fragment */ long f_size = skb_headlen(skb) - sh_len; /* current fragment size */ long f_used = 0; /* bytes used from the current fragment */ long n; /* size of the current piece of payload */ int num_edescs = 0; int segment; for (segment = 0; segment < sh->gso_segs; segment++) { unsigned int p_used = 0; /* One edesc for header and for each piece of the payload. */ for (num_edescs++; p_used < p_len; num_edescs++) { /* Advance as needed. */ while (f_used >= f_size) { f_id++; f_size = skb_frag_size(&sh->frags[f_id]); f_used = 0; } /* Use bytes from the current fragment. */ n = p_len - p_used; if (n > f_size - f_used) n = f_size - f_used; f_used += n; p_used += n; } /* The last segment may be less than gso_size. */ data_len -= p_len; if (data_len < p_len) p_len = data_len; } /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */ return num_edescs + sh->gso_segs; } #define POST_CQE_DESC_COUNT 2 /* Get the number of SQ descriptors needed to xmit this skb */ static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb) { int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT; if (skb_shinfo(skb)->gso_size && !nic->hw_tso) { subdesc_cnt = nicvf_tso_count_subdescs(skb); return subdesc_cnt; } /* Dummy descriptors to get TSO pkt completion notification */ if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) subdesc_cnt += POST_CQE_DESC_COUNT; if (skb_shinfo(skb)->nr_frags) subdesc_cnt += skb_shinfo(skb)->nr_frags; return subdesc_cnt; } /* Add SQ HEADER subdescriptor. * First subdescriptor for every send descriptor. */ static inline void nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry, int subdesc_cnt, struct sk_buff *skb, int len) { int proto; struct sq_hdr_subdesc *hdr; union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; ip.hdr = skb_network_header(skb); hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); memset(hdr, 0, SND_QUEUE_DESC_SIZE); hdr->subdesc_type = SQ_DESC_TYPE_HEADER; if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) { /* post_cqe = 0, to avoid HW posting a CQE for every TSO * segment transmitted on 88xx. */ hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT; } else { sq->skbuff[qentry] = (u64)skb; /* Enable notification via CQE after processing SQE */ hdr->post_cqe = 1; /* No of subdescriptors following this */ hdr->subdesc_cnt = subdesc_cnt; } hdr->tot_len = len; /* Offload checksum calculation to HW */ if (skb->ip_summed == CHECKSUM_PARTIAL) { if (ip.v4->version == 4) hdr->csum_l3 = 1; /* Enable IP csum calculation */ hdr->l3_offset = skb_network_offset(skb); hdr->l4_offset = skb_transport_offset(skb); proto = (ip.v4->version == 4) ? ip.v4->protocol : ip.v6->nexthdr; switch (proto) { case IPPROTO_TCP: hdr->csum_l4 = SEND_L4_CSUM_TCP; break; case IPPROTO_UDP: hdr->csum_l4 = SEND_L4_CSUM_UDP; break; case IPPROTO_SCTP: hdr->csum_l4 = SEND_L4_CSUM_SCTP; break; } } if (nic->hw_tso && skb_shinfo(skb)->gso_size) { hdr->tso = 1; hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb); hdr->tso_max_paysize = skb_shinfo(skb)->gso_size; /* For non-tunneled pkts, point this to L2 ethertype */ hdr->inner_l3_offset = skb_network_offset(skb) - 2; this_cpu_inc(nic->pnicvf->drv_stats->tx_tso); } /* Check if timestamp is requested */ if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { skb_tx_timestamp(skb); return; } /* Tx timestamping not supported along with TSO, so ignore request */ if (skb_shinfo(skb)->gso_size) return; /* HW supports only a single outstanding packet to timestamp */ if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1)) return; /* Mark the SKB for later reference */ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; /* Finally enable timestamp generation * Since 'post_cqe' is also set, two CQEs will be posted * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP. */ hdr->tstmp = 1; } /* SQ GATHER subdescriptor * Must follow HDR descriptor */ static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry, int size, u64 data) { struct sq_gather_subdesc *gather; qentry &= (sq->dmem.q_len - 1); gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry); memset(gather, 0, SND_QUEUE_DESC_SIZE); gather->subdesc_type = SQ_DESC_TYPE_GATHER; gather->ld_type = NIC_SEND_LD_TYPE_E_LDD; gather->size = size; gather->addr = data; } /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO * packet so that a CQE is posted as a notifation for transmission of * TSO packet. */ static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry, int tso_sqe, struct sk_buff *skb) { struct sq_imm_subdesc *imm; struct sq_hdr_subdesc *hdr; sq->skbuff[qentry] = (u64)skb; hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); memset(hdr, 0, SND_QUEUE_DESC_SIZE); hdr->subdesc_type = SQ_DESC_TYPE_HEADER; /* Enable notification via CQE after processing SQE */ hdr->post_cqe = 1; /* There is no packet to transmit here */ hdr->dont_send = 1; hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1; hdr->tot_len = 1; /* Actual TSO header SQE index, needed for cleanup */ hdr->rsvd2 = tso_sqe; qentry = nicvf_get_nxt_sqentry(sq, qentry); imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry); memset(imm, 0, SND_QUEUE_DESC_SIZE); imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE; imm->len = 1; } static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb, int sq_num, int desc_cnt) { struct netdev_queue *txq; txq = netdev_get_tx_queue(nic->pnicvf->netdev, skb_get_queue_mapping(skb)); netdev_tx_sent_queue(txq, skb->len); /* make sure all memory stores are done before ringing doorbell */ smp_wmb(); /* Inform HW to xmit all TSO segments */ nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, sq_num, desc_cnt); } /* Segment a TSO packet into 'gso_size' segments and append * them to SQ for transfer */ static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq, int sq_num, int qentry, struct sk_buff *skb) { struct tso_t tso; int seg_subdescs = 0, desc_cnt = 0; int seg_len, total_len, data_left; int hdr_qentry = qentry; int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); tso_start(skb, &tso); total_len = skb->len - hdr_len; while (total_len > 0) { char *hdr; /* Save Qentry for adding HDR_SUBDESC at the end */ hdr_qentry = qentry; data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); total_len -= data_left; /* Add segment's header */ qentry = nicvf_get_nxt_sqentry(sq, qentry); hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE; tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len, sq->tso_hdrs_phys + qentry * TSO_HEADER_SIZE); /* HDR_SUDESC + GATHER */ seg_subdescs = 2; seg_len = hdr_len; /* Add segment's payload fragments */ while (data_left > 0) { int size; size = min_t(int, tso.size, data_left); qentry = nicvf_get_nxt_sqentry(sq, qentry); nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(tso.data)); seg_subdescs++; seg_len += size; data_left -= size; tso_build_data(skb, &tso, size); } nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry, seg_subdescs - 1, skb, seg_len); sq->skbuff[hdr_qentry] = (u64)NULL; qentry = nicvf_get_nxt_sqentry(sq, qentry); desc_cnt += seg_subdescs; } /* Save SKB in the last segment for freeing */ sq->skbuff[hdr_qentry] = (u64)skb; nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt); this_cpu_inc(nic->pnicvf->drv_stats->tx_tso); return 1; } /* Append an skb to a SQ for packet transfer. */ int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq, struct sk_buff *skb, u8 sq_num) { int i, size; int subdesc_cnt, hdr_sqe = 0; int qentry; u64 dma_addr; subdesc_cnt = nicvf_sq_subdesc_required(nic, skb); if (subdesc_cnt > atomic_read(&sq->free_cnt)) goto append_fail; qentry = nicvf_get_sq_desc(sq, subdesc_cnt); /* Check if its a TSO packet */ if (skb_shinfo(skb)->gso_size && !nic->hw_tso) return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb); /* Add SQ header subdesc */ nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1, skb, skb->len); hdr_sqe = qentry; /* Add SQ gather subdescs */ qentry = nicvf_get_nxt_sqentry(sq, qentry); size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len; /* HW will ensure data coherency, CPU sync not required */ dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data), offset_in_page(skb->data), size, DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(&nic->pdev->dev, dma_addr)) { nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt); return 0; } nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr); /* Check for scattered buffer */ if (!skb_is_nonlinear(skb)) goto doorbell; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const struct skb_frag_struct *frag; frag = &skb_shinfo(skb)->frags[i]; qentry = nicvf_get_nxt_sqentry(sq, qentry); size = skb_frag_size(frag); dma_addr = dma_map_page_attrs(&nic->pdev->dev, skb_frag_page(frag), frag->page_offset, size, DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(&nic->pdev->dev, dma_addr)) { /* Free entire chain of mapped buffers * here 'i' = frags mapped + above mapped skb->data */ nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i); nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt); return 0; } nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr); } doorbell: if (nic->t88 && skb_shinfo(skb)->gso_size) { qentry = nicvf_get_nxt_sqentry(sq, qentry); nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb); } nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt); return 1; append_fail: /* Use original PCI dev for debug log */ nic = nic->pnicvf; netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n"); return 0; } static inline unsigned frag_num(unsigned i) { #ifdef __BIG_ENDIAN return (i & ~3) + 3 - (i & 3); #else return i; #endif } static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr, u64 buf_addr, bool xdp) { struct page *page = NULL; int len = RCV_FRAG_LEN; if (xdp) { page = virt_to_page(phys_to_virt(buf_addr)); /* Check if it's a recycled page, if not * unmap the DMA mapping. * * Recycled page holds an extra reference. */ if (page_ref_count(page) != 1) return; len += XDP_PACKET_HEADROOM; /* Receive buffers in XDP mode are mapped from page start */ dma_addr &= PAGE_MASK; } dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); } /* Returns SKB for a received packet */ struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx, bool xdp) { int frag; int payload_len = 0; struct sk_buff *skb = NULL; struct page *page; int offset; u16 *rb_lens = NULL; u64 *rb_ptrs = NULL; u64 phys_addr; rb_lens = (void *)cqe_rx + (3 * sizeof(u64)); /* Except 88xx pass1 on all other chips CQE_RX2_S is added to * CQE_RX at word6, hence buffer pointers move by word * * Use existing 'hw_tso' flag which will be set for all chips * except 88xx pass1 instead of a additional cache line * access (or miss) by using pci dev's revision. */ if (!nic->hw_tso) rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64)); else rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64)); for (frag = 0; frag < cqe_rx->rb_cnt; frag++) { payload_len = rb_lens[frag_num(frag)]; phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs); if (!phys_addr) { if (skb) dev_kfree_skb_any(skb); return NULL; } if (!frag) { /* First fragment */ nicvf_unmap_rcv_buffer(nic, *rb_ptrs - cqe_rx->align_pad, phys_addr, xdp); skb = nicvf_rb_ptr_to_skb(nic, phys_addr - cqe_rx->align_pad, payload_len); if (!skb) return NULL; skb_reserve(skb, cqe_rx->align_pad); skb_put(skb, payload_len); } else { /* Add fragments */ nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp); page = virt_to_page(phys_to_virt(phys_addr)); offset = phys_to_virt(phys_addr) - page_address(page); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, payload_len, RCV_FRAG_LEN); } /* Next buffer pointer */ rb_ptrs++; } return skb; } static u64 nicvf_int_type_to_mask(int int_type, int q_idx) { u64 reg_val; switch (int_type) { case NICVF_INTR_CQ: reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT); break; case NICVF_INTR_SQ: reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT); break; case NICVF_INTR_RBDR: reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT); break; case NICVF_INTR_PKT_DROP: reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT); break; case NICVF_INTR_TCP_TIMER: reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT); break; case NICVF_INTR_MBOX: reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT); break; case NICVF_INTR_QS_ERR: reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT); break; default: reg_val = 0; } return reg_val; } /* Enable interrupt */ void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx) { u64 mask = nicvf_int_type_to_mask(int_type, q_idx); if (!mask) { netdev_dbg(nic->netdev, "Failed to enable interrupt: unknown type\n"); return; } nicvf_reg_write(nic, NIC_VF_ENA_W1S, nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask); } /* Disable interrupt */ void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx) { u64 mask = nicvf_int_type_to_mask(int_type, q_idx); if (!mask) { netdev_dbg(nic->netdev, "Failed to disable interrupt: unknown type\n"); return; } nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask); } /* Clear interrupt */ void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx) { u64 mask = nicvf_int_type_to_mask(int_type, q_idx); if (!mask) { netdev_dbg(nic->netdev, "Failed to clear interrupt: unknown type\n"); return; } nicvf_reg_write(nic, NIC_VF_INT, mask); } /* Check if interrupt is enabled */ int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx) { u64 mask = nicvf_int_type_to_mask(int_type, q_idx); /* If interrupt type is unknown, we treat it disabled. */ if (!mask) { netdev_dbg(nic->netdev, "Failed to check interrupt enable: unknown type\n"); return 0; } return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S); } void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx) { struct rcv_queue *rq; #define GET_RQ_STATS(reg) \ nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\ (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3)) rq = &nic->qs->rq[rq_idx]; rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS); rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS); } void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx) { struct snd_queue *sq; #define GET_SQ_STATS(reg) \ nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\ (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3)) sq = &nic->qs->sq[sq_idx]; sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS); sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS); } /* Check for errors in the receive cmp.queue entry */ int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx) { netif_err(nic, rx_err, nic->netdev, "RX error CQE err_level 0x%x err_opcode 0x%x\n", cqe_rx->err_level, cqe_rx->err_opcode); switch (cqe_rx->err_opcode) { case CQ_RX_ERROP_RE_PARTIAL: this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts); break; case CQ_RX_ERROP_RE_JABBER: this_cpu_inc(nic->drv_stats->rx_jabber_errs); break; case CQ_RX_ERROP_RE_FCS: this_cpu_inc(nic->drv_stats->rx_fcs_errs); break; case CQ_RX_ERROP_RE_RX_CTL: this_cpu_inc(nic->drv_stats->rx_bgx_errs); break; case CQ_RX_ERROP_PREL2_ERR: this_cpu_inc(nic->drv_stats->rx_prel2_errs); break; case CQ_RX_ERROP_L2_MAL: this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed); break; case CQ_RX_ERROP_L2_OVERSIZE: this_cpu_inc(nic->drv_stats->rx_oversize); break; case CQ_RX_ERROP_L2_UNDERSIZE: this_cpu_inc(nic->drv_stats->rx_undersize); break; case CQ_RX_ERROP_L2_LENMISM: this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch); break; case CQ_RX_ERROP_L2_PCLP: this_cpu_inc(nic->drv_stats->rx_l2_pclp); break; case CQ_RX_ERROP_IP_NOT: this_cpu_inc(nic->drv_stats->rx_ip_ver_errs); break; case CQ_RX_ERROP_IP_CSUM_ERR: this_cpu_inc(nic->drv_stats->rx_ip_csum_errs); break; case CQ_RX_ERROP_IP_MAL: this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed); break; case CQ_RX_ERROP_IP_MALD: this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed); break; case CQ_RX_ERROP_IP_HOP: this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs); break; case CQ_RX_ERROP_L3_PCLP: this_cpu_inc(nic->drv_stats->rx_l3_pclp); break; case CQ_RX_ERROP_L4_MAL: this_cpu_inc(nic->drv_stats->rx_l4_malformed); break; case CQ_RX_ERROP_L4_CHK: this_cpu_inc(nic->drv_stats->rx_l4_csum_errs); break; case CQ_RX_ERROP_UDP_LEN: this_cpu_inc(nic->drv_stats->rx_udp_len_errs); break; case CQ_RX_ERROP_L4_PORT: this_cpu_inc(nic->drv_stats->rx_l4_port_errs); break; case CQ_RX_ERROP_TCP_FLAG: this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs); break; case CQ_RX_ERROP_TCP_OFFSET: this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs); break; case CQ_RX_ERROP_L4_PCLP: this_cpu_inc(nic->drv_stats->rx_l4_pclp); break; case CQ_RX_ERROP_RBDR_TRUNC: this_cpu_inc(nic->drv_stats->rx_truncated_pkts); break; } return 1; } /* Check for errors in the send cmp.queue entry */ int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx) { switch (cqe_tx->send_status) { case CQ_TX_ERROP_DESC_FAULT: this_cpu_inc(nic->drv_stats->tx_desc_fault); break; case CQ_TX_ERROP_HDR_CONS_ERR: this_cpu_inc(nic->drv_stats->tx_hdr_cons_err); break; case CQ_TX_ERROP_SUBDC_ERR: this_cpu_inc(nic->drv_stats->tx_subdesc_err); break; case CQ_TX_ERROP_MAX_SIZE_VIOL: this_cpu_inc(nic->drv_stats->tx_max_size_exceeded); break; case CQ_TX_ERROP_IMM_SIZE_OFLOW: this_cpu_inc(nic->drv_stats->tx_imm_size_oflow); break; case CQ_TX_ERROP_DATA_SEQUENCE_ERR: this_cpu_inc(nic->drv_stats->tx_data_seq_err); break; case CQ_TX_ERROP_MEM_SEQUENCE_ERR: this_cpu_inc(nic->drv_stats->tx_mem_seq_err); break; case CQ_TX_ERROP_LOCK_VIOL: this_cpu_inc(nic->drv_stats->tx_lock_viol); break; case CQ_TX_ERROP_DATA_FAULT: this_cpu_inc(nic->drv_stats->tx_data_fault); break; case CQ_TX_ERROP_TSTMP_CONFLICT: this_cpu_inc(nic->drv_stats->tx_tstmp_conflict); break; case CQ_TX_ERROP_TSTMP_TIMEOUT: this_cpu_inc(nic->drv_stats->tx_tstmp_timeout); break; case CQ_TX_ERROP_MEM_FAULT: this_cpu_inc(nic->drv_stats->tx_mem_fault); break; case CQ_TX_ERROP_CK_OVERLAP: this_cpu_inc(nic->drv_stats->tx_csum_overlap); break; case CQ_TX_ERROP_CK_OFLOW: this_cpu_inc(nic->drv_stats->tx_csum_overflow); break; } return 1; }