/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2019 MediaTek Inc. */ #include #include "include/gt1x_tpd_common.h" #include "gt1x_config.h" #ifdef CONFIG_GTP_PROXIMITY #include #include #include #endif #ifdef CONFIG_GTP_ICS_SLOT_REPORT #include #endif /*******************GLOBAL VARIABLE*********************/ struct i2c_client *gt1x_i2c_client; static struct workqueue_struct *gt1x_workqueue; u8 gt1x_config[GTP_CONFIG_MAX_LENGTH] = { 0 }; u32 gt1x_cfg_length = GTP_CONFIG_MAX_LENGTH; bool check_flag; enum CHIP_TYPE_T gt1x_chip_type = CHIP_TYPE_GT1X; struct gt1x_version_info gt1x_version = { .product_id = {0}, .patch_id = 0, .mask_id = 0, .sensor_id = 0, .match_opt = 0 }; #if defined(CONFIG_GTP_WITH_STYLUS) && defined(CONFIG_GTP_HAVE_STYLUS_KEY) const u16 gt1x_stylus_key_array[] = GTP_STYLUS_KEY_TAB; #endif u8 gt1x_clk_buf[6]; u8 gt1x_clk_retries; u8 gt1x_ref_retries; u8 gt1x_driver_num; u8 gt1x_sensor_num; u8 gt1x_int_type; u8 gt1x_wakeup_level; u32 gt1x_abs_x_max; u32 gt1x_abs_y_max; u8 gt1x_rawdiff_mode; u8 gt1x_init_failed; u8 is_resetting; static int addr_selected; static ssize_t gt1x_debug_read_proc(struct file *, char __user *, size_t, loff_t *); static ssize_t gt1x_debug_write_proc(struct file *, const char __user *, size_t, loff_t *); static struct proc_dir_entry *gt1x_debug_proc_entry; static const struct file_operations gt1x_debug_fops = { .owner = THIS_MODULE, .read = gt1x_debug_read_proc, .write = gt1x_debug_write_proc, }; s32 gt1x_init_debug_node(void) { gt1x_debug_proc_entry = proc_create(GT1X_DEBUG_PROC_FILE, 0660, NULL, >1x_debug_fops); if (gt1x_debug_proc_entry == NULL) { GTP_ERROR("create_proc_entry %s FAILED!", GT1X_DEBUG_PROC_FILE); return -1; } GTP_ERROR("create_proc_entry %s SUCCESS.", GT1X_DEBUG_PROC_FILE); return 0; } void gt1x_deinit_debug_node(void) { if (gt1x_debug_proc_entry != NULL) remove_proc_entry(GT1X_DEBUG_PROC_FILE, NULL); } static ssize_t gt1x_debug_read_proc(struct file *file, char __user *page, size_t size, loff_t *ppos) { char *ptr = NULL; char temp_data[GTP_CONFIG_MAX_LENGTH] = { 0 }; int i; ssize_t ret = 0; if (*ppos) return 0; if (size > 1024*1024) return -EMSGSIZE; ptr = kzalloc((size + 10), GFP_KERNEL); if (ptr == NULL) return -EMSGSIZE; ret += snprintf(ptr + ret, size - ret, "==== GT1X default config setting in driver====\n"); for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) { ret += snprintf(ptr + ret, size - ret, "0x%02X,", gt1x_config[i]); if (i % 10 == 9) ret += snprintf(ptr + ret, size - ret, "\n"); } ret += snprintf(ptr + ret, size - ret, "\n"); ret += snprintf(ptr + ret, size - ret, "==== GT1X config read from chip====\n"); i = gt1x_i2c_read(GTP_REG_CONFIG_DATA, temp_data, GTP_CONFIG_MAX_LENGTH); GTP_INFO("I2C TRANSFER: %d", i); for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) { ret += snprintf(ptr + ret, size - ret, "0x%02X,", temp_data[i]); if (i % 10 == 9) ret += snprintf(ptr + ret, size - ret, "\n"); } /* Touch PID & VID */ ret += snprintf(ptr + ret, size - ret, "\n"); ret += snprintf(ptr + ret, size - ret, "==== GT1X Version Info ====\n"); gt1x_i2c_read(GTP_REG_VERSION, temp_data, 12); ret += snprintf(ptr + ret, size - ret, "ProductID: GT%c%c%c%c\n", temp_data[0], temp_data[1], temp_data[2], temp_data[3]); ret += snprintf(ptr + ret, size - ret, "PatchID: %02X%02X\n", temp_data[4], temp_data[5]); ret += snprintf(ptr + ret, size - ret, "MaskID: %02X%02X\n", temp_data[7], temp_data[8]); ret += snprintf(ptr + ret, size - ret, "SensorID: %02X\n", temp_data[10] & 0x0F); ret += snprintf(ptr + ret, size - ret, "Driver Num: %02d. Sensor Num: %02d\n", gt1x_driver_num, gt1x_sensor_num); *ppos += ret; if (copy_to_user(page, ptr, size)) { GTP_INFO("Failed to copy from kernel to user\n"); ret = -EFAULT; } kfree(ptr); return ret; } static ssize_t gt1x_debug_write_proc(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { s32 ret = 0; u8 buf[GTP_CONFIG_MAX_LENGTH] = { 0 }; char mode_str[50] = { 0 }; int mode; char arg1[50] = { 0 }; GTP_DEBUG("write count %ld\n", (unsigned long)count); if (count > GTP_CONFIG_MAX_LENGTH) { GTP_ERROR("Too much data, buffer size: %d, data:%ld", GTP_CONFIG_MAX_LENGTH, (unsigned long)count); return -EFAULT; } if (copy_from_user(buf, buffer, count)) { GTP_ERROR("copy from user fail!"); return -EFAULT; } /*send config*/ if (count == gt1x_cfg_length) { memcpy(gt1x_config, buf, count); ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); if (ret < 0) { GTP_ERROR("send gt1x_config failed."); return -EFAULT; } gt1x_abs_x_max = (gt1x_config[RESOLUTION_LOC + 1] << 8) + gt1x_config[RESOLUTION_LOC]; gt1x_abs_y_max = (gt1x_config[RESOLUTION_LOC + 3] << 8) + gt1x_config[RESOLUTION_LOC + 2]; return count; } ret = sscanf(buf, "%49s %d", (char *)&mode_str, &mode); if (ret < 0) { GTP_ERROR("Sscanf buf ERROR1"); return ret; } /*force clear gt1x_config*/ if (strcmp(mode_str, "clear_config") == 0) { GTP_INFO("Force clear gt1x_config"); gt1x_send_cmd(GTP_CMD_CLEAR_CFG, 0); return count; } if (strcmp(mode_str, "init") == 0) { GTP_INFO("Init panel"); gt1x_init_panel(); return count; } if (strcmp(mode_str, "chip") == 0) { GTP_INFO("Get chip type:"); gt1x_get_chip_type(); return count; } if (strcmp(mode_str, "int") == 0) { if (mode == 0) { GTP_INFO("Disable irq."); gt1x_irq_disable(); } else { GTP_INFO("Enable irq."); gt1x_irq_enable(); } return count; } if (strcmp(mode_str, "poweron") == 0) { gt1x_power_switch(1); return count; } if (strcmp(mode_str, "poweroff") == 0) { gt1x_power_switch(0); return count; } if (strcmp(mode_str, "version") == 0) { gt1x_read_version(NULL); return count; } if (strcmp(mode_str, "reset") == 0) { gt1x_reset_guitar(); return count; } #ifdef CONFIG_GTP_CHARGER_SWITCH if (strcmp(mode_str, "charger") == 0) { gt1x_charger_config(mode); return count; } #endif ret = sscanf(buf, "%49s %49s", (char *)&mode_str, (char *)&arg1); if (ret < 0) { GTP_ERROR("Sscanf buf ERROR2"); return ret; } if (strcmp(mode_str, "update") == 0) { gt1x_update_firmware(arg1); return count; } return gt1x_debug_proc(buf, count); } s32 _do_i2c_read(struct i2c_msg *msgs, u16 addr, u8 *buffer, s32 len) { s32 ret = -1; s32 pos = 0; s32 data_length = len; s32 transfer_length = 0; u8 *data = NULL; u16 address = addr; data = kmalloc(IIC_MAX_TRANSFER_SIZE < (len + GTP_ADDR_LENGTH) ? IIC_MAX_TRANSFER_SIZE : (len + GTP_ADDR_LENGTH), GFP_KERNEL); if (data == NULL) return ERROR_MEM; msgs[1].buf = data; while (pos != data_length) { if ((data_length - pos) > IIC_MAX_TRANSFER_SIZE) transfer_length = IIC_MAX_TRANSFER_SIZE; else transfer_length = data_length - pos; msgs[0].buf[0] = (address >> 8) & 0xFF; msgs[0].buf[1] = address & 0xFF; msgs[1].len = transfer_length; ret = i2c_transfer(gt1x_i2c_client->adapter, msgs, 2); if (ret != 2) { GTP_INFO("I2c Transfer error! (%d)", ret); kfree(data); return ERROR_IIC; } memcpy(&buffer[pos], msgs[1].buf, transfer_length); pos += transfer_length; address += transfer_length; } kfree(data); return 0; } s32 _do_i2c_write(struct i2c_msg *msg, u16 addr, u8 *buffer, s32 len) { s32 ret = -1; s32 pos = 0; s32 data_length = len; s32 transfer_length = 0; u8 *data = NULL; u16 address = addr; data = kmalloc(IIC_MAX_TRANSFER_SIZE < (len + GTP_ADDR_LENGTH) ? IIC_MAX_TRANSFER_SIZE : (len + GTP_ADDR_LENGTH), GFP_KERNEL); if (data == NULL) return ERROR_MEM; msg->buf = data; while (pos != data_length) { if ((data_length - pos) > (IIC_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH)) transfer_length = IIC_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH; else transfer_length = data_length - pos; msg->buf[0] = (address >> 8) & 0xFF; msg->buf[1] = address & 0xFF; msg->len = transfer_length + GTP_ADDR_LENGTH; memcpy(&msg->buf[GTP_ADDR_LENGTH], &buffer[pos], transfer_length); ret = i2c_transfer(gt1x_i2c_client->adapter, msg, 1); if (ret != 1) { GTP_INFO("I2c Transfer error! (%d)", ret); kfree(data); return ERROR_IIC; } pos += transfer_length; address += transfer_length; } kfree(data); return 0; } s32 gt1x_i2c_test(void) { u8 retry = 0; s32 ret = -1; u32 hw_info = 0; GTP_DEBUG_FUNC(); while (retry++ < 5) { ret = gt1x_i2c_read(GTP_REG_HW_INFO, (u8 *) &hw_info, sizeof(hw_info)); if (!ret) { GTP_INFO("GTP_REG_HW_INFO : %08X", hw_info); return ret; } msleep(20); GTP_ERROR("GTP_REG_HW_INFO : %08X", hw_info); GTP_ERROR("GTP i2c test failed time %d.", retry); } return ERROR_RETRY; } s32 gt1x_i2c_read_dbl_check(u16 addr, u8 *buffer, s32 len) { u8 buf[16] = { 0 }; u8 confirm_buf[16] = { 0 }; if (len > 16) { GTP_ERROR("length %d is too long, do not beyond %d", len, (int)(sizeof(buf))); return ERROR; } memset(buf, 0xAA, 16); gt1x_i2c_read(addr, buf, len); msleep(20); memset(confirm_buf, 0, 16); gt1x_i2c_read(addr, confirm_buf, len); if (!memcmp(buf, confirm_buf, len)) { memcpy(buffer, confirm_buf, len); return 0; } GTP_ERROR("i2c read 0x%04X, %d bytes, double check failed!", addr, len); return ERROR; } /** * gt1x_get_info - Get information from ic, such as resolution and * int trigger type * Return <0: i2c failed, 0: i2c ok */ s32 gt1x_get_info(void) { u8 opr_buf[4] = { 0 }; s32 ret = 0; ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA + 1, opr_buf, 4); if (ret < 0) return ret; gt1x_abs_x_max = (opr_buf[1] << 8) + opr_buf[0]; gt1x_abs_y_max = (opr_buf[3] << 8) + opr_buf[2]; ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA + 6, opr_buf, 1); if (ret < 0) return ret; gt1x_int_type = opr_buf[0] & 0x03; GTP_INFO("X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x", gt1x_abs_x_max, gt1x_abs_y_max, gt1x_int_type); return 0; } /** * gt1x_send_cfg - Send gt1x_config Function. * @config: pointer of the configuration array. * @cfg_len: length of configuration array. * Return 0--success,non-0--fail. */ s32 gt1x_send_cfg(u8 *config, int cfg_len) { #ifdef CONFIG_GTP_DRIVER_SEND_CFG int i; s32 ret = 0; s32 retry = 0; u16 checksum = 0; GTP_DEBUG("Driver Send Config, length: %d", cfg_len); for (i = 0; i < cfg_len - 3; i += 2) checksum += (config[i] << 8) + config[i + 1]; if (!checksum) { GTP_ERROR("Invalid config, all of the bytes is zero!"); return -1; } checksum = 0 - checksum; GTP_DEBUG("Config checksum: 0x%04X", checksum); config[cfg_len - 3] = (checksum >> 8) & 0xFF; config[cfg_len - 2] = checksum & 0xFF; config[cfg_len - 1] = 0x01; while (retry++ < 5) { ret = gt1x_i2c_write(GTP_REG_CONFIG_DATA, config, cfg_len); if (!ret) { /* must 200ms, wait for storing config into flash. */ msleep(200); GTP_DEBUG("Send config successfully!"); return 0; } } GTP_ERROR("Send config failed!"); return ret; #endif return 0; } s32 gt1x_init_panel(void) { s32 ret = 0; u8 cfg_len = 0; #ifdef CONFIG_GTP_DRIVER_SEND_CFG u8 sensor_id = 0; const u8 cfg_grp0[] = GTP_CFG_GROUP0; const u8 cfg_grp1[] = GTP_CFG_GROUP1; const u8 cfg_grp2[] = GTP_CFG_GROUP2; const u8 cfg_grp3[] = GTP_CFG_GROUP3; const u8 cfg_grp4[] = GTP_CFG_GROUP4; const u8 cfg_grp5[] = GTP_CFG_GROUP5; const u8 *cfgs[] = { cfg_grp0, cfg_grp1, cfg_grp2, cfg_grp3, cfg_grp4, cfg_grp5 }; u8 cfg_lens[] = { CFG_GROUP_LEN(cfg_grp0), CFG_GROUP_LEN(cfg_grp1), CFG_GROUP_LEN(cfg_grp2), CFG_GROUP_LEN(cfg_grp3), CFG_GROUP_LEN(cfg_grp4), CFG_GROUP_LEN(cfg_grp5) }; #ifdef CONFIG_GTP_CHARGER_SWITCH const u8 cfg_grp0_charger[] = GTP_CFG_GROUP0_CHARGER; const u8 cfg_grp1_charger[] = GTP_CFG_GROUP1_CHARGER; const u8 cfg_grp2_charger[] = GTP_CFG_GROUP2_CHARGER; const u8 cfg_grp3_charger[] = GTP_CFG_GROUP3_CHARGER; const u8 cfg_grp4_charger[] = GTP_CFG_GROUP4_CHARGER; const u8 cfg_grp5_charger[] = GTP_CFG_GROUP5_CHARGER; const u8 *cfgs_charger[] = { cfg_grp0_charger, cfg_grp1_charger, cfg_grp2_charger, cfg_grp3_charger, cfg_grp4_charger, cfg_grp5_charger }; u8 cfg_lens_charger[] = { CFG_GROUP_LEN(cfg_grp0_charger), CFG_GROUP_LEN(cfg_grp1_charger), CFG_GROUP_LEN(cfg_grp2_charger), CFG_GROUP_LEN(cfg_grp3_charger), CFG_GROUP_LEN(cfg_grp4_charger), CFG_GROUP_LEN(cfg_grp5_charger) }; #endif /* end CONFIG_GTP_CHARGER_SWITCH */ GTP_DEBUG("Config Groups Length: %d, %d, %d, %d, %d, %d", cfg_lens[0], cfg_lens[1], cfg_lens[2], cfg_lens[3], cfg_lens[4], cfg_lens[5]); sensor_id = gt1x_version.sensor_id; if (sensor_id >= 6 || cfg_lens[sensor_id] < GTP_CONFIG_MIN_LENGTH || cfg_lens[sensor_id] > GTP_CONFIG_MAX_LENGTH) { sensor_id = 0; } cfg_len = cfg_lens[sensor_id]; GTP_INFO("CTP_CONFIG_GROUP%d used, gt1x_config length: %d", sensor_id, cfg_len); if (cfg_len < GTP_CONFIG_MIN_LENGTH || cfg_len > GTP_CONFIG_MAX_LENGTH) { GTP_ERROR("CTP_CONFIG_GROUP%d is INVALID CONFIG GROUP!\n", sensor_id + 1); /* NO Config sent. You need to check you header * file CFG_GROUP section */ return -1; } memset(gt1x_config, 0, sizeof(gt1x_config)); memcpy(gt1x_config, cfgs[sensor_id], cfg_len); /* clear the flag, avoid failure when send the_config of driver. */ gt1x_config[0] &= 0x7F; #ifdef CONFIG_GTP_CUSTOM_CFG gt1x_config[RESOLUTION_LOC] = (u8) tpd_dts_data.tpd_resolution[0]; gt1x_config[RESOLUTION_LOC + 1] = (u8) (tpd_dts_data.tpd_resolution[0] >> 8); gt1x_config[RESOLUTION_LOC + 2] = (u8) tpd_dts_data.tpd_resolution[1]; gt1x_config[RESOLUTION_LOC + 3] = (u8) (tpd_dts_data.tpd_resolution[1] >> 8); GTP_INFO("Res: %d * %d, trigger: %d", tpd_dts_data.tpd_resolution[0], tpd_dts_data.tpd_resolution[1], GTP_INT_TRIGGER); if (GTP_INT_TRIGGER == 0) { /* RISING */ gt1x_config[TRIGGER_LOC] &= 0xfe; } else if (GTP_INT_TRIGGER == 1) { /* FALLING */ gt1x_config[TRIGGER_LOC] |= 0x01; } #endif /* END CONFIG_GTP_CUSTOM_CFG */ #ifdef CONFIG_GTP_CHARGER_SWITCH GTP_DEBUG("Charger Config Groups Length: %d, %d, %d, %d, %d, %d", cfg_lens_charger[0], cfg_lens_charger[1], cfg_lens_charger[2], cfg_lens_charger[3], cfg_lens_charger[4], cfg_lens_charger[5]); memset(gt1x_config_charger, 0, sizeof(gt1x_config_charger)); if (cfg_lens_charger[sensor_id] == cfg_len) memcpy(gt1x_config_charger, cfgs_charger[sensor_id], cfg_len); /* clear the flag, avoid failure when send the config of driver. */ gt1x_config_charger[0] &= 0x7F; #ifdef CONFIG_GTP_CUSTOM_CFG gt1x_config_charger[RESOLUTION_LOC] = (u8) tpd_dts_data.tpd_resolution[0]; gt1x_config_charger[RESOLUTION_LOC + 1] = (u8) (tpd_dts_data.tpd_resolution[0] >> 8); gt1x_config_charger[RESOLUTION_LOC + 2] = (u8) tpd_dts_data.tpd_resolution[1]; gt1x_config_charger[RESOLUTION_LOC + 3] = (u8) (tpd_dts_data.tpd_resolution[1] >> 8); if (GTP_INT_TRIGGER == 0) { /* RISING */ gt1x_config_charger[TRIGGER_LOC] &= 0xfe; } else if (GTP_INT_TRIGGER == 1) { /* FALLING */ gt1x_config_charger[TRIGGER_LOC] |= 0x01; } #endif /* END CONFIG_GTP_CUSTOM_CFG */ if (cfg_lens_charger[sensor_id] != cfg_len) memset(gt1x_config_charger, 0, sizeof(gt1x_config_charger)); #endif /* END CONFIG_GTP_CHARGER_SWITCH */ #else /* DRIVER NOT SEND CONFIG */ cfg_len = GTP_CONFIG_MAX_LENGTH; ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA, gt1x_config, cfg_len); if (ret < 0) return ret; #endif /* END CONFIG_GTP_DRIVER_SEND_CFG */ GTP_DEBUG_FUNC(); /* match resolution when gt1x_abs_x_max & gt1x_abs_y_max * have been set already */ if ((gt1x_abs_x_max == 0) && (gt1x_abs_y_max == 0)) { gt1x_abs_x_max = (gt1x_config[RESOLUTION_LOC + 1] << 8) + gt1x_config[RESOLUTION_LOC]; gt1x_abs_y_max = (gt1x_config[RESOLUTION_LOC + 3] << 8) + gt1x_config[RESOLUTION_LOC + 2]; gt1x_int_type = (gt1x_config[TRIGGER_LOC]) & 0x03; gt1x_wakeup_level = !(gt1x_config[MODULE_SWITCH3_LOC] & 0x20); } else { gt1x_config[RESOLUTION_LOC] = (u8) gt1x_abs_x_max; gt1x_config[RESOLUTION_LOC + 1] = (u8) (gt1x_abs_x_max >> 8); gt1x_config[RESOLUTION_LOC + 2] = (u8) gt1x_abs_y_max; gt1x_config[RESOLUTION_LOC + 3] = (u8) (gt1x_abs_y_max >> 8); set_reg_bit(gt1x_config[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level); gt1x_config[TRIGGER_LOC] = (gt1x_config[TRIGGER_LOC] & 0xFC) | gt1x_int_type; #ifdef CONFIG_GTP_CHARGER_SWITCH gt1x_config_charger[RESOLUTION_LOC] = (u8) gt1x_abs_x_max; gt1x_config_charger[RESOLUTION_LOC + 1] = (u8) (gt1x_abs_x_max >> 8); gt1x_config_charger[RESOLUTION_LOC + 2] = (u8) gt1x_abs_y_max; gt1x_config_charger[RESOLUTION_LOC + 3] = (u8) (gt1x_abs_y_max >> 8); set_reg_bit(gt1x_config[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level); gt1x_config[TRIGGER_LOC] = (gt1x_config[TRIGGER_LOC] & 0xFC) | gt1x_int_type; #endif } GTP_INFO("X_MAX=%d,Y_MAX=%d,TRIGGER=0x%02x,WAKEUP_LEVEL=%d", gt1x_abs_x_max, gt1x_abs_y_max, gt1x_int_type, gt1x_wakeup_level); gt1x_cfg_length = cfg_len; ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); return ret; } void gt1x_select_addr(void) { GTP_GPIO_OUTPUT(GTP_RST_PORT, 0); msleep(20); GTP_GPIO_OUTPUT(GTP_INT_PORT, gt1x_i2c_client->addr == 0x14); msleep(20); GTP_GPIO_OUTPUT(GTP_RST_PORT, 1); } s32 gt1x_reset_guitar(void) { s32 ret = 0; GTP_INFO("GTP RESET!\n"); if (addr_selected == 1) { addr_selected = 0; } else { /* select i2c address */ gt1x_select_addr(); msleep(20); /*must >= 6ms*/ } /* int synchronization */ if (gt1x_chip_type == CHIP_TYPE_GT2X) { /* for GT2X */ } else { GTP_GPIO_OUTPUT(GTP_INT_PORT, 0); msleep(50); GTP_GPIO_AS_INT(GTP_INT_PORT); } #ifdef CONFIG_GTP_ESD_PROTECT ret = gt1x_init_ext_watchdog(); #else ret = gt1x_i2c_test(); #endif return ret; } /** * gt1x_read_version - Read gt1x version info. * @ver_info: address to store version info * Return 0-succeed. */ s32 gt1x_read_version(struct gt1x_version_info *ver_info) { s32 ret = -1; u8 buf[12] = { 0 }; u32 mask_id = 0; u32 patch_id = 0; u8 product_id[5] = { 0 }; u8 sensor_id = 0; u8 match_opt = 0; int i, retry = 3; u8 checksum = 0; GTP_DEBUG_FUNC(); while (retry--) { ret = gt1x_i2c_read_dbl_check(GTP_REG_VERSION, buf, sizeof(buf)); if (!ret) { checksum = 0; for (i = 0; i < sizeof(buf); i++) checksum += buf[i]; if (checksum == 0 && /* first 3 bytes must be number or char */ /*sensor id == 0xFF, retry */ IS_NUM_OR_CHAR(buf[0]) && IS_NUM_OR_CHAR(buf[1]) && IS_NUM_OR_CHAR(buf[2]) && buf[10] != 0xFF) { break; } GTP_ERROR("GTP read version failed!(checksum error)"); } else { GTP_ERROR("GTP read version failed!"); } GTP_DEBUG("GTP reread version : %d", retry); msleep(100); } if (retry <= 0) return -1; mask_id = (u32) ((buf[7] << 16) | (buf[8] << 8) | buf[9]); patch_id = (u32) ((buf[4] << 16) | (buf[5] << 8) | buf[6]); memcpy(product_id, buf, 4); sensor_id = buf[10] & 0x0F; match_opt = (buf[10] >> 4) & 0x0F; GTP_INFO("IC VERSION: GT%s_%04X(Patch)_%04X(Mask)_%02X(SensorID)", product_id, patch_id >> 8, mask_id >> 8, sensor_id); if (ver_info != NULL) { ver_info->mask_id = mask_id; ver_info->patch_id = patch_id; memcpy(ver_info->product_id, product_id, 5); ver_info->sensor_id = sensor_id; ver_info->match_opt = match_opt; } return 0; } /** * gt1x_get_chip_type - get chip type . * * different chip synchronize in different way, */ s32 gt1x_get_chip_type(void) { u8 opr_buf[4] = { 0x00 }; u8 gt1x_data[] = { 0x02, 0x08, 0x90, 0x00 }; u8 gt9l_data[] = { 0x01, 0x10, 0x90, 0x00 }; s32 ret = -1; /* chip type already exist */ if (gt1x_chip_type != CHIP_TYPE_NONE) return 0; /* read hardware */ ret = gt1x_i2c_read_dbl_check(GTP_REG_HW_INFO, opr_buf, sizeof(opr_buf)); if (ret) { GTP_ERROR("I2c communication error."); return -1; } /* find chip type */ if (!memcmp(opr_buf, gt1x_data, sizeof(gt1x_data))) gt1x_chip_type = CHIP_TYPE_GT1X; else if (!memcmp(opr_buf, gt9l_data, sizeof(gt9l_data))) gt1x_chip_type = CHIP_TYPE_GT2X; if (gt1x_chip_type != CHIP_TYPE_NONE) { GTP_INFO("Chip Type: %s", (gt1x_chip_type == CHIP_TYPE_GT1X) ? "GT1X" : "GT2X"); return 0; } else { return -1; } } /** * gt1x_enter_sleep - Eter sleep function. * * Returns 0--success,non-0--fail. */ s32 gt1x_enter_sleep(void) { s32 ret = ERROR; if (gt1x_chip_type == CHIP_TYPE_GT2X) { /*Store bak ref*/ /*ret = gt1x_bak_ref_proc(GTP_BAK_REF_STORE);*/ if (ret) GTP_ERROR("[%s]Store bak ref failed.", __func__); } #ifdef CONFIG_GTP_POWER_CTRL_SLEEP gt1x_power_switch(SWITCH_OFF); GTP_INFO("GTP enter sleep by poweroff!"); return 0; #else { s32 retry = 0; if (gt1x_wakeup_level == 1) { /* high level wakeup */ GTP_GPIO_OUTPUT(GTP_INT_PORT, 0); } msleep(20); while (retry++ < 5) { if (!gt1x_send_cmd(GTP_CMD_SLEEP, 0)) { GTP_INFO("GTP enter sleep!"); return 0; } msleep(20); } GTP_ERROR("GTP send sleep cmd failed."); return -1; } #endif } /** * gt1x_wakeup_sleep - wakeup from sleep mode Function. * * Return: 0--success,non-0--fail. */ s32 gt1x_wakeup_sleep(void) { #ifndef CONFIG_GTP_POWER_CTRL_SLEEP u8 retry = 0; s32 ret = -1; #endif GTP_DEBUG("GTP wakeup begin."); /* power manager unit control the procedure */ #ifdef CONFIG_GTP_POWER_CTRL_SLEEP gt1x_power_reset2(); GTP_INFO("Ic wakeup by poweron"); return 0; #else /* gesture wakeup & int port wakeup */ while (retry++ < 2) { /* wake up through int port */ GTP_GPIO_OUTPUT(GTP_INT_PORT, gt1x_wakeup_level); msleep(20); if (gt1x_chip_type == CHIP_TYPE_GT2X) { /* for GT2X */ } else { /* Synchronize int IO */ GTP_GPIO_OUTPUT(GTP_INT_PORT, 0); msleep(50); GTP_GPIO_AS_INT(GTP_INT_PORT); } /* test i2c */ ret = gt1x_i2c_test(); if (!ret) { /* i2c test succeed, init externl watchdog */ #ifdef CONFIG_GTP_ESD_PROTECT ret = gt1x_init_ext_watchdog(); if (!ret) break; #else break; #endif } } if (ret) { /* wakeup failed , try waking up by resetting */ while (retry--) { ret = gt1x_reset_guitar(); if (!ret) break; } } if (ret) { GTP_ERROR("GTP wakeup sleep failed."); return -1; } GTP_INFO("GTP wakeup sleep."); return 0; #endif /* END CONFIG_GTP_POWER_CTRL_SLEEP */ } /** * gt1x_send_cmd - seng cmd * must write data & checksum first * byte content * 0 cmd * 1 data * 2 checksum * Returns 0 - succeed,non-0 - failed */ s32 gt1x_send_cmd(u8 cmd, u8 data) { s32 ret; static DEFINE_MUTEX(cmd_mutex); u8 buffer[3] = { cmd, data, 0 }; mutex_lock(&cmd_mutex); buffer[2] = (u8) ((0 - cmd - data) & 0xFF); ret = gt1x_i2c_write(GTP_REG_CMD + 1, &buffer[1], 2); ret |= gt1x_i2c_write(GTP_REG_CMD, &buffer[0], 1); msleep(50); mutex_unlock(&cmd_mutex); return ret; } /** * gt1x_power_reset2 - compare with gt1x_power_reset(), remove irq operation * additional irq operation may lead to flow: enable->irq(disable)->enable * if irq and second enable are very close, it could lead to touch hang */ void gt1x_power_reset2(void) { s32 i = 0; s32 ret = 0; if (is_resetting || update_info.status) return; GTP_INFO("force_reset_guitar"); is_resetting = 1; gt1x_power_switch(SWITCH_OFF); msleep(30); gt1x_power_switch(SWITCH_ON); msleep(30); for (i = 0; i < 5; i++) { ret = gt1x_reset_guitar(); if (ret < 0) continue; ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); if (ret < 0) { msleep(500); continue; } break; } is_resetting = 0; } void gt1x_power_reset(void) { s32 i = 0; s32 ret = 0; if (is_resetting || update_info.status) return; GTP_INFO("force_reset_guitar"); is_resetting = 1; gt1x_irq_disable(); gt1x_power_switch(SWITCH_OFF); msleep(30); gt1x_power_switch(SWITCH_ON); msleep(30); for (i = 0; i < 5; i++) { ret = gt1x_reset_guitar(); if (ret < 0) continue; ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); if (ret < 0) { msleep(500); continue; } break; } gt1x_irq_enable(); is_resetting = 0; } s32 gt1x_request_event_handler(void) { s32 ret = -1; u8 rqst_data = 0; ret = gt1x_i2c_read(GTP_REG_RQST, &rqst_data, 1); if (ret) { GTP_ERROR("I2C transfer error. errno:%d", ret); return -1; } GTP_DEBUG("Request state:0x%02x.", rqst_data); switch (rqst_data & 0x0F) { case GTP_RQST_CONFIG: GTP_INFO("Request Config."); ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); if (ret) { GTP_ERROR("Send gt1x_config error."); } else { GTP_INFO("Send gt1x_config success."); rqst_data = GTP_RQST_RESPONDED; gt1x_i2c_write(GTP_REG_RQST, &rqst_data, 1); } break; case GTP_RQST_RESET: GTP_INFO("Request Reset."); gt1x_reset_guitar(); rqst_data = GTP_RQST_RESPONDED; gt1x_i2c_write(GTP_REG_RQST, &rqst_data, 1); break; case GTP_RQST_BAK_REF: GTP_INFO("Request Ref."); break; case GTP_RQST_MAIN_CLOCK: GTP_INFO("Request main clock."); break; #if 0 #ifdef CONFIG_GTP_HOTKNOT case GTP_RQST_HOTKNOT_CODE: GTP_INFO("Request HotKnot Code."); break; #endif #endif default: break; } return 0; } /** * gt1x_touch_event_handler - handle touch event * (pen event, key event, finger touch envent) * @data: * Return <0: failed, 0: succeed */ s32 gt1x_touch_event_handler(u8 *data, struct input_dev *dev, struct input_dev *pen_dev) { u8 touch_data[1 + 8 * DEFAULT_MAX_TOUCH_NUM + 2] = { 0 }; u8 touch_num = 0; u16 cur_event = 0; static u16 pre_event; static u16 pre_index; u8 key_value = 0; u8 *coor_data = NULL; s32 input_x = 0; s32 input_y = 0; s32 input_w = 0; s32 id = 0; s32 i = 0; s32 ret = -1; GTP_DEBUG_FUNC(); touch_num = data[0] & 0x0f; if (touch_num > tpd_dts_data.touch_max_num) { GTP_ERROR("Illegal finger number = %d!", touch_num); return ERROR_VALUE; } memcpy(touch_data, data, 11); /* read the remaining coor data */ if (touch_num > 1) { ret = gt1x_i2c_read((GTP_READ_COOR_ADDR + 11), &touch_data[11], 1 + 8 * touch_num + 2 - 11); if (ret) { GTP_ERROR("Read coordinate i2c error."); return ret; } } /* checksum */ /* * cur_event , pre_event bit defination * bit4 bit3 bit2 bit1 bit0 * hover stylus_key stylus key touch * */ key_value = touch_data[1 + 8 * touch_num]; /* check current event */ if ((touch_data[0] & 0x10) && key_value) { #ifdef CONFIG_GTP_HAVE_STYLUS_KEY /* get current key states */ if (key_value & 0xF0) SET_BIT(cur_event, BIT_STYLUS_KEY); else if (key_value & 0x0F) SET_BIT(cur_event, BIT_TOUCH_KEY); #endif if (tpd_dts_data.use_tpd_button) { /* get current key states */ if (key_value & 0xF0) SET_BIT(cur_event, BIT_STYLUS_KEY); else if (key_value & 0x0F) SET_BIT(cur_event, BIT_TOUCH_KEY); } } #ifdef CONFIG_GTP_WITH_STYLUS else if (touch_data[1] & 0x80) SET_BIT(cur_event, BIT_STYLUS); #endif else if (touch_num) SET_BIT(cur_event, BIT_TOUCH); /* handle current event and pre-event */ #ifdef CONFIG_GTP_HAVE_STYLUS_KEY if (CHK_BIT(cur_event, BIT_STYLUS_KEY) || CHK_BIT(pre_event, BIT_STYLUS_KEY)) { /* * 0x10 -- stylus key0 down * 0x20 -- stylus key1 down * 0x40 -- stylus key0 & stylus key1 both down */ u8 temp = (key_value & 0x40) ? 0x30 : key_value; for (i = 4; i < 6; i++) input_report_key(pen_dev, gt1x_stylus_key_array[i - 4], temp & (0x01 << i)); GTP_DEBUG("Stulus key event."); } #endif #ifdef CONFIG_GTP_WITH_STYLUS if (CHK_BIT(cur_event, BIT_STYLUS)) { coor_data = &touch_data[1]; id = coor_data[0] & 0x7F; input_x = coor_data[1] | (coor_data[2] << 8); input_y = coor_data[3] | (coor_data[4] << 8); input_w = coor_data[5] | (coor_data[6] << 8); input_x = GTP_WARP_X(gt1x_abs_x_max, input_x); input_y = GTP_WARP_Y(gt1x_abs_y_max, input_y); GTP_DEBUG("Pen touch DOWN."); gt1x_pen_down(input_x, input_y, input_w, 0); } else if (CHK_BIT(pre_event, BIT_STYLUS)) { GTP_DEBUG("Pen touch UP."); gt1x_pen_up(0); } #endif if (tpd_dts_data.use_tpd_button) { if (CHK_BIT(cur_event, BIT_TOUCH_KEY) || CHK_BIT(pre_event, BIT_TOUCH_KEY)) { for (i = 0; i < tpd_dts_data.tpd_key_num; i++) input_report_key(dev, tpd_dts_data.tpd_key_local[i], key_value & (0x01 << i)); if (CHK_BIT(cur_event, BIT_TOUCH_KEY)) GTP_DEBUG("Key Down."); else GTP_DEBUG("Key Up."); } } /* finger touch event*/ if (CHK_BIT(cur_event, BIT_TOUCH)) { u8 report_num = 0; coor_data = &touch_data[1]; id = coor_data[0] & 0x0F; for (i = 0; i < tpd_dts_data.touch_max_num; i++) { if (i == id) { input_x = coor_data[1] | (coor_data[2] << 8); input_y = coor_data[3] | (coor_data[4] << 8); input_w = coor_data[5] | (coor_data[6] << 8); input_x = GTP_WARP_X(gt1x_abs_x_max, input_x); input_y = GTP_WARP_Y(gt1x_abs_y_max, input_y); GTP_DEBUG("(%d)(%d, %d)[%d]", id, input_x, input_y, input_w); gt1x_touch_down(input_x, input_y, input_w, i); if (report_num++ < touch_num) { coor_data += 8; id = coor_data[0] & 0x0F; } pre_index |= 0x01 << i; } else if (pre_index & (0x01 << i)) { #ifdef CONFIG_GTP_ICS_SLOT_REPORT gt1x_touch_up(i); #endif pre_index &= ~(0x01 << i); } } } else if (CHK_BIT(pre_event, BIT_TOUCH)) { #ifdef CONFIG_GTP_ICS_SLOT_REPORT int cycles = pre_index < 3 ? 3 : tpd_dts_data.touch_max_num; input_report_key(tpd->dev, BTN_TOUCH, 0); for (i = 0; i < cycles; i++) { if (pre_index >> i & 0x01) gt1x_touch_up(i); } #else input_report_key(tpd->dev, BTN_TOUCH, 0); gt1x_touch_up(0); #endif GTP_DEBUG("Released Touch."); pre_index = 0; } /* input sync report */ if (CHK_BIT(cur_event, BIT_STYLUS_KEY | BIT_STYLUS) || CHK_BIT(pre_event, BIT_STYLUS_KEY | BIT_STYLUS)) { input_sync(pen_dev); } if (CHK_BIT(cur_event, BIT_TOUCH_KEY | BIT_TOUCH) || CHK_BIT(pre_event, BIT_TOUCH_KEY | BIT_TOUCH)) { input_sync(dev); } if (!pre_event && !cur_event) GTP_DEBUG("Additional Int Pulse."); else pre_event = cur_event; return 0; } #ifdef CONFIG_GTP_WITH_STYLUS struct input_dev *pen_dev; void gt1x_pen_init(void) { s32 ret = 0; pen_dev = input_allocate_device(); if (pen_dev == NULL) { GTP_ERROR("Failed to allocate input device for pen/stylus."); return; } pen_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); pen_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); set_bit(BTN_TOOL_PEN, pen_dev->keybit); set_bit(INPUT_PROP_DIRECT, pen_dev->propbit); #ifdef CONFIG_GTP_HAVE_STYLUS_KEY input_set_capability(pen_dev, EV_KEY, BTN_STYLUS); input_set_capability(pen_dev, EV_KEY, BTN_STYLUS2); #endif input_set_abs_params(pen_dev, ABS_MT_POSITION_X, 0, gt1x_abs_x_max, 0, 0); input_set_abs_params(pen_dev, ABS_MT_POSITION_Y, 0, gt1x_abs_y_max, 0, 0); input_set_abs_params(pen_dev, ABS_MT_PRESSURE, 0, 255, 0, 0); input_set_abs_params(pen_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0); input_set_abs_params(pen_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0); pen_dev->name = "goodix-pen"; pen_dev->phys = "input/ts"; pen_dev->id.bustype = BUS_I2C; ret = input_register_device(pen_dev); if (ret) { GTP_ERROR("Register %s input device failed", pen_dev->name); return; } } void gt1x_pen_down(s32 x, s32 y, s32 size, s32 id) { input_report_key(pen_dev, BTN_TOOL_PEN, 1); #ifdef CONFIG_GTP_CHANGE_X2Y GTP_SWAP(x, y); #endif #ifdef CONFIG_GTP_ICS_SLOT_REPORT input_mt_slot(pen_dev, id); input_report_abs(pen_dev, ABS_MT_PRESSURE, size); input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, size); input_report_abs(pen_dev, ABS_MT_TRACKING_ID, id); input_report_abs(pen_dev, ABS_MT_POSITION_X, x); input_report_abs(pen_dev, ABS_MT_POSITION_Y, y); #else input_report_key(pen_dev, BTN_TOUCH, 1); if ((!size) && (!id)) { /* for virtual button */ input_report_abs(pen_dev, ABS_MT_PRESSURE, 100); input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, 100); } else { input_report_abs(pen_dev, ABS_MT_PRESSURE, size); input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, size); input_report_abs(pen_dev, ABS_MT_TRACKING_ID, id); } input_report_abs(pen_dev, ABS_MT_POSITION_X, x); input_report_abs(pen_dev, ABS_MT_POSITION_Y, y); input_mt_sync(pen_dev); #endif } void gt1x_pen_up(s32 id) { input_report_key(pen_dev, BTN_TOOL_PEN, 0); #ifdef CONFIG_GTP_ICS_SLOT_REPORT input_mt_slot(pen_dev, id); input_report_abs(pen_dev, ABS_MT_TRACKING_ID, -1); #else input_report_key(pen_dev, BTN_TOUCH, 0); input_mt_sync(pen_dev); #endif } #endif /** * PROXIMITY */ #ifdef CONFIG_GTP_PROXIMITY #define GTP_REG_PROXIMITY_VALID 0x814E #define GTP_REG_PROXIMITY_ENABLE 0x8049 u8 gt1x_proximity_flag; u8 gt1x_proximity_detect = 1; /*0-->close ; 1--> far away*/ static struct hwmsen_object obj_ps; s32 gt1x_ps_operate(void *self, u32 command, void *buff_in, s32 size_in, void *buff_out, s32 size_out, s32 *actualout) { s32 err = 0; s32 value; hwm_sensor_data *sensor_data; GTP_INFO("psensor operator cmd:%d", command); switch (command) { case SENSOR_DELAY: if ((buff_in == NULL) || (size_in < sizeof(int))) { GTP_ERROR("Set delay parameter error!"); err = -EINVAL; } break; case SENSOR_ENABLE: if ((buff_in == NULL) || (size_in < sizeof(int))) { GTP_ERROR("Enable sensor parameter error!"); err = -EINVAL; } else { value = *(int *)buff_in; err = gt1x_enable_ps(value); } break; case SENSOR_GET_DATA: if ((buff_out == NULL) || (size_out < sizeof(hwm_sensor_data))) { GTP_ERROR("Get sensor data parameter error!"); err = -EINVAL; } else { sensor_data = (hwm_sensor_data *) buff_out; sensor_data->values[0] = gt1x_get_ps_value(); sensor_data->value_divide = 1; sensor_data->status = SENSOR_STATUS_ACCURACY_MEDIUM; } break; default: GTP_ERROR("ps operate no this parameter %d!\n", command); err = -1; break; } return err; } void gt1x_ps_init(void) { s32 err = 0; /*obj_ps.self = cm3623_obj;*/ obj_ps.polling = 0; /*0--interrupt mode;1--polling mode;*/ obj_ps.sensor_operate = gt1x_ps_operate; err = hwmsen_attach(ID_PROXIMITY, &obj_ps); if (err) GTP_ERROR("hwmsen attach fail, return:%d.", err); } void gt1x_report_ps(u8 state) { s32 ret = -1; hwm_sensor_data sensor_data; /*get raw data*/ GTP_DEBUG("P-sensor state:%s", state ? "AWAY" : "NEAR"); /*map and store data to hwm_sensor_data*/ sensor_data.values[0] = state; sensor_data.value_divide = 1; sensor_data.status = SENSOR_STATUS_ACCURACY_MEDIUM; /*report to the up-layer*/ ret = hwmsen_get_interrupt_data(ID_PROXIMITY, &sensor_data); if (ret) GTP_ERROR("Call hwmsen_get_interrupt_data fail = %d\n", ret); } static s32 gt1x_get_ps_value(void) { return gt1x_proximity_detect; } static s32 gt1x_enable_ps(s32 enable) { u8 state; s32 ret = -1; GTP_INFO("TPD proximity function to be %s.", enable ? "on" : "off"); state = enable ? 1 : 0; ret = gt1x_i2c_write(GTP_REG_PROXIMITY_ENABLE, &state, 1); if (ret) GTP_ERROR("TPD %s proximity cmd failed.", state ? "enable" : "disable"); if (enable) { if (!ret) { gt1x_proximity_flag = 1; gt1x_proximity_detect = 1; } } else { gt1x_proximity_flag = 0; } GTP_INFO("TPD proximity function %s %s.", state ? "enable" : "disable", ret ? "fail" : "success"); return ret; } int gt1x_prox_event_handler(u8 *data) { u8 proximity_status = 0; if (gt1x_proximity_flag) { GTP_DEBUG("REG INDEX[0x814E]:0x%02X\n", data[0]); proximity_status = (data[0] & 0x60) ? 0 : 1; if (proximity_status != gt1x_proximity_detect) { gt1x_report_ps(proximity_status); gt1x_proximity_detect = proximity_status; } if (proximity_status == 0) return 1; else return 0; } return -1; } #endif /*CONFIG_GTP_PROXIMITY */ /** * ESD PROTECT */ #ifdef CONFIG_GTP_ESD_PROTECT static int esd_work_cycle = 200; static struct delayed_work esd_check_work; static int esd_running; struct mutex esd_lock; static void gt1x_esd_check_func(struct work_struct *); void gt1x_init_esd_protect(void) { /*HZ: clock ticks in 1 second generated by system*/ esd_work_cycle = 2 * HZ; GTP_DEBUG("Clock ticks for an esd cycle: %d", esd_work_cycle); INIT_DELAYED_WORK(&esd_check_work, gt1x_esd_check_func); mutex_init(&esd_lock); } void gt1x_deinit_esd_protect(void) { gt1x_esd_switch(SWITCH_OFF); } s32 gt1x_init_ext_watchdog(void) { s32 ret; u8 value = 0xAA; GTP_DEBUG("Init external watchdog."); ret = gt1x_send_cmd(GTP_CMD_ESD, 0); ret |= gt1x_i2c_write(GTP_REG_ESD_CHECK, &value, 1); return ret; } void gt1x_esd_switch(s32 on) { mutex_lock(&esd_lock); if (on == SWITCH_ON) { /* switch on esd check */ if (!esd_running) { esd_running = 1; GTP_INFO("Esd protector started!"); queue_delayed_work(gt1x_workqueue, &esd_check_work, esd_work_cycle); } } else { /* switch off esd check */ if (esd_running) { esd_running = 0; GTP_INFO("Esd protector stopped!"); cancel_delayed_work(&esd_check_work); } } mutex_unlock(&esd_lock); } static void gt1x_esd_check_func(struct work_struct *work) { s32 i = 0; s32 ret = -1; u8 esd_buf[4] = { 0 }; if (!esd_running) { GTP_INFO("Esd protector suspended!"); return; } for (i = 0; i < 3; i++) { ret = gt1x_i2c_read(GTP_REG_CMD, esd_buf, 4); GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8043 = 0x%02X", esd_buf[0], esd_buf[3]); if (!ret && esd_buf[0] != 0xAA && esd_buf[3] == 0xAA) break; msleep(50); } if (i < 3) { /* IC works normally, Write 0x8040 0xAA, feed the watchdog */ gt1x_send_cmd(GTP_CMD_ESD, 0); } else { if (esd_running) { GTP_INFO("IC works abnormally! Process reset guitar."); memset(esd_buf, 0x01, sizeof(esd_buf)); gt1x_i2c_write(0x4226, esd_buf, sizeof(esd_buf)); msleep(50); gt1x_power_reset(); } else { GTP_INFO("Esd protector suspended, no need reset!"); } } mutex_lock(&esd_lock); if (esd_running) queue_delayed_work(gt1x_workqueue, &esd_check_work, esd_work_cycle); else GTP_INFO("Esd protector suspended!"); mutex_unlock(&esd_lock); } #endif /** * CHARGER SWITCH */ #ifdef CONFIG_GTP_CHARGER_SWITCH u8 gt1x_config_charger[GTP_CONFIG_MAX_LENGTH] = { 0 }; static struct delayed_work charger_switch_work; static int charger_work_cycle = 200; static spinlock_t charger_lock; static int charger_running; static void gt1x_charger_work_func(struct work_struct *); void gt1x_init_charger(void) { /*HZ: clock ticks in 1 second generated by system*/ charger_work_cycle = 2 * HZ; GTP_DEBUG("Clock ticks for an charger cycle: %d", charger_work_cycle); INIT_DELAYED_WORK(&charger_switch_work, gt1x_charger_work_func); spin_lock_init(&charger_lock); } /** * gt1x_charger_switch - switch states of charging work thread * * @on: SWITCH_ON - start work thread, SWITCH_OFF: stop . * */ void gt1x_charger_switch(s32 on) { spin_lock(&charger_lock); if (on == SWITCH_ON) { if (!charger_running) { charger_running = 1; spin_unlock(&charger_lock); GTP_INFO("Charger checker started!"); queue_delayed_work(gt1x_workqueue, &charger_switch_work, charger_work_cycle); } else { spin_unlock(&charger_lock); } } else { if (charger_running) { charger_running = 0; spin_unlock(&charger_lock); cancel_delayed_work(&charger_switch_work); GTP_INFO("Charger checker stopped!"); } else { spin_unlock(&charger_lock); } } } /** * gt1x_charger_config - check and update charging status configuration * @dir_update * 0: check before send charging status configuration * 1: directly send charging status configuration * */ void gt1x_charger_config(s32 dir_update) { static u8 chr_pluggedin; if (gt1x_get_charger_status()) { if (!chr_pluggedin || dir_update) { GTP_INFO("Charger Plugin."); if (gt1x_send_cfg(gt1x_config_charger, gt1x_cfg_length)) GTP_ERROR("Send config Plugin failed!"); if (gt1x_send_cmd(GTP_CMD_CHARGER_ON, 0)) GTP_ERROR("Update status Plugin failed!"); chr_pluggedin = 1; } } else { if (chr_pluggedin || dir_update) { GTP_INFO("Charger Plugout."); if (gt1x_send_cfg(gt1x_config, gt1x_cfg_length)) GTP_INFO("Send config Plugout failed!"); if (gt1x_send_cmd(GTP_CMD_CHARGER_OFF, 0)) GTP_ERROR("Update status Plugout failed!"); chr_pluggedin = 0; } } } static void gt1x_charger_work_func(struct work_struct *work) { if (!charger_running) { GTP_INFO("Charger checker suspended!"); return; } gt1x_charger_config(0); GTP_DEBUG("Charger check done!"); if (charger_running) queue_delayed_work(gt1x_workqueue, &charger_switch_work, charger_work_cycle); } #endif s32 gt1x_init(void) { s32 ret = -1; s32 retry = 0; u8 reg_val[1]; gt1x_power_switch(SWITCH_ON); /* select i2c address */ gt1x_select_addr(); msleep(20); addr_selected = 1; while (retry++ < 5) { gt1x_init_failed = 0; /* get chip type */ ret = gt1x_get_chip_type(); if (ret != 0) { GTP_ERROR("GTP get chip type failed!"); continue; } /* reset ic */ ret = gt1x_reset_guitar(); if (ret != 0) { GTP_ERROR("GTP reset guitar failed!"); continue; } else { tpd_load_status = 1; check_flag = true; wake_up(&init_waiter); } ret = gt1x_i2c_read_dbl_check(0x41E4, reg_val, 1); if (ret != 0) { continue; } else if (reg_val[0] != 0xBE) { GTP_ERROR("Check 0x41E4 failed."); gt1x_init_failed = 1; break; } /* read version information */ ret = gt1x_read_version(>1x_version); if (ret != 0) { GTP_ERROR("GTP get verision failed!"); gt1x_init_failed = 1; continue; } /* init and send configs */ ret = gt1x_init_panel(); if (ret != 0) { GTP_ERROR("GTP init panel failed."); continue; } else { break; } } /* if the initialization fails, set default setting */ ret |= gt1x_init_failed; if (ret) { GTP_INFO("Init failed, use default setting"); gt1x_abs_x_max = tpd_dts_data.tpd_resolution[0]; gt1x_abs_y_max = tpd_dts_data.tpd_resolution[1]; gt1x_int_type = GTP_INT_TRIGGER; gt1x_wakeup_level = GTP_WAKEUP_LEVEL; } gt1x_workqueue = create_singlethread_workqueue("gt1x_workthread"); if (gt1x_workqueue == NULL) GTP_ERROR("create workqueue failed!"); /* init auxiliary node and functions */ gt1x_init_debug_node(); #if defined(CONFIG_GTP_GESTURE_WAKEUP) || defined(CONFIG_GTP_HOTKNOT) gt1x_init_node(); #endif #ifdef CONFIG_GTP_PROXIMITY gt1x_ps_init(); #endif #ifdef CONFIG_GTP_CHARGER_SWITCH gt1x_charger_config(1); gt1x_init_charger(); gt1x_charger_switch(SWITCH_ON); #endif #ifdef CONFIG_GTP_WITH_STYLUS gt1x_pen_init(); #endif return ret; } void gt1x_deinit(void) { #ifdef CONFIG_GTP_ESD_PROTECT gt1x_deinit_esd_protect(); #endif #ifdef CONFIG_GTP_CHARGER_SWITCH gt1x_charger_switch(SWITCH_OFF); #endif if (gt1x_workqueue) destroy_workqueue(gt1x_workqueue); }