/* * Quick & dirty crypto testing module. * * This will only exist until we have a better testing mechanism * (e.g. a char device). * * Copyright (c) 2002 James Morris * Copyright (c) 2002 Jean-Francois Dive * Copyright (c) 2007 Nokia Siemens Networks * * Updated RFC4106 AES-GCM testing. * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) * Adrian Hoban * Gabriele Paoloni * Tadeusz Struk (tadeusz.struk@intel.com) * Copyright (c) 2010, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt //KERN_EMERG, KERN_ALERT, KERN_CRIT, KERN_ERR, KERN_WARNING, KERN_NOTICE, KERN_INFO, KERN_DEBUG, KERN_DEFAULT, KERN_CONT #define PR_CRYPT(fmt, ...) \ printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #if 1 #define PR_ECHO(fmt, ...) {} #else static void PR_ECHO(fmt, ...) { char cmd[100]; snprintf(cmd, sizeof(cmd), pr_fmt(fmt), ##__VA_ARGS__); char *arg[] = { "/bin/echo", cmd, 0 }; execve(arg[0], &arg[0], 0); } #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tcrypt_procfs.h" /* * Need slab memory for testing (size in number of pages). */ #define TVMEMSIZE 4 /* * Used by test_cipher_speed() */ #define ENCRYPT 1 #define DECRYPT 0 #define MAX_DIGEST_SIZE 64 /* * return a string with the driver name */ #define get_driver_name(tfm_type, tfm) crypto_tfm_alg_driver_name(tfm_type ## _tfm(tfm)) /* * Used by test_cipher_speed() */ static unsigned int sec; static char *alg = NULL; static u32 type; static u32 mask; static int mode; static u32 num_mb = 8; static char *tvmem[TVMEMSIZE]; #if 0 static u32 block_sizes[] = { 16, 64, 256, 1024, 8192, 0 }; static u32 aead_sizes[] = { 16, 64, 256, 512, 1024, 2048, 4096, 8192, 0 }; #else static u32 block_sizes[] = { 64, 1024, 0 }; static u32 aead_sizes[] = { 16, 512, 4096, 0 }; #endif #define XBUFSIZE 8 #define MAX_IVLEN 32 static int testmgr_alloc_buf(char *buf[XBUFSIZE]) { int i; for (i = 0; i < XBUFSIZE; i++) { buf[i] = (void *)__get_free_page(GFP_KERNEL); if (!buf[i]) goto err_free_buf; } return 0; err_free_buf: while (i-- > 0) free_page((unsigned long)buf[i]); return -ENOMEM; } static void testmgr_free_buf(char *buf[XBUFSIZE]) { int i; for (i = 0; i < XBUFSIZE; i++) free_page((unsigned long)buf[i]); } static void sg_init_aead(struct scatterlist *sg, char *xbuf[XBUFSIZE], unsigned int buflen, const void *assoc, unsigned int aad_size) { int np = (buflen + PAGE_SIZE - 1)/PAGE_SIZE; int k, rem; if (np > XBUFSIZE) { rem = PAGE_SIZE; np = XBUFSIZE; } else { rem = buflen % PAGE_SIZE; } sg_init_table(sg, np + 1); sg_set_buf(&sg[0], assoc, aad_size); if (rem) np--; for (k = 0; k < np; k++) sg_set_buf(&sg[k + 1], xbuf[k], PAGE_SIZE); if (rem) sg_set_buf(&sg[k + 1], xbuf[k], rem); } static inline int do_one_aead_op(struct aead_request *req, int ret) { struct crypto_wait *wait = req->base.data; return crypto_wait_req(ret, wait); } static int test_aead_jiffies(struct aead_request *req, int enc, int blen, int secs) { unsigned long start, end; int bcount; int ret; for (start = jiffies, end = start + secs * HZ, bcount = 0; time_before(jiffies, end); bcount++) { if (enc) ret = do_one_aead_op(req, crypto_aead_encrypt(req)); else ret = do_one_aead_op(req, crypto_aead_decrypt(req)); if (ret) return ret; } printk("%d operations in %d seconds (%ld bytes)\n", bcount, secs, (long)bcount * blen); return 0; } static int test_aead_cycles(struct aead_request *req, int enc, int blen) { unsigned long cycles = 0; int ret = 0; int i; /* Warm-up run. */ for (i = 0; i < 4; i++) { if (enc) ret = do_one_aead_op(req, crypto_aead_encrypt(req)); else ret = do_one_aead_op(req, crypto_aead_decrypt(req)); if (ret) goto out; } /* The real thing. */ for (i = 0; i < 8; i++) { cycles_t start, end; start = get_cycles(); if (enc) ret = do_one_aead_op(req, crypto_aead_encrypt(req)); else ret = do_one_aead_op(req, crypto_aead_decrypt(req)); end = get_cycles(); if (ret) goto out; cycles += end - start; } out: if (ret == 0) printk("1 operation in %lu cycles (%d bytes)\n", (cycles + 4) / 8, blen); return ret; } static int test_aead_speed(const char *algo, int enc, unsigned int secs, struct aead_speed_template *template, unsigned int tcount, u8 authsize, unsigned int aad_size, u8 *keysize) { unsigned int i, j; struct crypto_aead *tfm; int ret = -ENOMEM; const char *key; struct aead_request *req; struct scatterlist *sg; struct scatterlist *sgout; const char *e; void *assoc; char *iv; char *xbuf[XBUFSIZE]; char *xoutbuf[XBUFSIZE]; char *axbuf[XBUFSIZE]; unsigned int *b_size; unsigned int iv_len; struct crypto_wait wait; iv = kzalloc(MAX_IVLEN, GFP_KERNEL); if (!iv) return ret; if (aad_size >= PAGE_SIZE) { pr_err("associate data length (%u) too big\n", aad_size); ret = -E2BIG; goto out_noxbuf; } if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; if (testmgr_alloc_buf(xbuf)) goto out_noxbuf; if (testmgr_alloc_buf(axbuf)) goto out_noaxbuf; if (testmgr_alloc_buf(xoutbuf)) goto out_nooutbuf; sg = kmalloc(sizeof(*sg) * 9 * 2, GFP_KERNEL); if (!sg) goto out_nosg; sgout = &sg[9]; tfm = crypto_alloc_aead(algo, 0, 0); if (IS_ERR(tfm)) { pr_err("alg: aead: Failed to load transform for %s: %ld\n", algo, PTR_ERR(tfm)); ret = PTR_ERR(tfm); goto out_notfm; } crypto_init_wait(&wait); pr_info("\ntesting speed of %s (%s) %s\n", algo, get_driver_name(crypto_aead, tfm), e); req = aead_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: aead: Failed to allocate request for %s\n", algo); goto out_noreq; } aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); i = 0; do { b_size = aead_sizes; do { assoc = axbuf[0]; memset(assoc, 0xff, aad_size); if ((*keysize + *b_size) > TVMEMSIZE * PAGE_SIZE) { pr_err("template (%u) too big for tvmem (%lu)\n", *keysize + *b_size, TVMEMSIZE * PAGE_SIZE); goto out; } key = tvmem[0]; for (j = 0; j < tcount; j++) { if (template[j].klen == *keysize) { key = template[j].key; break; } } ret = crypto_aead_setkey(tfm, key, *keysize); ret = crypto_aead_setauthsize(tfm, authsize); iv_len = crypto_aead_ivsize(tfm); if (iv_len) memset(iv, 0xff, iv_len); crypto_aead_clear_flags(tfm, ~0); pr_info("test %u (%d bit key, %d byte blocks): ", i, *keysize * 8, *b_size); memset(tvmem[0], 0xff, PAGE_SIZE); if (ret) { pr_err("setkey() failed flags=%x\n", crypto_aead_get_flags(tfm)); //ret = -ECRYPTOFLAG; goto out; } sg_init_aead(sg, xbuf, *b_size + (enc ? 0 : authsize), assoc, aad_size); sg_init_aead(sgout, xoutbuf, *b_size + (enc ? authsize : 0), assoc, aad_size); aead_request_set_ad(req, aad_size); if (!enc) { /* * For decryption we need a proper auth so * we do the encryption path once with buffers * reversed (input <-> output) to calculate it */ aead_request_set_crypt(req, sgout, sg, *b_size, iv); ret = do_one_aead_op(req, crypto_aead_encrypt(req)); if (ret) { pr_err("calculating auth failed failed (%d)\n", ret); break; } } aead_request_set_crypt(req, sg, sgout, *b_size + (enc ? 0 : authsize), iv); if (secs) { ret = test_aead_jiffies(req, enc, *b_size, secs); cond_resched(); } else { ret = test_aead_cycles(req, enc, *b_size); } if (ret) { pr_err("%s() failed return code=%d\n", e, ret); break; } b_size++; i++; } while (*b_size); keysize++; } while (*keysize); out: aead_request_free(req); out_noreq: crypto_free_aead(tfm); out_notfm: kfree(sg); out_nosg: testmgr_free_buf(xoutbuf); out_nooutbuf: testmgr_free_buf(axbuf); out_noaxbuf: testmgr_free_buf(xbuf); out_noxbuf: kfree(iv); return ret; } static void test_hash_sg_init(struct scatterlist *sg) { int i; sg_init_table(sg, TVMEMSIZE); for (i = 0; i < TVMEMSIZE; i++) { sg_set_buf(sg + i, tvmem[i], PAGE_SIZE); memset(tvmem[i], 0xff, PAGE_SIZE); } } static inline int do_one_ahash_op(struct ahash_request *req, int ret) { struct crypto_wait *wait = req->base.data; return crypto_wait_req(ret, wait); } static int test_ahash_jiffies_digest(struct ahash_request *req, int blen, char *out, int secs) { unsigned long start, end; int bcount; int ret; for (start = jiffies, end = start + secs * HZ, bcount = 0; time_before(jiffies, end); bcount++) { ret = do_one_ahash_op(req, crypto_ahash_digest(req)); if (ret) return ret; } printk("%6u opers/sec, %9lu bytes/sec\n", bcount / secs, ((long)bcount * blen) / secs); return 0; } static int test_ahash_jiffies(struct ahash_request *req, int blen, int plen, char *out, int secs) { unsigned long start, end; int bcount, pcount; int ret; if (plen == blen) return test_ahash_jiffies_digest(req, blen, out, secs); for (start = jiffies, end = start + secs * HZ, bcount = 0; time_before(jiffies, end); bcount++) { ret = do_one_ahash_op(req, crypto_ahash_init(req)); if (ret) return ret; for (pcount = 0; pcount < blen; pcount += plen) { ret = do_one_ahash_op(req, crypto_ahash_update(req)); if (ret) return ret; } /* we assume there is enough space in 'out' for the result */ ret = do_one_ahash_op(req, crypto_ahash_final(req)); if (ret) return ret; } pr_cont("%6u opers/sec, %9lu bytes/sec\n", bcount / secs, ((long)bcount * blen) / secs); return 0; } static int test_ahash_cycles_digest(struct ahash_request *req, int blen, char *out) { unsigned long cycles = 0; int ret, i; /* Warm-up run. */ for (i = 0; i < 4; i++) { ret = do_one_ahash_op(req, crypto_ahash_digest(req)); if (ret) goto out; } /* The real thing. */ for (i = 0; i < 8; i++) { cycles_t start, end; start = get_cycles(); ret = do_one_ahash_op(req, crypto_ahash_digest(req)); if (ret) goto out; end = get_cycles(); cycles += end - start; } out: if (ret) return ret; pr_cont("%6lu cycles/operation, %4lu cycles/byte\n", cycles / 8, cycles / (8 * blen)); return 0; } static int test_ahash_cycles(struct ahash_request *req, int blen, int plen, char *out) { unsigned long cycles = 0; int i, pcount, ret; if (plen == blen) return test_ahash_cycles_digest(req, blen, out); /* Warm-up run. */ for (i = 0; i < 4; i++) { ret = do_one_ahash_op(req, crypto_ahash_init(req)); if (ret) goto out; for (pcount = 0; pcount < blen; pcount += plen) { ret = do_one_ahash_op(req, crypto_ahash_update(req)); if (ret) goto out; } ret = do_one_ahash_op(req, crypto_ahash_final(req)); if (ret) goto out; } /* The real thing. */ for (i = 0; i < 8; i++) { cycles_t start, end; start = get_cycles(); ret = do_one_ahash_op(req, crypto_ahash_init(req)); if (ret) goto out; for (pcount = 0; pcount < blen; pcount += plen) { ret = do_one_ahash_op(req, crypto_ahash_update(req)); if (ret) goto out; } ret = do_one_ahash_op(req, crypto_ahash_final(req)); if (ret) goto out; end = get_cycles(); cycles += end - start; } out: if (ret) return ret; pr_cont("%6lu cycles/operation, %4lu cycles/byte\n", cycles / 8, cycles / (8 * blen)); return 0; } static int test_ahash_speed_common(const char *algo, unsigned int secs, unsigned mask) { struct scatterlist sg[TVMEMSIZE]; struct crypto_wait wait; struct ahash_request *req; struct crypto_ahash *tfm; char *output; int i, ret = -ENOMEM; struct hash_speed *speed = generic_hash_speed_template; tfm = crypto_alloc_ahash(algo, 0, mask); if (IS_ERR(tfm)) { pr_err("failed to load transform for %s: %ld\n", algo, PTR_ERR(tfm)); ret = PTR_ERR(tfm); return ret; } pr_info("\ntesting speed of async(%s,%d) %s (%s)\n", (tfm->base.__crt_alg->cra_flags&CRYPTO_ALG_ASYNC)?"true":"false", tfm->base.__crt_alg->cra_flags, algo, get_driver_name(crypto_ahash, tfm)); if( !strcmp(algo, "ghash") ) speed = hash_speed_template_16; else if( !strcmp(algo, "poly1305") || !strcmp(algo, "nhpoly1305") ) speed = poly1305_speed_template; if (crypto_ahash_digestsize(tfm) > MAX_DIGEST_SIZE) { pr_err("digestsize(%u) > %d\n", crypto_ahash_digestsize(tfm), MAX_DIGEST_SIZE); ret = -E2BIG; goto out; } test_hash_sg_init(sg); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("ahash request allocation failure\n"); goto out; } crypto_init_wait(&wait); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); output = kmalloc(MAX_DIGEST_SIZE, GFP_KERNEL); if (!output) goto out_nomem; for (i = 0; speed[i].blen != 0; i++) { if (speed[i].blen > TVMEMSIZE * PAGE_SIZE) { pr_err("template (%u) too big for tvmem (%lu)\n", speed[i].blen, TVMEMSIZE * PAGE_SIZE); break; } if (speed[i].klen) crypto_ahash_setkey(tfm, tvmem[0], speed[i].klen); pr_info("test%3u " "(%5u byte blocks,%5u bytes per update,%4u updates): ", i, speed[i].blen, speed[i].plen, speed[i].blen / speed[i].plen); ahash_request_set_crypt(req, sg, output, speed[i].plen); if (secs) { ret = test_ahash_jiffies(req, speed[i].blen, speed[i].plen, output, secs); cond_resched(); } else { ret = test_ahash_cycles(req, speed[i].blen, speed[i].plen, output); } if (ret) { pr_err("hashing failed ret=%d\n", ret); break; } } kfree(output); out_nomem: ahash_request_free(req); out: crypto_free_ahash(tfm); return ret; } struct test_mb_skcipher_data { struct scatterlist sg[XBUFSIZE]; struct skcipher_request *req; struct crypto_wait wait; char *xbuf[XBUFSIZE]; }; static inline int do_one_acipher_op(struct skcipher_request *req, int ret) { struct crypto_wait *wait = req->base.data; return crypto_wait_req(ret, wait); } static int test_acipher_jiffies(struct skcipher_request *req, int enc, int blen, int secs) { unsigned long start, end; int bcount; int ret; for (start = jiffies, end = start + secs * HZ, bcount = 0; time_before(jiffies, end); bcount++) { if (enc) ret = do_one_acipher_op(req, crypto_skcipher_encrypt(req)); else ret = do_one_acipher_op(req, crypto_skcipher_decrypt(req)); if (ret) return ret; } pr_cont("%d operations in %d seconds (%ld bytes)\n", bcount, secs, (long)bcount * blen); return 0; } static int test_acipher_cycles(struct skcipher_request *req, int enc, int blen) { unsigned long cycles = 0; int ret = 0; int i; /* Warm-up run. */ for (i = 0; i < 4; i++) { if (enc) ret = do_one_acipher_op(req, crypto_skcipher_encrypt(req)); else ret = do_one_acipher_op(req, crypto_skcipher_decrypt(req)); if (ret) goto out; } /* The real thing. */ for (i = 0; i < 8; i++) { cycles_t start, end; start = get_cycles(); if (enc) ret = do_one_acipher_op(req, crypto_skcipher_encrypt(req)); else ret = do_one_acipher_op(req, crypto_skcipher_decrypt(req)); end = get_cycles(); if (ret) goto out; cycles += end - start; } out: if (ret == 0) pr_cont("1 operation in %lu cycles (%d bytes)\n", (cycles + 4) / 8, blen); return ret; } static int test_skcipher_speed(const char *algo, int enc, unsigned int secs, bool async) { unsigned int ret, i, j, k, iv_len; struct crypto_wait wait; const char *key; char iv[128]; struct skcipher_request *req; struct crypto_skcipher *tfm; const char *e; u32 *b_size; struct cipher_speed_template *template = NULL; unsigned int tcount = 0; u8 keysize = 8; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; crypto_init_wait(&wait); tfm = crypto_alloc_skcipher(algo, 0, async ? 0 : CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { pr_err("failed to load transform for %s: %ld\n", algo, PTR_ERR(tfm)); ret = PTR_ERR(tfm); return ret; } if( (tfm->base.__crt_alg->cra_flags & CRYPTO_ALG_TYPE_SKCIPHER) == CRYPTO_ALG_TYPE_SKCIPHER ) { keysize = tfm->base.__crt_alg->cra_u.ablkcipher.min_keysize; if(keysize == 0) { struct skcipher_alg *skcipher = container_of(tfm->base.__crt_alg, struct skcipher_alg, base); //struct skcipher_alg* skcipher = (struct skcipher_alg*)(tfm->base.__crt_alg); keysize = skcipher->min_keysize; pr_err("%s keysize %d, %d, %d, %d, %d, %d, %d, %d\n", get_driver_name(crypto_skcipher, tfm), tfm->base.__crt_alg->cra_u.ablkcipher.min_keysize, tfm->base.__crt_alg->cra_u.ablkcipher.max_keysize, tfm->base.__crt_alg->cra_u.blkcipher.min_keysize, tfm->base.__crt_alg->cra_u.blkcipher.max_keysize, tfm->base.__crt_alg->cra_u.cipher.cia_min_keysize, tfm->base.__crt_alg->cra_u.cipher.cia_max_keysize, skcipher->min_keysize, skcipher->max_keysize); if(keysize == 0) { goto out; } } } else if( (tfm->base.__crt_alg->cra_flags & CRYPTO_ALG_TYPE_SKCIPHER) == CRYPTO_ALG_TYPE_BLKCIPHER ) { keysize = tfm->base.__crt_alg->cra_u.blkcipher.min_keysize; } else if( (tfm->base.__crt_alg->cra_flags & CRYPTO_ALG_TYPE_SKCIPHER) == CRYPTO_ALG_TYPE_CIPHER ) { keysize = tfm->base.__crt_alg->cra_u.cipher.cia_min_keysize; } else { pr_info("\nHELIO: check the cipher type %d", tfm->base.__crt_alg->cra_flags); return -EOPNOTSUPP; } pr_info("\ntesting speed of async(%s,%d) %s (%s) %s with keysize(%d)\n", (tfm->base.__crt_alg->cra_flags&CRYPTO_ALG_ASYNC)?"true":"false", tfm->base.__crt_alg->cra_flags, algo, get_driver_name(crypto_skcipher, tfm), e, keysize); if(strstr(algo, "des3_ede")) { template = des3_speed_template; tcount = DES3_SPEED_VECTORS; } req = skcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("tcrypt: skcipher: Failed to allocate request for %s\n", algo); goto out; } skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); i = 0; b_size = block_sizes; do { struct scatterlist sg[TVMEMSIZE]; if ((keysize + *b_size) > TVMEMSIZE * PAGE_SIZE) { pr_err("template (%u) too big for " "tvmem (%lu)\n", keysize + *b_size, TVMEMSIZE * PAGE_SIZE); goto out_free_req; } pr_info("test %u (%d bit key, %d byte blocks): ", i, keysize * 8, *b_size); memset(tvmem[0], 0xff, PAGE_SIZE); /* set key, plain text and IV */ key = tvmem[0]; for (j = 0; j < tcount; j++) { if (template[j].klen == keysize) { key = template[j].key; break; } } crypto_skcipher_clear_flags(tfm, ~0); ret = crypto_skcipher_setkey(tfm, key, keysize); if (ret) { pr_err("setkey() failed flags=%x\n", crypto_skcipher_get_flags(tfm)); goto out_free_req; } k = keysize + *b_size; sg_init_table(sg, DIV_ROUND_UP(k, PAGE_SIZE)); if (k > PAGE_SIZE) { sg_set_buf(sg, tvmem[0] + keysize, PAGE_SIZE - keysize); k -= PAGE_SIZE; j = 1; while (k > PAGE_SIZE) { sg_set_buf(sg + j, tvmem[j], PAGE_SIZE); memset(tvmem[j], 0xff, PAGE_SIZE); j++; k -= PAGE_SIZE; } sg_set_buf(sg + j, tvmem[j], k); memset(tvmem[j], 0xff, k); } else { sg_set_buf(sg, tvmem[0] + keysize, *b_size); } iv_len = crypto_skcipher_ivsize(tfm); if (iv_len) memset(&iv, 0xff, iv_len); skcipher_request_set_crypt(req, sg, sg, *b_size, iv); if (secs) { ret = test_acipher_jiffies(req, enc, *b_size, secs); cond_resched(); } else { ret = test_acipher_cycles(req, enc, *b_size); } if (ret) { pr_err("%s() failed flags=%x\n", e, crypto_skcipher_get_flags(tfm)); break; } b_size++; i++; } while (*b_size); out_free_req: skcipher_request_free(req); out: crypto_free_skcipher(tfm); return ret; } #define ERR_NO "PASS" #define ERR_NOMEM "ERROR: Out of memory" #define ERR_2BIG "ERROR: Argument list too long" #define ERR_FAULT "ERROR: Bad address" #define ERR_INVAL "ERROR: Invalid arguments" #define ERR_RANGE "ERROR: Out of range" #define ERR_OPNOTSUPP "ERROR: Not supported" #define ERR_UNKNOWN "ERROR: Undefined error or crypt error" #define ERR_NOENT "ERROR: Failed to load transform" static int tc_status = 0; static char tc_alg[100] = {0,}; static int tc_error = 0; static int crypto_test_show(struct seq_file *m, void *v) { char *p = NULL; switch(tc_error) { default: p = ERR_UNKNOWN; break; case 0: p = ERR_NO; break; case -ENOMEM: p = ERR_NOMEM; break; case -E2BIG: p = ERR_2BIG; break; case -EFAULT: p = ERR_FAULT; break; case -EINVAL: p = ERR_INVAL; break; case -ERANGE: p = ERR_RANGE; break; case -ENOENT: p = ERR_NOENT; break; case -EOPNOTSUPP: p = ERR_OPNOTSUPP; break; } switch(tc_status) { default: case 0: seq_printf(m,"tcrypt status: idle, last result: %s(%d)\n", p, tc_error); break; case 1: seq_printf(m,"tcrypt status: running (%s)\n", tc_alg); break; case 2: seq_printf(m,"tcrypt status: done (%s), last result: %s(%d)\n", tc_alg, p, tc_error); tc_status = 0; break; } return 0; } static int crypto_test_open(struct inode *inode, struct file *file) { return single_open(file, crypto_test_show, NULL); } #define MAX_CRYPTO_TEST_PARAM 3 static ssize_t crypto_test_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { int i = 0; char *buf, *tok, *tmp; char tc_type[100] = {0,}; int fasync = 0; if(tc_status == 1) return ETXTBSY; tc_status = 1; tc_error = 0; memset(tc_alg, 0, sizeof(tc_alg)); //memset(tc_type, 0, sizeof(tc_type)); buf = (char *)__get_free_page(GFP_USER); if (!buf) { tc_error = -ENOMEM; goto out1; } if (count >= PAGE_SIZE) { tc_error = -E2BIG; goto out2; } if (copy_from_user(buf, buffer, count)) { tc_error = -EFAULT; goto out2; } buf[count] = 0; tmp = buf; while ((tok = strsep(&tmp, " ")) != NULL) { if(i>=MAX_CRYPTO_TEST_PARAM) { //seq_printf(m, "over number of input params(%d): %s\n", MAX_CALC_LOAD_PRAM, tok); goto out2; } switch(i) { case 0: strcpy(tc_alg, tok); while(tc_alg[strlen(tc_alg)-1] == '\r' || tc_alg[strlen(tc_alg)-1] == '\n') tc_alg[strlen(tc_alg)-1] = 0; break; case 1: strcpy(tc_type, tok); while(tc_type[strlen(tc_type)-1] == '\r' || tc_type[strlen(tc_type)-1] == '\n') tc_type[strlen(tc_type)-1] = 0; break; case 2: fasync = simple_strtol(tok, NULL, 0); //kstrtoint(tok, 10, &fasync); break; } i++; } if( !strcmp(tc_type, "skcipher") || !strcmp(tc_type, "blkcipher") || !strcmp(tc_type, "cipher") ) { tc_error = test_skcipher_speed(tc_alg, ENCRYPT, sec, (fasync)?true:false); if(!tc_error) tc_error = test_skcipher_speed(tc_alg, DECRYPT, sec, (fasync)?true:false); } else if( !strcmp(tc_type, "shash") || !strcmp(tc_type, "ahash") ) { tc_error = test_ahash_speed_common(tc_alg, sec, (fasync)?CRYPTO_ALG_ASYNC:0); } else if( !strcmp(tc_type, "aead") ) { int aad_size = 0; u8 *keysize = NULL; if( !strcmp(tc_alg, "rfc4106(gcm(aes))") ) { aad_size = 16; keysize = aead_speed_template_20; } else if( !strcmp(tc_alg, "gcm(aes)") ) { aad_size = 8; keysize = speed_template_16; } else if( !strcmp(tc_alg, "rfc4309(ccm(aes))") ) { aad_size = 16; keysize = aead_speed_template_19; } else if( !strcmp(tc_alg, "rfc7539esp(chacha20,poly1305)") ) { aad_size = 8; keysize = aead_speed_template_36; } if(aad_size>0 && keysize!=NULL) { tc_error = test_aead_speed(tc_alg, ENCRYPT, sec, NULL, 0, 16, aad_size, keysize); if(tc_error == 0) { tc_error = test_aead_speed(tc_alg, DECRYPT, sec, NULL, 0, 16, aad_size, keysize); } } else tc_error = -EOPNOTSUPP; } out2: free_page((unsigned long)buf); out1: tc_status = 2; return count; } static const struct file_operations crypto_test_fops = { .open = crypto_test_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = crypto_test_write, }; static struct proc_dir_entry *crypto_procfs_dir = NULL; static struct proc_dir_entry *crypto_procfs_de = NULL; static int __init tcrypt_node_init(void) { int i; printk(KERN_ERR "Helio : enter tcrypt_node_init\n"); pr_debug("Helio : enter tcrypt_node_init\n"); sec = 1; if(crypto_procfs_dir == NULL) crypto_procfs_dir = proc_mkdir("crypt", NULL); if(crypto_procfs_de == NULL) crypto_procfs_de = proc_create("test", 0644, crypto_procfs_dir, &crypto_test_fops); for (i = 0; i < TVMEMSIZE; i++) { tvmem[i] = (void *)__get_free_page(GFP_KERNEL); if (!tvmem[i]) { //tc_error = -ENOMEM; goto out; } } return 0; out: for (i = 0; i < TVMEMSIZE && tvmem[i]; i++) { free_page((unsigned long)tvmem[i]); tvmem[i] = 0; } return(-ENOMEM); } static void __exit tcrypt_node_fini(void) { int i; if(crypto_procfs_de) { proc_remove(crypto_procfs_de); crypto_procfs_de = NULL; } if(crypto_procfs_dir) { proc_remove(crypto_procfs_dir); crypto_procfs_dir = NULL; } for (i = 0; i < TVMEMSIZE && tvmem[i]; i++) { free_page((unsigned long)tvmem[i]); tvmem[i] = 0; } } #if 1 module_init(tcrypt_node_init); module_exit(tcrypt_node_fini); #else module_init(tcrypt_mod_init); module_exit(tcrypt_mod_fini); #endif module_param(alg, charp, 0); module_param(type, uint, 0); module_param(mask, uint, 0); module_param(mode, int, 0); module_param(sec, uint, 0); MODULE_PARM_DESC(sec, "Length in seconds of speed tests " "(defaults to zero which uses CPU cycles instead)"); module_param(num_mb, uint, 0000); MODULE_PARM_DESC(num_mb, "Number of concurrent requests to be used in mb speed tests (defaults to 8)"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Quick & dirty crypto testing module"); MODULE_AUTHOR("James Morris ");