/* * Copyright (c) 2014-2015 MediaTek Inc. * Author: Tianping.Fang * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For KPOC alarm */ #include #include #include #include #include #include #include #define RTC_BBPU 0x0000 #define RTC_BBPU_KEY 0x4300 #define RTC_BBPU_PWREN BIT(0) #define RTC_BBPU_CLR BIT(1) #define RTC_BBPU_RESET_AL BIT(3) #define RTC_BBPU_RELOAD BIT(5) #define RTC_BBPU_CBUSY BIT(6) #define RTC_WRTGR_MT6358 0x3a #define RTC_WRTGR_MT6397 0x3c #define RTC_IRQ_STA 0x0002 #define RTC_IRQ_STA_AL BIT(0) #define RTC_IRQ_STA_LP BIT(3) #define RTC_IRQ_EN 0x0004 #define RTC_IRQ_EN_AL BIT(0) #define RTC_IRQ_EN_ONESHOT BIT(2) #define RTC_IRQ_EN_LP BIT(3) #define RTC_IRQ_EN_ONESHOT_AL (RTC_IRQ_EN_ONESHOT | RTC_IRQ_EN_AL) #define RTC_TC_SEC_MASK 0x3f #define RTC_TC_MIN_MASK 0x3f #define RTC_TC_HOU_MASK 0x1f #define RTC_TC_DOM_MASK 0x1f #define RTC_TC_DOW_MASK 0x7 #define RTC_TC_MTH_MASK 0xf #define RTC_TC_YEA_MASK 0x7f #define RTC_AL_SEC_MASK 0x003f #define RTC_AL_MIN_MASK 0x003f #define RTC_AL_HOU_MASK 0x001f #define RTC_AL_DOM_MASK 0x001f #define RTC_AL_DOW_MASK 0x0007 #define RTC_AL_MTH_MASK 0x000f #define RTC_AL_YEA_MASK 0x007f #define RTC_AL_MASK 0x0008 #define RTC_AL_MASK_DOW BIT(4) #define RTC_TC_SEC 0x000a /* Min, Hour, Dom... register offset to RTC_TC_SEC */ #define RTC_OFFSET_SEC 0 #define RTC_OFFSET_MIN 1 #define RTC_OFFSET_HOUR 2 #define RTC_OFFSET_DOM 3 #define RTC_OFFSET_DOW 4 #define RTC_OFFSET_MTH 5 #define RTC_OFFSET_YEAR 6 #define RTC_OFFSET_COUNT 7 #define RTC_AL_SEC 0x0018 #define RTC_BBPU_AUTO_PDN_SEL BIT(6) #define RTC_BBPU_2SEC_EN BIT(8) #define RTC_AL_HOU 0x001c #define RTC_AL_MTH 0x0022 #define RTC_AL_YEA 0x0024 #define RTC_K_EOSC_RSV_0 BIT(8) #define RTC_K_EOSC_RSV_1 BIT(9) #define RTC_K_EOSC_RSV_2 BIT(10) #define RTC_OSC32CON 0x0026 #define RTC_OSC32CON_UNLOCK1 0x1a57 #define RTC_OSC32CON_UNLOCK2 0x2b68 #define RTC_EMBCK_SRC_SEL BIT(8) #define RTC_POWERKEY1 0x0028 #define RTC_POWERKEY2 0x002a #define RTC_PDN1 0x002c #define RTC_PDN1_PWRON_TIME BIT(7) #define RTC_PDN2 0x002e #define RTC_PDN2_PWRON_ALARM BIT(4) #define RTC_PDN2_PWRON_LOGO BIT(15) #define RTC_SPAR0 0x0030 #define RTC_SPAR1 0x0032 #define RTC_PROT 0x0034 #define RTC_CON 0x003c #define RTC_SPAR0_BATT_REMOVAL BIT(15) #define RTC_MIN_YEAR 1968 #define RTC_BASE_YEAR 1900 #define RTC_NUM_YEARS 128 #define RTC_MIN_YEAR_OFFSET (RTC_MIN_YEAR - RTC_BASE_YEAR) #define SPARE_REG_WIDTH 1 #define RTC_PWRON_YEA RTC_PDN2 #define RTC_PWRON_YEA_MASK 0x7f00 #define RTC_PWRON_YEA_SHIFT 8 #define RTC_PWRON_MTH RTC_PDN2 #define RTC_PWRON_MTH_MASK 0x000f #define RTC_PWRON_MTH_SHIFT 0 #define RTC_PWRON_SEC RTC_SPAR0 #define RTC_PWRON_SEC_MASK 0x003f #define RTC_PWRON_SEC_SHIFT 0 #define RTC_PWRON_MIN RTC_SPAR1 #define RTC_PWRON_MIN_MASK 0x003f #define RTC_PWRON_MIN_SHIFT 0 #define RTC_PWRON_HOU RTC_SPAR1 #define RTC_PWRON_HOU_MASK 0x07c0 #define RTC_PWRON_HOU_SHIFT 6 #define RTC_PWRON_DOM RTC_SPAR1 #define RTC_PWRON_DOM_MASK 0xf800 #define RTC_PWRON_DOM_SHIFT 11 #define RTC_POFF_ALM_SET _IOW('p', 0x15, struct rtc_time) /* Set alarm time */ enum mtk_rtc_spare_enum { SPARE_AL_HOU, SPARE_AL_MTH, SPARE_SPAR0, SPARE_KPOC, SPARE_RG_MAX, }; enum rtc_eosc_cali_td { EOSC_CALI_TD_01_SEC = 0x3, EOSC_CALI_TD_02_SEC, EOSC_CALI_TD_04_SEC, EOSC_CALI_TD_08_SEC, EOSC_CALI_TD_16_SEC, }; enum cali_field_enum { RTC_EOSC32_CK_PDN, EOSC_CALI_TD, CALI_FILED_MAX }; enum eosc_cali_version { EOSC_CALI_NONE, EOSC_CALI_MT6357_SERIES, EOSC_CALI_MT6358_SERIES, EOSC_CALI_MT6359_SERIES, }; enum boot_mode_t { NORMAL_BOOT = 0, META_BOOT = 1, RECOVERY_BOOT = 2, SW_REBOOT = 3, FACTORY_BOOT = 4, ADVMETA_BOOT = 5, ATE_FACTORY_BOOT = 6, ALARM_BOOT = 7, KERNEL_POWER_OFF_CHARGING_BOOT = 8, LOW_POWER_OFF_CHARGING_BOOT = 9, DONGLE_BOOT = 10, UNKNOWN_BOOT }; enum rtc_reg_set { RTC_REG, RTC_MASK, RTC_SHIFT }; struct mtk_rtc_compatible { u32 wrtgr_addr; const struct reg_field *spare_reg_fields; const struct reg_field *cali_reg_fields; u32 eosc_cali_version; }; static u16 rtc_pwron_reg[RTC_OFFSET_COUNT][3] = { {RTC_PWRON_SEC, RTC_PWRON_SEC_MASK, RTC_PWRON_SEC_SHIFT}, {RTC_PWRON_MIN, RTC_PWRON_MIN_MASK, RTC_PWRON_MIN_SHIFT}, {RTC_PWRON_HOU, RTC_PWRON_HOU_MASK, RTC_PWRON_HOU_SHIFT}, {RTC_PWRON_DOM, RTC_PWRON_DOM_MASK, RTC_PWRON_DOM_SHIFT}, {0, 0, 0}, {RTC_PWRON_MTH, RTC_PWRON_MTH_MASK, RTC_PWRON_MTH_SHIFT}, {RTC_PWRON_YEA, RTC_PWRON_YEA_MASK, RTC_PWRON_YEA_SHIFT}, }; struct mt6397_rtc { struct device *dev; struct rtc_device *rtc_dev; struct mutex lock; struct regmap *regmap; int irq; u32 addr_base; struct work_struct work; struct completion comp; const struct mtk_rtc_compatible *dev_comp; struct regmap_field *spare[SPARE_RG_MAX]; struct regmap_field *cali[CALI_FILED_MAX]; bool cali_is_supported; #ifdef CONFIG_PM struct notifier_block pm_nb; #endif }; struct tag_bootmode { u32 size; u32 tag; u32 bootmode; u32 boottype; }; static const struct reg_field mt6357_cali_reg_fields[CALI_FILED_MAX] = { [RTC_EOSC32_CK_PDN] = REG_FIELD(MT6357_SCK_TOP_CKPDN_CON0, 2, 2), [EOSC_CALI_TD] = REG_FIELD(MT6357_EOSC_CALI_CON0, 5, 7), }; static const struct reg_field mt6358_cali_reg_fields[CALI_FILED_MAX] = { [RTC_EOSC32_CK_PDN] = REG_FIELD(MT6358_SCK_TOP_CKPDN_CON0, 2, 2), [EOSC_CALI_TD] = REG_FIELD(MT6358_EOSC_CALI_CON0, 5, 7), }; static const struct reg_field mt6359_cali_reg_fields[CALI_FILED_MAX] = { [RTC_EOSC32_CK_PDN] = REG_FIELD(MT6359_SCK_TOP_CKPDN_CON0, 2, 2), [EOSC_CALI_TD] = REG_FIELD(MT6359_EOSC_CALI_CON0, 5, 7), }; static const struct reg_field mtk_rtc_spare_reg_fields[SPARE_RG_MAX] = { [SPARE_AL_HOU] = REG_FIELD(RTC_AL_HOU, 8, 15), [SPARE_AL_MTH] = REG_FIELD(RTC_AL_MTH, 8, 15), [SPARE_SPAR0] = REG_FIELD(RTC_SPAR0, 0, 7), [SPARE_KPOC] = REG_FIELD(RTC_PDN1, 14, 14), }; static const struct mtk_rtc_compatible mt6359_rtc_compat = { .wrtgr_addr = RTC_WRTGR_MT6358, .spare_reg_fields = mtk_rtc_spare_reg_fields, .cali_reg_fields = mt6359_cali_reg_fields, .eosc_cali_version = EOSC_CALI_MT6359_SERIES, }; static const struct mtk_rtc_compatible mt6358_rtc_compat = { .wrtgr_addr = RTC_WRTGR_MT6358, .spare_reg_fields = mtk_rtc_spare_reg_fields, .cali_reg_fields = mt6358_cali_reg_fields, .eosc_cali_version = EOSC_CALI_MT6358_SERIES, }; static const struct mtk_rtc_compatible mt6357_rtc_compat = { .wrtgr_addr = RTC_WRTGR_MT6358, .spare_reg_fields = mtk_rtc_spare_reg_fields, .cali_reg_fields = mt6357_cali_reg_fields, .eosc_cali_version = EOSC_CALI_MT6357_SERIES, }; static const struct mtk_rtc_compatible mt6397_rtc_compat = { .wrtgr_addr = RTC_WRTGR_MT6397, .eosc_cali_version = EOSC_CALI_NONE, }; static const struct of_device_id mt6397_rtc_of_match[] = { { .compatible = "mediatek,mt6359-rtc", .data = (void *)&mt6359_rtc_compat, }, { .compatible = "mediatek,mt6358-rtc", .data = (void *)&mt6358_rtc_compat, }, { .compatible = "mediatek,mt6357-rtc", .data = (void *)&mt6357_rtc_compat, }, { .compatible = "mediatek,mt6397-rtc", .data = (void *)&mt6397_rtc_compat, }, {} }; MODULE_DEVICE_TABLE(of, mt6397_rtc_of_match); static int rtc_eosc_cali_td; module_param(rtc_eosc_cali_td, int, 0644); static int rtc_show_time; static int rtc_show_alarm = 1; static int alarm1m15s; static u32 bootmode; static struct wakeup_source *mt6397_rtc_suspend_lock; /*for KPOC alarm*/ static bool rtc_pm_notifier_registered; static bool kpoc_alarm; static unsigned long rtc_pm_status; module_param(rtc_show_time, int, 0644); module_param(rtc_show_alarm, int, 0644); static int rtc_alarm_enabled = 1; static ssize_t mtk_rtc_debug_write(struct file *file, const char __user *buf, size_t size, loff_t *ppos) { char lbuf[128]; char option[16]; int setting; ssize_t res; struct mt6397_rtc *rtc = file->private_data; if (*ppos != 0 || size >= sizeof(lbuf) || size == 0) return -EINVAL; res = simple_write_to_buffer(lbuf, sizeof(lbuf) - 1, ppos, buf, size); if (res <= 0) return -EFAULT; lbuf[size] = '\0'; if (sscanf(lbuf, "%15s %d", option, &setting) != 2) { pr_notice("Invalid para %s\n", lbuf); return -EFAULT; } if (!strncmp(option, "alarm", strlen("alarm"))) { pr_notice("alarm = %d\n", setting); rtc_alarm_enabled = setting; if (rtc_alarm_enabled) enable_irq(rtc->irq); else disable_irq_nosync(rtc->irq); } return size; } static int mtk_rtc_debug_show(struct seq_file *s, void *unused) { seq_printf(s, "rtc alarm %s\n", rtc_alarm_enabled ? "enabled" : "disabled"); return 0; } static int mtk_rtc_debug_open(struct inode *inode, struct file *file) { return single_open(file, mtk_rtc_debug_show, NULL); } static const struct file_operations mtk_rtc_debug_ops = { .open = mtk_rtc_debug_open, .read = seq_read, .write = mtk_rtc_debug_write, .llseek = seq_lseek, .release = single_release, }; static int mtk_rtc_write_trigger(struct mt6397_rtc *rtc) { unsigned long timeout = jiffies + HZ; int ret; u32 data = 0; ret = regmap_write(rtc->regmap, rtc->addr_base + rtc->dev_comp->wrtgr_addr, 1); if (ret < 0) return ret; while (1) { ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_BBPU, &data); if (ret < 0) break; if (!(data & RTC_BBPU_CBUSY)) break; if (time_after(jiffies, timeout)) { ret = -ETIMEDOUT; break; } cpu_relax(); } return ret; } static int rtc_nvram_read(void *priv, unsigned int offset, void *val, size_t bytes) { struct mt6397_rtc *rtc = dev_get_drvdata(priv); unsigned int ival; int ret; u8 *buf = val; mutex_lock(&rtc->lock); for (; bytes; bytes--) { ret = regmap_field_read(rtc->spare[offset++], &ival); if (ret) goto out; *buf++ = (u8)ival; } out: mutex_unlock(&rtc->lock); return ret; } static int rtc_nvram_write(void *priv, unsigned int offset, void *val, size_t bytes) { struct mt6397_rtc *rtc = dev_get_drvdata(priv); unsigned int ival; int ret; u8 *buf = val; mutex_lock(&rtc->lock); for (; bytes; bytes--) { ival = *buf++; ret = regmap_field_write(rtc->spare[offset++], ival); if (ret) goto out; } mtk_rtc_write_trigger(rtc); out: mutex_unlock(&rtc->lock); return ret; } #ifdef CONFIG_PM #define PM_DUMMY 0xFFFF static int rtc_pm_event(struct notifier_block *notifier, unsigned long pm_event, void *unused) { struct mt6397_rtc *rtc = container_of(notifier, struct mt6397_rtc, pm_nb); pr_notice("%s = %lu\n", __func__, pm_event); switch (pm_event) { case PM_SUSPEND_PREPARE: rtc_pm_status = PM_SUSPEND_PREPARE; return NOTIFY_DONE; case PM_POST_SUSPEND: rtc_pm_status = PM_POST_SUSPEND; break; default: rtc_pm_status = PM_DUMMY; break; } if (kpoc_alarm) { pr_notice("%s trigger reboot\n", __func__); complete(&rtc->comp); kpoc_alarm = false; } return NOTIFY_DONE; } #endif /* CONFIG_PM */ static void rtc_mark_kpoc(struct mt6397_rtc *rtc) { pr_notice("%s\n", __func__); mutex_lock(&rtc->lock); regmap_field_write(rtc->spare[SPARE_KPOC], 1); mtk_rtc_write_trigger(rtc); mutex_unlock(&rtc->lock); } static void mtk_rtc_work_queue(struct work_struct *work) { struct mt6397_rtc *rtc = container_of(work, struct mt6397_rtc, work); unsigned long ret; unsigned int msecs; ret = wait_for_completion_timeout(&rtc->comp, msecs_to_jiffies(30000)); if (!ret) { pr_notice("%s timeout\n", __func__); BUG_ON(1); } else { msecs = jiffies_to_msecs(ret); pr_notice("%s timeleft= %d\n", __func__, msecs); rtc_mark_kpoc(rtc); kernel_restart("kpoc"); } } static void mtk_rtc_reboot(struct mt6397_rtc *rtc) { __pm_stay_awake(mt6397_rtc_suspend_lock); init_completion(&rtc->comp); schedule_work_on(cpumask_first(cpu_online_mask), &rtc->work); if (!rtc_pm_notifier_registered) goto reboot; if (rtc_pm_status != PM_SUSPEND_PREPARE) goto reboot; kpoc_alarm = true; pr_notice("%s:wait\n", __func__); return; reboot: pr_notice("%s:trigger\n", __func__); complete(&rtc->comp); } #ifndef USER_BUILD_KERNEL void mtk_rtc_lp_exception(struct mt6397_rtc *rtc) { u32 bbpu = 0, irqsta = 0, irqen = 0, osc32 = 0; u32 pwrkey1 = 0, pwrkey2 = 0, prot = 0, con = 0, sec1 = 0, sec2 = 0; regmap_read(rtc->regmap, rtc->addr_base + RTC_BBPU, &bbpu); regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_STA, &irqsta); regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, &irqen); regmap_read(rtc->regmap, rtc->addr_base + RTC_OSC32CON, &osc32); regmap_read(rtc->regmap, rtc->addr_base + RTC_POWERKEY1, &pwrkey1); regmap_read(rtc->regmap, rtc->addr_base + RTC_POWERKEY2, &pwrkey2); regmap_read(rtc->regmap, rtc->addr_base + RTC_PROT, &prot); regmap_read(rtc->regmap, rtc->addr_base + RTC_CON, &con); regmap_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, &sec1); mdelay(2000); regmap_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, &sec2); dev_emerg(rtc->dev, "!!! 32K WAS STOPPED !!!\n" "RTC_BBPU = 0x%x\n" "RTC_IRQ_STA = 0x%x\n" "RTC_IRQ_EN = 0x%x\n" "RTC_OSC32CON = 0x%x\n" "RTC_POWERKEY1 = 0x%x\n" "RTC_POWERKEY2 = 0x%x\n" "RTC_PROT = 0x%x\n" "RTC_CON = 0x%x\n" "RTC_TC_SEC = %02d\n" "RTC_TC_SEC = %02d\n", bbpu, irqsta, irqen, osc32, pwrkey1, pwrkey2, prot, con, sec1, sec2); } #endif static bool mtk_rtc_is_alarm_irq(struct mt6397_rtc *rtc) { u32 irqsta = 0, bbpu; int ret; /* read clear */ ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_STA, &irqsta); if ((ret == 0) && (irqsta & RTC_IRQ_STA_AL)) { bbpu = RTC_BBPU_KEY | RTC_BBPU_PWREN; ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_BBPU, bbpu); if (ret < 0) dev_err(rtc->dev, "%s error\n", __func__); mtk_rtc_write_trigger(rtc); return true; } #ifndef USER_BUILD_KERNEL if ((ret == 0) && (irqsta & RTC_IRQ_STA_LP)) mtk_rtc_lp_exception(rtc); #endif return false; } static void mtk_rtc_update_pwron_alarm_flag(struct mt6397_rtc *rtc) { int ret; dev_notice(rtc->dev, "%s\n", __func__); ret = regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_PDN1, RTC_PDN1_PWRON_TIME, 0); if (ret < 0) goto exit; ret = regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_PDN2, RTC_PDN2_PWRON_ALARM, RTC_PDN2_PWRON_ALARM); if (ret < 0) goto exit; mtk_rtc_write_trigger(rtc); return; exit: dev_err(rtc->dev, "%s error\n", __func__); } static void mtk_rtc_reset_bbpu_alarm_status(struct mt6397_rtc *rtc) { u32 bbpu; int ret; if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES || rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6358_SERIES) return; bbpu = RTC_BBPU_KEY | RTC_BBPU_PWREN | RTC_BBPU_RESET_AL; ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_BBPU, bbpu); if (ret < 0) goto exit; mtk_rtc_write_trigger(rtc); return; exit: dev_err(rtc->dev, "%s error\n", __func__); } static int mtk_rtc_restore_alarm(struct mt6397_rtc *rtc, struct rtc_time *tm) { int ret; u16 data[RTC_OFFSET_COUNT] = { 0 }; ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC, data, RTC_OFFSET_COUNT); if (ret < 0) goto exit; data[RTC_OFFSET_SEC] = ((data[RTC_OFFSET_SEC] & ~(RTC_AL_SEC_MASK)) | (tm->tm_sec & RTC_AL_SEC_MASK)); data[RTC_OFFSET_MIN] = ((data[RTC_OFFSET_MIN] & ~(RTC_AL_MIN_MASK)) | (tm->tm_min & RTC_AL_MIN_MASK)); data[RTC_OFFSET_HOUR] = ((data[RTC_OFFSET_HOUR] & ~(RTC_AL_HOU_MASK)) | (tm->tm_hour & RTC_AL_HOU_MASK)); data[RTC_OFFSET_DOM] = ((data[RTC_OFFSET_DOM] & ~(RTC_AL_DOM_MASK)) | (tm->tm_mday & RTC_AL_DOM_MASK)); data[RTC_OFFSET_MTH] = ((data[RTC_OFFSET_MTH] & ~(RTC_AL_MTH_MASK)) | (tm->tm_mon & RTC_AL_MTH_MASK)); data[RTC_OFFSET_YEAR] = ((data[RTC_OFFSET_YEAR] & ~(RTC_AL_YEA_MASK)) | (tm->tm_year & RTC_AL_YEA_MASK)); dev_notice(rtc->dev, "restore al time = %04d/%02d/%02d %02d:%02d:%02d\n", tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); ret = regmap_bulk_write(rtc->regmap, rtc->addr_base + RTC_AL_SEC, data, RTC_OFFSET_COUNT); if (ret < 0) goto exit; ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_AL_MASK, RTC_AL_MASK_DOW); if (ret < 0) goto exit; ret = regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, RTC_IRQ_EN_ONESHOT_AL, RTC_IRQ_EN_ONESHOT_AL); if (ret < 0) goto exit; mtk_rtc_write_trigger(rtc); return ret; exit: dev_err(rtc->dev, "%s error\n", __func__); return ret; } bool mtk_rtc_is_pwron_alarm(struct mt6397_rtc *rtc, struct rtc_time *nowtm, struct rtc_time *tm) { u32 pdn1 = 0, spar1 = 0, pdn2 = 0, spar0 = 0; int ret, sec = 0; u16 data[RTC_OFFSET_COUNT] = { 0 }; ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_PDN1, &pdn1); if (ret < 0) goto exit; dev_notice(rtc->dev, "pdn1 = 0x%x\n", pdn1); if (pdn1 & RTC_PDN1_PWRON_TIME) { /* power-on time is available */ /*get current rtc time*/ do { ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, data, RTC_OFFSET_COUNT); if (ret < 0) goto exit; nowtm->tm_sec = data[RTC_OFFSET_SEC] & RTC_TC_SEC_MASK; nowtm->tm_min = data[RTC_OFFSET_MIN] & RTC_TC_MIN_MASK; nowtm->tm_hour = data[RTC_OFFSET_HOUR] & RTC_TC_HOU_MASK; nowtm->tm_mday = data[RTC_OFFSET_DOM] & RTC_TC_DOM_MASK; nowtm->tm_mon = data[RTC_OFFSET_MTH] & RTC_TC_MTH_MASK; nowtm->tm_year = data[RTC_OFFSET_YEAR] & RTC_TC_YEA_MASK; ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, &sec); if (ret < 0) goto exit; sec &= RTC_TC_SEC_MASK; } while (sec < nowtm->tm_sec); dev_notice(rtc->dev, "get now time = %04d/%02d/%02d %02d:%02d:%02d\n", nowtm->tm_year + RTC_MIN_YEAR, nowtm->tm_mon, nowtm->tm_mday, nowtm->tm_hour, nowtm->tm_min, nowtm->tm_sec); /*get power on time from SPARE */ ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_SPAR0, &spar0); if (ret < 0) goto exit; ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_SPAR1, &spar1); if (ret < 0) goto exit; ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_PDN2, &pdn2); if (ret < 0) goto exit; dev_notice(rtc->dev, "spar0=0x%x, spar1=0x%x, pdn2=0x%x\n", spar0, spar1, pdn2); tm->tm_sec = (spar0 & RTC_PWRON_SEC_MASK) >> RTC_PWRON_SEC_SHIFT; tm->tm_min = (spar1 & RTC_PWRON_MIN_MASK) >> RTC_PWRON_MIN_SHIFT; tm->tm_hour = (spar1 & RTC_PWRON_HOU_MASK) >> RTC_PWRON_HOU_SHIFT; tm->tm_mday = (spar1 & RTC_PWRON_DOM_MASK) >> RTC_PWRON_DOM_SHIFT; tm->tm_mon = (pdn2 & RTC_PWRON_MTH_MASK) >> RTC_PWRON_MTH_SHIFT; tm->tm_year = (pdn2 & RTC_PWRON_YEA_MASK) >> RTC_PWRON_YEA_SHIFT; dev_notice(rtc->dev, "get pwron time = %04d/%02d/%02d %02d:%02d:%02d\n", tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); return true; } return false; exit: dev_err(rtc->dev, "%s error\n", __func__); return false; } static irqreturn_t mtk_rtc_irq_handler_thread(int irq, void *data) { struct mt6397_rtc *rtc = data; bool pwron_alm = false, isAlarmIrq = false, pwron_alarm = false; struct rtc_time nowtm, tm; dev_notice(rtc->dev, "%s\n", __func__); mutex_lock(&rtc->lock); isAlarmIrq = mtk_rtc_is_alarm_irq(rtc); if (!isAlarmIrq) { mutex_unlock(&rtc->lock); return IRQ_HANDLED; } mtk_rtc_reset_bbpu_alarm_status(rtc); pwron_alarm = mtk_rtc_is_pwron_alarm(rtc, &nowtm, &tm); nowtm.tm_year += RTC_MIN_YEAR; tm.tm_year += RTC_MIN_YEAR; if (pwron_alarm) { time64_t now_time, time; now_time = mktime(nowtm.tm_year, nowtm.tm_mon, nowtm.tm_mday, nowtm.tm_hour, nowtm.tm_min, nowtm.tm_sec); if (now_time == -1) { mutex_unlock(&rtc->lock); goto out; } time = mktime(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); if (time == -1) { mutex_unlock(&rtc->lock); goto out; } /* power on */ if (now_time >= time - 1 && now_time <= time + 4) { if (bootmode == KERNEL_POWER_OFF_CHARGING_BOOT || bootmode == LOW_POWER_OFF_CHARGING_BOOT) { mtk_rtc_reboot(rtc); mutex_unlock(&rtc->lock); disable_irq_nosync(rtc->irq); goto out; } else { mtk_rtc_update_pwron_alarm_flag(rtc); pwron_alm = true; } } else if (now_time < time) { /* set power-on alarm */ time -= 1; rtc_time64_to_tm(time, &tm); tm.tm_year -= RTC_MIN_YEAR_OFFSET; tm.tm_mon += 1; mtk_rtc_restore_alarm(rtc, &tm); } } mutex_unlock(&rtc->lock); out: if (rtc->rtc_dev != NULL) rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF); if (rtc_show_alarm) dev_notice(rtc->dev, "%s time is up\n", pwron_alm ? "power-on" : "alarm"); return IRQ_NONE; } static int __mtk_rtc_read_time(struct mt6397_rtc *rtc, struct rtc_time *tm, int *sec) { int ret; u16 data[RTC_OFFSET_COUNT] = { 0 }; mutex_lock(&rtc->lock); ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, data, RTC_OFFSET_COUNT); if (ret < 0) goto exit; tm->tm_sec = data[RTC_OFFSET_SEC] & RTC_TC_SEC_MASK; tm->tm_min = data[RTC_OFFSET_MIN] & RTC_TC_MIN_MASK; tm->tm_hour = data[RTC_OFFSET_HOUR] & RTC_TC_HOU_MASK; tm->tm_mday = data[RTC_OFFSET_DOM] & RTC_TC_DOM_MASK; tm->tm_mon = data[RTC_OFFSET_MTH] & RTC_TC_MTH_MASK; tm->tm_year = data[RTC_OFFSET_YEAR] & RTC_TC_YEA_MASK; ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, sec); *sec &= RTC_TC_SEC_MASK; exit: mutex_unlock(&rtc->lock); return ret; } static void mtk_rtc_set_pwron_time(struct mt6397_rtc *rtc, struct rtc_time *tm) { u32 data[RTC_OFFSET_COUNT]; int ret, i; dev_notice(rtc->dev, "%s\n", __func__); data[RTC_OFFSET_SEC] = ((tm->tm_sec << RTC_PWRON_SEC_SHIFT) & RTC_PWRON_SEC_MASK); data[RTC_OFFSET_MIN] = ((tm->tm_min << RTC_PWRON_MIN_SHIFT) & RTC_PWRON_MIN_MASK); data[RTC_OFFSET_HOUR] = ((tm->tm_hour << RTC_PWRON_HOU_SHIFT) & RTC_PWRON_HOU_MASK); data[RTC_OFFSET_DOM] = ((tm->tm_mday << RTC_PWRON_DOM_SHIFT) & RTC_PWRON_DOM_MASK); data[RTC_OFFSET_MTH] = ((tm->tm_mon << RTC_PWRON_MTH_SHIFT) & RTC_PWRON_MTH_MASK); data[RTC_OFFSET_YEAR] = ((tm->tm_year << RTC_PWRON_YEA_SHIFT) & RTC_PWRON_YEA_MASK); for (i = RTC_OFFSET_SEC; i < RTC_OFFSET_COUNT; i++) { if (i == RTC_OFFSET_DOW) continue; ret = regmap_update_bits(rtc->regmap, rtc->addr_base + rtc_pwron_reg[i][RTC_REG], rtc_pwron_reg[i][RTC_MASK], data[i]); if (ret < 0) goto exit; mtk_rtc_write_trigger(rtc); } return; exit: dev_err(rtc->dev, "%s error\n", __func__); } void mtk_rtc_save_pwron_time(struct mt6397_rtc *rtc, bool enable, struct rtc_time *tm, bool logo) { u32 pdn1 = 0, pdn2 = 0; int ret; dev_notice(rtc->dev, "%s\n", __func__); /* set power on time */ mtk_rtc_set_pwron_time(rtc, tm); /* update power on alarm related flags */ if (enable) pdn1 = RTC_PDN1_PWRON_TIME; ret = regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_PDN1, RTC_PDN1_PWRON_TIME, pdn1); if (ret < 0) goto exit; if (logo) pdn2 = RTC_PDN2_PWRON_LOGO; ret = regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_PDN2, RTC_PDN2_PWRON_LOGO, pdn2); if (ret < 0) goto exit; mtk_rtc_write_trigger(rtc); return; exit: dev_err(rtc->dev, "%s error\n", __func__); } static int mtk_rtc_read_time(struct device *dev, struct rtc_time *tm) { time64_t time; struct mt6397_rtc *rtc = dev_get_drvdata(dev); int days, sec, ret; unsigned long long timeout = sched_clock() + 500000000; do { ret = __mtk_rtc_read_time(rtc, tm, &sec); if (ret < 0) goto exit; if (sched_clock() > timeout) { pr_notice("%s, time out\n", __func__); break; } } while (sec < tm->tm_sec); /* HW register use 7 bits to store year data, minus * RTC_MIN_YEAR_OFFSET before write year data to register, and plus * RTC_MIN_YEAR_OFFSET back after read year from register */ tm->tm_year += RTC_MIN_YEAR_OFFSET; /* HW register start mon from one, but tm_mon start from zero. */ tm->tm_mon--; time = rtc_tm_to_time64(tm); /* rtc_tm_to_time64 covert Gregorian date to seconds since * 01-01-1970 00:00:00, and this date is Thursday. */ days = div_s64(time, 86400); tm->tm_wday = (days + 4) % 7; if (rtc_show_time) { dev_notice(rtc->dev, "read tc time = %04d/%02d/%02d (%d) %02d:%02d:%02d\n", tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1, tm->tm_mday, tm->tm_wday, tm->tm_hour, tm->tm_min, tm->tm_sec); } exit: return ret; } static int mtk_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); int ret; u16 data[RTC_OFFSET_COUNT]; if (tm->tm_year > 195) { dev_err(rtc->dev, "%s: invalid year %04d > 2095\n", __func__, tm->tm_year + RTC_BASE_YEAR); return -EINVAL; } dev_notice(rtc->dev, "set tc time = %04d/%02d/%02d %02d:%02d:%02d\n", tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); tm->tm_year -= RTC_MIN_YEAR_OFFSET; tm->tm_mon++; data[RTC_OFFSET_SEC] = tm->tm_sec; data[RTC_OFFSET_MIN] = tm->tm_min; data[RTC_OFFSET_HOUR] = tm->tm_hour; data[RTC_OFFSET_DOM] = tm->tm_mday; data[RTC_OFFSET_MTH] = tm->tm_mon; data[RTC_OFFSET_YEAR] = tm->tm_year; mutex_lock(&rtc->lock); ret = regmap_bulk_write(rtc->regmap, rtc->addr_base + RTC_TC_SEC, data, RTC_OFFSET_COUNT); if (ret < 0) goto exit; /* Time register write to hardware after call trigger function */ ret = mtk_rtc_write_trigger(rtc); exit: mutex_unlock(&rtc->lock); return ret; } static int mtk_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct rtc_time *tm = &alm->time; struct mt6397_rtc *rtc = dev_get_drvdata(dev); u32 irqen = 0, pdn2 = 0; int ret; u16 data[RTC_OFFSET_COUNT] = { 0 }; mutex_lock(&rtc->lock); ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, &irqen); if (ret < 0) goto err_exit; ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_PDN2, &pdn2); if (ret < 0) goto err_exit; ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC, data, RTC_OFFSET_COUNT); if (ret < 0) goto err_exit; alm->enabled = !!(irqen & RTC_IRQ_EN_AL); alm->pending = !!(pdn2 & RTC_PDN2_PWRON_ALARM); mutex_unlock(&rtc->lock); tm->tm_sec = data[RTC_OFFSET_SEC] & RTC_AL_SEC_MASK; tm->tm_min = data[RTC_OFFSET_MIN] & RTC_AL_MIN_MASK; tm->tm_hour = data[RTC_OFFSET_HOUR] & RTC_AL_HOU_MASK; tm->tm_mday = data[RTC_OFFSET_DOM] & RTC_AL_DOM_MASK; tm->tm_mon = data[RTC_OFFSET_MTH] & RTC_AL_MTH_MASK; tm->tm_year = data[RTC_OFFSET_YEAR] & RTC_AL_YEA_MASK; tm->tm_year += RTC_MIN_YEAR_OFFSET; tm->tm_mon--; dev_notice(rtc->dev, "read al time = %04d/%02d/%02d %02d:%02d:%02d (%d)\n", tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, alm->enabled); return 0; err_exit: mutex_unlock(&rtc->lock); return ret; } static int mtk_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct rtc_time *tm = &alm->time; struct mt6397_rtc *rtc = dev_get_drvdata(dev); int ret; u32 irqsta; ktime_t target; if (tm->tm_year > 195) { dev_err(rtc->dev, "%s: invalid year %04d > 2095\n", __func__, tm->tm_year + RTC_BASE_YEAR); return -EINVAL; } if (alm->enabled == 1) { /* Add one more second to postpone wake time. */ target = rtc_tm_to_ktime(*tm); target = ktime_add_ns(target, NSEC_PER_SEC); *tm = rtc_ktime_to_tm(target); } else if (alm->enabled == 5) { /* Power on system 1 minute earlier */ alarm1m15s = 1; } tm->tm_year -= RTC_MIN_YEAR_OFFSET; tm->tm_mon++; dev_notice(rtc->dev, "set al time = %04d/%02d/%02d %02d:%02d:%02d (%d)\n", tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, alm->enabled); mutex_lock(&rtc->lock); switch (alm->enabled) { case 2: /* enable power-on alarm */ mtk_rtc_save_pwron_time(rtc, true, tm, false); break; case 3: case 5: /* enable power-on alarm with logo */ mtk_rtc_save_pwron_time(rtc, true, tm, true); break; case 4: /* disable power-on alarm */ mtk_rtc_save_pwron_time(rtc, false, tm, false); alarm1m15s = 0; break; default: break; } ret = regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, RTC_IRQ_EN_AL, 0); if (ret < 0) goto exit; ret = regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_PDN2, RTC_PDN2_PWRON_ALARM, 0); if (ret < 0) goto exit; mtk_rtc_write_trigger(rtc); ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_STA, &irqsta); if (ret < 0) goto exit; if (alm->enabled) { ret = mtk_rtc_restore_alarm(rtc, tm); if (ret < 0) goto exit; } else { ret = regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, RTC_IRQ_EN_ONESHOT_AL, 0); if (ret < 0) goto exit; } /* All alarm time register write to hardware after calling * mtk_rtc_write_trigger. This can avoid race condition if alarm * occur happen during writing alarm time register. */ ret = mtk_rtc_write_trigger(rtc); exit: mutex_unlock(&rtc->lock); return ret; } static int mtk_set_power_on(struct device *dev, struct rtc_wkalrm *alm) { int err = 0; struct rtc_time tm; time64_t now, scheduled; err = rtc_valid_tm(&alm->time); if (err != 0) return err; scheduled = rtc_tm_to_time64(&alm->time); err = mtk_rtc_read_time(dev, &tm); if (err != 0) return err; now = rtc_tm_to_time64(&tm); if (scheduled <= now) alm->enabled = 4; else alm->enabled = 3; mtk_rtc_set_alarm(dev, alm); return err; } static int mtk_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) { void __user *uarg = (void __user *) arg; int err = 0; struct rtc_wkalrm alm; switch (cmd) { case RTC_POFF_ALM_SET: if (copy_from_user(&alm.time, uarg, sizeof(alm.time))) return -EFAULT; err = mtk_set_power_on(dev, &alm); break; default: err = -EINVAL; break; } return err; } static const struct rtc_class_ops mtk_rtc_ops = { .ioctl = mtk_rtc_ioctl, .read_time = mtk_rtc_read_time, .set_time = mtk_rtc_set_time, .read_alarm = mtk_rtc_read_alarm, .set_alarm = mtk_rtc_set_alarm, }; #ifdef CONFIG_SEC_PM static int poff_status; static void rtc_reset_check(struct platform_device *pdev) { u32 spar0 = 0; struct mt6397_rtc *rtc = platform_get_drvdata(pdev); regmap_read(rtc->regmap, rtc->addr_base + RTC_SPAR0, &spar0); if (!(spar0 & RTC_SPAR0_BATT_REMOVAL)) { poff_status = 1; pr_info("%s: BATTERY REMOVED\n", __func__); mutex_lock(&rtc->lock); regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_SPAR0, RTC_SPAR0_BATT_REMOVAL, RTC_SPAR0_BATT_REMOVAL); mtk_rtc_write_trigger(rtc); mutex_unlock(&rtc->lock); } } static ssize_t rtc_status_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { int status = poff_status; pr_info("%s: complete power off status(%d)\n", __func__, status); poff_status = 0; return sprintf(buf, "%d\n", status); } static struct kobj_attribute rtc_status_attr = { .attr = { .name = __stringify(rtc_status), .mode = 0444, }, .show = rtc_status_show, }; #endif /* CONFIG_SEC_PM */ static int mtk_rtc_reload(struct mt6397_rtc *rtc) { int ret; u32 bbpu = 0; ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_BBPU, &bbpu); if (ret == 0) { bbpu = bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD; ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_BBPU, bbpu); } if (ret == 0) ret = mtk_rtc_write_trigger(rtc); return ret; } static int rtc_xosc_write(struct mt6397_rtc *rtc, u32 reg) { int ret; ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_OSC32CON, RTC_OSC32CON_UNLOCK1); if (ret == 0) ret = mtk_rtc_write_trigger(rtc); if (ret == 0) ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_OSC32CON, RTC_OSC32CON_UNLOCK2); if (ret == 0) ret = mtk_rtc_write_trigger(rtc); if (ret == 0) ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_OSC32CON, reg); if (ret == 0) ret = mtk_rtc_write_trigger(rtc); return ret; } static void mtk_rtc_disable_2sec_reboot(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); int ret; u32 reg = 0; ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC, ®); if (ret == 0) { reg = (reg & ~RTC_BBPU_2SEC_EN) & ~RTC_BBPU_AUTO_PDN_SEL; ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_AL_SEC, reg); } if (ret == 0) ret = mtk_rtc_write_trigger(rtc); } static void mtk_rtc_enable_k_eosc(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); int ret; u32 td; u32 reg = 0; if (!rtc->cali_is_supported) return; /* Truning on eosc cali mode clock */ regmap_field_write(rtc->cali[RTC_EOSC32_CK_PDN], 0); if (rtc_eosc_cali_td) { dev_notice(dev, "%s: rtc_eosc_cali_td = %d\n", __func__, rtc_eosc_cali_td); switch (rtc_eosc_cali_td) { case 1: td = EOSC_CALI_TD_01_SEC; break; case 2: td = EOSC_CALI_TD_02_SEC; break; case 4: td = EOSC_CALI_TD_04_SEC; break; case 16: td = EOSC_CALI_TD_16_SEC; break; default: td = EOSC_CALI_TD_08_SEC; break; } regmap_field_write(rtc->cali[EOSC_CALI_TD], td); } if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES) { struct reg_field r_field_xo_en32k_man = REG_FIELD(MT6357_DCXO_CW02, 0, 0); struct regmap_field *rm_field_xo_en32k_man = devm_regmap_field_alloc(dev, rtc->regmap, r_field_xo_en32k_man); /*RTC mode will have only OFF mode and FPM */ ret = regmap_field_write(rm_field_xo_en32k_man, 0); devm_regmap_field_free(dev, rm_field_xo_en32k_man); if (ret == 0) ret = mtk_rtc_reload(rtc); /* Enable K EOSC mode for normal power * off and then plug out battery */ if (ret == 0) ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_AL_YEA, ®); if (ret == 0) { reg = ((reg | RTC_K_EOSC_RSV_0) & (~RTC_K_EOSC_RSV_1)) | RTC_K_EOSC_RSV_2; ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_AL_YEA, reg); } if (ret == 0) ret = mtk_rtc_write_trigger(rtc); if (ret == 0) ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_OSC32CON, ®); if (ret == 0) { reg = reg | RTC_EMBCK_SRC_SEL; rtc_xosc_write(rtc, reg); } } } static void mtk_rtc_spar_alarm_clear_wait(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); int ret; u32 reg = 0; unsigned long long timeout = sched_clock() + 500000000; do { ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_BBPU, ®); if (ret == 0 && (reg & RTC_BBPU_CLR) == 0) break; else if (sched_clock() > timeout) { ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_BBPU, ®); pr_notice("%s, spar/alarm clear time out, %x,\n", __func__, reg); break; } } while (1); } static int rtc_lpsd_restore_al_mask(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); int ret; u32 reg = 0; pr_notice("%s\n", __func__); ret = mtk_rtc_reload(rtc); if (ret == 0) ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_AL_MASK, ®); if (ret == 0) { pr_notice("1st RTC_AL_MASK = 0x%x\n", reg); /* mask DOW */ ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_AL_MASK, RTC_AL_MASK_DOW); } if (ret == 0) ret = mtk_rtc_write_trigger(rtc); if (ret == 0) ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_AL_MASK, ®); if (ret == 0) pr_notice("2nd RTC_AL_MASK = 0x%x\n", reg); return ret; } static void mtk_rtc_lpsd(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); int ret; u32 reg; pr_notice("clear lpsd solution\n"); reg = RTC_BBPU_KEY | RTC_BBPU_CLR | RTC_BBPU_PWREN; ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_BBPU, reg); if (ret == 0) ret = mtk_rtc_write_trigger(rtc); mtk_rtc_spar_alarm_clear_wait(dev); ret = mtk_rtc_reload(rtc); if (ret == 0) ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_AL_MASK, ®); if (ret == 0) { pr_notice("RTC_AL_MASK = 0x%x\n", reg); ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, ®); } if (ret == 0) pr_notice("RTC_IRQ_EN = 0x%x\n", reg); } static void mtk_rtc_shutdown(struct platform_device *pdev) { struct mt6397_rtc *rtc = dev_get_drvdata(&pdev->dev); struct rtc_time rtc_time_now = { 0 }; struct rtc_time rtc_time_alarm = { 0 }; ktime_t ktime_now; ktime_t ktime_alarm; bool is_pwron_alarm; if (alarm1m15s == 1) { is_pwron_alarm = mtk_rtc_is_pwron_alarm(rtc, &rtc_time_now, &rtc_time_alarm); if (is_pwron_alarm) { rtc_time_now.tm_year += RTC_MIN_YEAR_OFFSET; rtc_time_now.tm_mon--; rtc_time_alarm.tm_year += RTC_MIN_YEAR_OFFSET; rtc_time_alarm.tm_mon--; pr_notice("now = %04d/%02d/%02d %02d:%02d:%02d\n", rtc_time_now.tm_year + 1900, rtc_time_now.tm_mon + 1, rtc_time_now.tm_mday, rtc_time_now.tm_hour, rtc_time_now.tm_min, rtc_time_now.tm_sec); pr_notice("alarm = %04d/%02d/%02d %02d:%02d:%02d\n", rtc_time_alarm.tm_year + 1900, rtc_time_alarm.tm_mon + 1, rtc_time_alarm.tm_mday, rtc_time_alarm.tm_hour, rtc_time_alarm.tm_min, rtc_time_alarm.tm_sec); ktime_now = rtc_tm_to_ktime(rtc_time_now); ktime_alarm = rtc_tm_to_ktime(rtc_time_alarm); if (ktime_after(ktime_alarm, ktime_now)) { /* alarm has not happened */ ktime_alarm = ktime_sub_ms(ktime_alarm, MSEC_PER_SEC * 60); if (ktime_after(ktime_alarm, ktime_now)) pr_notice("Alarm will happen after 1 minute\n"); else { ktime_alarm = ktime_add_ms(ktime_now, MSEC_PER_SEC * 15); pr_notice("Alarm will happen in 15 seconds\n"); } rtc_time_alarm = rtc_ktime_to_tm(ktime_alarm); pr_notice("new alarm = %04d/%02d/%02d %02d:%02d:%02d\n", rtc_time_alarm.tm_year + 1900, rtc_time_alarm.tm_mon + 1, rtc_time_alarm.tm_mday, rtc_time_alarm.tm_hour, rtc_time_alarm.tm_min, rtc_time_alarm.tm_sec); rtc_time_alarm.tm_year -= RTC_MIN_YEAR_OFFSET; rtc_time_alarm.tm_mon++; mtk_rtc_set_pwron_time(rtc, &rtc_time_alarm); mtk_rtc_restore_alarm(rtc, &rtc_time_alarm); } else pr_notice("Alarm has happened before\n"); } else pr_notice("No power-off alarm is set\n"); } if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES) mtk_rtc_disable_2sec_reboot(&pdev->dev); mtk_rtc_enable_k_eosc(&pdev->dev); if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES || rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6358_SERIES) mtk_rtc_lpsd(&pdev->dev); } static int mtk_rtc_config_eosc_cali(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); int i; for (i = 0; i < CALI_FILED_MAX; i++) { rtc->cali[i] = devm_regmap_field_alloc(dev, rtc->regmap, rtc->dev_comp->cali_reg_fields[i]); if (IS_ERR(rtc->cali[i])) { dev_err(rtc->dev, "cali regmap field[%d] err= %ld\n", i, PTR_ERR(rtc->cali[i])); return PTR_ERR(rtc->cali[i]); } } rtc->cali_is_supported = true; return 0; } static int mtk_rtc_set_spare(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); struct reg_field tmp[SPARE_RG_MAX]; int i, ret; struct nvmem_config nvmem_cfg = { .name = "mtk_rtc_nvmem", .word_size = SPARE_REG_WIDTH, .stride = 1, .size = SPARE_RG_MAX * SPARE_REG_WIDTH, .reg_read = rtc_nvram_read, .reg_write = rtc_nvram_write, .priv = dev, }; memcpy(tmp, rtc->dev_comp->spare_reg_fields, sizeof(tmp)); for (i = 0; i < SPARE_RG_MAX; i++) { tmp[i].reg += rtc->addr_base; rtc->spare[i] = devm_regmap_field_alloc(rtc->dev, rtc->regmap, tmp[i]); if (IS_ERR(rtc->spare[i])) { dev_err(rtc->dev, "spare regmap field[%d] err= %ld\n", i, PTR_ERR(rtc->spare[i])); return PTR_ERR(rtc->spare[i]); } } ret = rtc_nvmem_register(rtc->rtc_dev, &nvmem_cfg); if (ret) dev_err(rtc->dev, "nvmem register failed\n"); return ret; } static void mtk_rtc_set_lp_irq(struct mt6397_rtc *rtc) { u32 irqen; #ifndef USER_BUILD_KERNEL irqen = RTC_IRQ_EN_LP; #endif mutex_lock(&rtc->lock); regmap_update_bits(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, RTC_IRQ_EN_LP, irqen); mtk_rtc_write_trigger(rtc); mutex_unlock(&rtc->lock); } static int mtk_rtc_probe(struct platform_device *pdev) { struct resource *res; struct mt6397_chip *mt6397_chip = dev_get_drvdata(pdev->dev.parent); struct mt6397_rtc *rtc; const struct of_device_id *of_id; int ret; struct device_node *boot_node = NULL; struct tag_bootmode *tag = NULL; struct dentry *mtk_rtc_dir; struct dentry *mtk_rtc_file; rtc = devm_kzalloc(&pdev->dev, sizeof(struct mt6397_rtc), GFP_KERNEL); if (!rtc) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); rtc->addr_base = res->start; of_id = of_match_device(mt6397_rtc_of_match, &pdev->dev); if (!of_id) { dev_err(&pdev->dev, "Failed to probe of_node\n"); return -EINVAL; } rtc->dev_comp = of_id->data; rtc->irq = platform_get_irq(pdev, 0); if (rtc->irq < 0) return rtc->irq; rtc->regmap = mt6397_chip->regmap; rtc->dev = &pdev->dev; mutex_init(&rtc->lock); platform_set_drvdata(pdev, rtc); rtc->rtc_dev = devm_rtc_allocate_device(rtc->dev); if (IS_ERR(rtc->rtc_dev)) return PTR_ERR(rtc->rtc_dev); /* KPOC alarm related setting */ mt6397_rtc_suspend_lock = wakeup_source_register(NULL, "mt6397-rtc suspend wakelock"); boot_node = of_parse_phandle(pdev->dev.of_node, "bootmode", 0); if (!boot_node) { dev_err(&pdev->dev, "%s: failed to get boot mode phandle\n", __func__); } else { tag = (struct tag_bootmode *)of_get_property( boot_node, "atag,boot", NULL); if (!tag) dev_err(&pdev->dev, "%s: failed to get atag,boot\n", __func__); else { dev_notice(&pdev->dev, "%s, bootmode:%d\n", __func__, tag->bootmode); bootmode = tag->bootmode; } } #ifdef CONFIG_PM rtc->pm_nb.notifier_call = rtc_pm_event; rtc->pm_nb.priority = 0; if (register_pm_notifier(&rtc->pm_nb)) pr_notice("rtc pm failed\n"); else rtc_pm_notifier_registered = true; #endif /* CONFIG_PM */ #ifdef CONFIG_SEC_PM rtc_reset_check(pdev); if (power_kobj) { ret = sysfs_create_file(power_kobj, &rtc_status_attr.attr); if (ret) pr_err("%s: failed %d\n", __func__, ret); } #endif /* CONFIG_SEC_PM */ INIT_WORK(&rtc->work, mtk_rtc_work_queue); /* KPOC alarm related setting */ ret = request_threaded_irq(rtc->irq, NULL, mtk_rtc_irq_handler_thread, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, "mt6397-rtc", rtc); if (ret) { dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n", rtc->irq, ret); return ret; } device_init_wakeup(&pdev->dev, 1); rtc->rtc_dev->ops = &mtk_rtc_ops; ret = rtc_register_device(rtc->rtc_dev); if (ret) { dev_err(&pdev->dev, "register rtc device failed\n"); goto out_free_irq; } if (rtc->dev_comp->spare_reg_fields) if (mtk_rtc_set_spare(&pdev->dev)) dev_err(&pdev->dev, "spare is not supported\n"); if (rtc->dev_comp->cali_reg_fields) if (mtk_rtc_config_eosc_cali(&pdev->dev)) dev_err(&pdev->dev, "config eosc cali failed\n"); if (rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6357_SERIES || rtc->dev_comp->eosc_cali_version == EOSC_CALI_MT6358_SERIES) rtc_lpsd_restore_al_mask(&pdev->dev); mtk_rtc_set_lp_irq(rtc); mtk_rtc_dir = debugfs_create_dir("mtk_rtc", NULL); if (!mtk_rtc_dir) { dev_err(&pdev->dev, "create /sys/kernel/debug/mtk_rtc_dir failed\n"); } else { mtk_rtc_file = debugfs_create_file("mtk_rtc", 0644, mtk_rtc_dir, rtc, &mtk_rtc_debug_ops); if (!mtk_rtc_file) { dev_err(&pdev->dev, "create /sys/kernel/debug/mtk_rtc/mtk_rtc failed\n"); } } return 0; out_free_irq: free_irq(rtc->irq, rtc); return ret; } static int mtk_rtc_remove(struct platform_device *pdev) { struct mt6397_rtc *rtc = platform_get_drvdata(pdev); free_irq(rtc->irq, rtc); return 0; } #ifdef CONFIG_PM_SLEEP static int mt6397_rtc_suspend(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(rtc->irq); return 0; } static int mt6397_rtc_resume(struct device *dev) { struct mt6397_rtc *rtc = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(rtc->irq); return 0; } #endif static SIMPLE_DEV_PM_OPS(mt6397_pm_ops, mt6397_rtc_suspend, mt6397_rtc_resume); static struct platform_driver mtk_rtc_driver = { .driver = { .name = "mt6397-rtc", .of_match_table = mt6397_rtc_of_match, .pm = &mt6397_pm_ops, }, .probe = mtk_rtc_probe, .remove = mtk_rtc_remove, .shutdown = mtk_rtc_shutdown, }; module_platform_driver(mtk_rtc_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Tianping Fang "); MODULE_DESCRIPTION("RTC Driver for MediaTek MT6397 PMIC");