/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2021 MediaTek Inc. */ #include #include #include #include #include #include "mtk_intf.h" #define PE40_VBUS_STEP 50 #define PE40_MIN_WATT 5000000 #define PE40_VBUS_IR_DROP_THRESHOLD 1200 static struct pe40 *pe4; int pe40_set_mivr(int uV) { int ret = 0; ret = charger_set_mivr(uV); if (ret < 0) chr_err("%s: failed, ret = %d\n", __func__, ret); return ret; } int pe40_pd_1st_request(int adapter_mv, int adapter_ma, int ma) { unsigned int oldmA = 3000000; int ret; int mivr; chr_err("pe40_pd_req:vbus:%d ibus:%d input_current:%d\n", adapter_mv, adapter_ma, ma); mivr = pe4->data.min_charger_voltage / 1000; pe40_set_mivr(pe4->data.min_charger_voltage); charger_get_input_current(&oldmA); oldmA = oldmA / 1000; if (oldmA > ma) charger_set_input_current(ma * 1000); ret = adapter_set_cap_start(adapter_mv, adapter_ma); if (oldmA < ma) charger_set_input_current(ma * 1000); if ((adapter_mv - PE40_VBUS_IR_DROP_THRESHOLD) > mivr) mivr = adapter_mv - PE40_VBUS_IR_DROP_THRESHOLD; pe40_set_mivr(mivr * 1000); pe4->pe4_input_current_limit_setting = ma * 1000; return ret; } int pe40_pd_request(int *adapter_vbus, int *adapter_ibus, int ma) { unsigned int oldmA = 3000000; unsigned int oldmivr = 4600; int ret; int mivr; int adapter_mv, adapter_ma; adapter_mv = *adapter_vbus; adapter_ma = *adapter_ibus; charger_get_mivr(&oldmivr); mivr = pe4->data.min_charger_voltage / 1000; pe40_set_mivr(pe4->data.min_charger_voltage); charger_get_input_current(&oldmA); oldmA = oldmA / 1000; if (oldmA > ma) charger_set_input_current(ma * 1000); ret = adapter_set_cap(adapter_mv, adapter_ma); chr_err("pe40_pd_req:vbus:%d ibus:%d input_current:%d ret:%d\n", adapter_mv, adapter_ma, ma, ret); if (ret == ADAPTER_REJECT) { chr_err("pe40_pd_req: reject\n"); if (pe4->cap.pdp > 0 && adapter_mv * adapter_ma > pe4->cap.pdp * 1000000) { *adapter_ibus = pe4->cap.pdp * 1000000 / adapter_mv; ret = adapter_set_cap(adapter_mv, *adapter_ibus); chr_err("pe40_pd_req:vbus:%d new_ibus:%d pdp:%d ret:%d\n", adapter_mv, *adapter_ibus, pe4->cap.pdp, ret); if (ret == ADAPTER_OK) ret = ADAPTER_ADJUST; if (ret == ADAPTER_REJECT) goto err; } else goto err; } if (oldmA < ma) charger_set_input_current(ma * 1000); if ((adapter_mv - PE40_VBUS_IR_DROP_THRESHOLD) > mivr) mivr = adapter_mv - PE40_VBUS_IR_DROP_THRESHOLD; pe40_set_mivr(mivr * 1000); pe4->pe4_input_current_limit_setting = ma * 1000; return ret; err: if (oldmA > ma) charger_set_input_current(oldmA * 1000); pe40_set_mivr(oldmivr); return ret; } int pe40_stop(void) { if (pe4 == NULL) return -1; if (pe4->is_connect == true) { adapter_set_cap_end(5000, 2000); pe40_set_mivr(pe4->data.min_charger_voltage); pmic_enable_hw_vbus_ovp(true); enable_vbus_ovp(true); chr_err("set TD true\n"); charger_enable_termination(true); pe4->state = PE40_INIT; pe4->is_connect = false; pe4->cap.nr = 0; pe4->pe4_input_current_limit = -1; pe4->pe4_input_current_limit_setting = -1; pe4->max_vbus = pe4->data.pe40_max_vbus; pe4->max_ibus = pe4->data.pe40_max_ibus; pe4->max_charger_ibus = pe4->data.pe40_max_ibus * (100 - pe4->data.ibus_err) / 100; } return 0; } int pe40_get_setting_by_watt(int *voltage, int *adapter_ibus, int *actual_current, int watt, int *ibus_current_setting) { int i; struct pps_cap *pe40_cap; int vbus = 0, ibus = 0, ibus_setting = 0; int idx = 0, ta_ibus = 0; pe40_cap = &pe4->cap; for (i = 0; i < pe40_cap->nr; i++) { int max_ibus = 0; int max_vbus = 0; chr_err("%s: %d %d %d %d\n", __func__, pe40_cap->ma[i], pe4->max_ibus, pe40_cap->max_mv[i], pe40_cap->nr); /* update upper bound */ if (pe40_cap->ma[i] > pe4->max_ibus) max_ibus = pe4->max_ibus; else max_ibus = pe40_cap->ma[i]; if (max_ibus > pe4->data.input_current_limit / 1000) max_ibus = pe4->data.input_current_limit / 1000; if (pe4->pe4_input_current_limit != -1 && max_ibus > (pe4->pe4_input_current_limit / 1000)) max_ibus = pe4->pe4_input_current_limit / 1000; pe4->max_charger_ibus = max_ibus * (100 - pe4->data.ibus_err) / 100; chr_err("pe4: %d %d %d %d %d %d\n", pe40_cap->ma[i], pe4->max_ibus, pe4->data.input_current_limit / 1000, pe4->pe4_input_current_limit / 1000, max_ibus, pe4->max_charger_ibus); if (pe40_cap->max_mv[i] > pe4->max_vbus) max_vbus = pe4->max_vbus; else max_vbus = pe40_cap->max_mv[i]; if (*voltage != 0 && *voltage <= max_vbus && *voltage >= pe40_cap->min_mv[i]) { ibus = watt / *voltage; vbus = *voltage; ibus_setting = max_ibus; ta_ibus = pe40_cap->ma[i]; if (ibus <= max_ibus) { idx = 1; break; } } /* is 5v ok ? */ if (max_vbus >= 5000 && pe40_cap->min_mv[i] <= 5000 && 5000 * pe4->max_charger_ibus >= watt) { vbus = 5000; ibus = watt / 5000; ibus_setting = max_ibus; ta_ibus = pe40_cap->ma[i]; idx = 2; break; } /* is max watt ok */ if (max_vbus * (pe4->max_charger_ibus - 200) >= watt && !pe40_cap->pwr_limit[i]) { ibus = pe4->max_charger_ibus - 200; vbus = watt / ibus; ibus_setting = max_ibus; ta_ibus = pe40_cap->ma[i]; if (vbus < pe40_cap->min_mv[i]) vbus = pe40_cap->min_mv[i]; idx = 3; break; } /* is power limit set */ if (pe40_cap->pwr_limit[i] && pe40_cap->pdp > 0) { if (watt > pe40_cap->pdp * 1000000) watt = pe40_cap->pdp * 1000000; if (max_vbus * (pe4->max_charger_ibus - 200) >= watt) { ibus = pe4->max_charger_ibus - 200; vbus = watt / ibus; ibus_setting = max_ibus; ta_ibus = pe40_cap->ma[i]; if (vbus > max_vbus) vbus = max_vbus; if (vbus < pe40_cap->min_mv[i]) vbus = pe40_cap->min_mv[i]; idx = 4; break; } } vbus = max_vbus; ibus = pe4->max_charger_ibus; ibus_setting = max_ibus; ta_ibus = pe40_cap->ma[i]; idx = 5; } *voltage = vbus; *ibus_current_setting = ibus_setting; *actual_current = ibus; *adapter_ibus = ta_ibus; chr_err("%s:[%d,%d]%d vbus:%d ibus:%d aicl:%d current:%d %d\n", __func__, idx, i, watt, *voltage, *adapter_ibus, *ibus_current_setting, ibus, pe4->max_charger_ibus); return idx; } bool pe40_is_ready(void) { int tmp; tmp = battery_get_bat_temperature(); if (!adapter_is_support_pd_pps() || tmp > pe4->data.high_temp_to_enter_pe40 || tmp < pe4->data.low_temp_to_enter_pe40) return false; return true; } int pe40_get_init_watt(void) { int ret; int vbus1, ibus1; int vbus2, ibus2; int vbat1, vbat2; int voltage = 0, input_current = 1000, actual_current = 0; int voltage1 = 0, adapter_ibus; bool is_enable = false, is_chip_enable = false; int i; voltage = 0; pe40_get_setting_by_watt(&voltage, &adapter_ibus, &actual_current, 27000000, &input_current); ret = pe40_pd_request(&voltage, &adapter_ibus, input_current); if (ret != 0 && ret != ADAPTER_REJECT && ret != ADAPTER_ADJUST) { chr_err("[pe40_i1] err:1 %d\n", ret); return -1; } for (i = 0; i < 3 ; i++) { charger_dump_registers(); msleep(100); } charger_get_ibus(&ibus1); vbus1 = battery_get_vbus(); ibus1 = ibus1 / 1000; vbat1 = battery_get_bat_voltage(); voltage1 = voltage; voltage = 0; pe40_get_setting_by_watt(&voltage, &adapter_ibus, &actual_current, 15000000, &input_current); for (i = 0; i < 6 ; i++) { ret = pe40_pd_request(&voltage, &adapter_ibus, input_current); if (ret != 0 && ret != ADAPTER_ADJUST) { chr_err("[pe40_i1] err:2 %d\n", ret); return -1; } msleep(100); charger_get_ibus(&ibus2); vbus2 = battery_get_vbus(); ibus2 = ibus2 / 1000; vbat2 = battery_get_bat_voltage(); chr_err("[pe40_vbus] vbus1:%d ibus1:%d vbus2:%d ibus2:%d watt:%d en:%d %d vbat:%d %d\n", vbus1, ibus1, vbus2, ibus2, voltage1 * ibus1, is_enable, is_chip_enable, vbat1, vbat2); } return voltage1 * ibus1; } int pe40_init_state(void) { int ret = 0; int vbus1, vbat1, ibus1; int vbus2, vbat2, ibus2; struct pps_status cap, cap1, cap2; int voltage, adapter_ibus = 1000, actual_current; int watt = 0; int i; int input_current = 0; chr_err("set TD false\n"); charger_enable_termination(false); pmic_enable_hw_vbus_ovp(false); enable_vbus_ovp(false); adapter_get_pps_cap(&pe4->cap); pe4->max_vbus = pe4->data.pe40_max_vbus; pe4->is_connect = true; voltage = 0; pe40_get_setting_by_watt(&voltage, &adapter_ibus, &actual_current, 5000000, &input_current); ret = pe40_pd_1st_request(voltage, actual_current, actual_current); if (ret != 0) { chr_err("[pe40_i0] err:1 %d\n", ret); goto retry; } /* disable charger */ charger_force_disable_powerpath(true); msleep(500); cap.output_ma = 0; cap.output_mv = 0; ret = adapter_get_output(&cap.output_mv, &cap.output_ma); pe4->can_query = true; if (ret == 0 && (cap.output_ma == -1 || cap.output_mv == -1)) pe4->can_query = false; else if (ret == ADAPTER_NOT_SUPPORT) pe4->can_query = false; else if (ret != 0) { chr_err("[pe40_i0] err:2 %d\n", ret); goto err; } chr_err("[pe40_i0] can_query:%d ret:%d\n", pe4->can_query, ret); pe4->pmic_vbus = battery_get_vbus(); pe4->TA_vbus = cap.output_mv; pe4->vbus_cali = pe4->TA_vbus - pe4->pmic_vbus; chr_err("[pe40_i0]pmic_vbus:%d TA_vbus:%d cali:%d ibus:%d\n", pe4->pmic_vbus, pe4->TA_vbus, pe4->vbus_cali, cap.output_ma); /*enable charger*/ charger_force_disable_powerpath(false); msleep(100); if (cap.output_ma > 100) { chr_err("[pe40_i0] FOD fail :%d\n", cap.output_ma); goto err; } if (pe4->can_query == true) { /* measure 1 */ voltage = 0; pe40_get_setting_by_watt(&voltage, &adapter_ibus, &actual_current, 5000000, &input_current); ret = pe40_pd_request(&voltage, &actual_current, actual_current); if (ret != 0 && ret != ADAPTER_ADJUST) { chr_err("[pe40_i0] err:3 %d\n", ret); goto err; } for (i = 0; i < 4; i++) { msleep(250); vbus1 = battery_get_vbus(); vbat1 = battery_get_bat_voltage(); charger_get_ibus(&ibus1); ibus1 = ibus1 / 1000; ret = adapter_get_output(&cap1.output_mv, &cap1.output_ma); if (ret != 0) { chr_err("[pe40_i0] err:4 %d\n", ret); goto err; } chr_err("[pe40_i11]vbus:%d ibus:%d vbat:%d TA_vbus:%d TA_ibus:%d setting:%d %d\n", vbus1, ibus1, vbat1, cap1.output_mv, cap1.output_ma, voltage, actual_current); if (abs(cap1.output_ma - actual_current) < 200) break; } /* measure 2 */ voltage = 0; pe40_get_setting_by_watt(&voltage, &adapter_ibus, &actual_current, 7500000, &input_current); ret = pe40_pd_request(&voltage, &actual_current, actual_current); if (ret != 0 && ret != ADAPTER_ADJUST) { chr_err("[pe40_i0] err:5 %d\n", ret); goto err; } for (i = 0; i < 4; i++) { msleep(250); vbus2 = battery_get_vbus(); vbat2 = battery_get_bat_voltage(); charger_get_ibus(&ibus2); ibus2 = ibus2 / 1000; ret = adapter_get_output(&cap2.output_mv, &cap2.output_ma); if (ret != 0) goto err; chr_err("[pe40_i12]vbus:%d ibus:%d vbat:%d TA_vbus:%d TA_ibus:%d setting:%d %d\n", vbus2, ibus2, vbat2, cap2.output_mv, cap2.output_ma, voltage, actual_current); if (abs(cap2.output_ma - actual_current) < 200) break; } chr_err("[pe40_i1]vbus:%d,%d,%d,%d ibus:%d,%d,%d,%d vbat:%d,%d\n", vbus1, vbus2, cap1.output_mv, cap2.output_mv, ibus1, ibus2, cap1.output_ma, cap2.output_ma, vbat1, vbat2); pe4->r_sw = abs((vbus2 - vbus1) - (vbat2 - vbat1)) * 1000 / abs(cap2.output_ma - cap1.output_ma); pe4->r_cable = abs((cap2.output_mv - cap1.output_mv) - (vbus2 - vbus1)) * 1000 / abs(cap2.output_ma - cap1.output_ma); pe4->r_cable_2 = abs(cap2.output_mv - pe4->vbus_cali - vbus2) * 1000 / abs(cap2.output_ma); pe4->r_cable_1 = abs(cap1.output_mv - pe4->vbus_cali - vbus1) * 1000 / abs(cap1.output_ma); if (pe4->r_cable_1 < pe4->data.pe40_r_cable_3a_lower) pe4->pe4_input_current_limit = 5000000; else if (pe4->r_cable_1 >= pe4->data.pe40_r_cable_3a_lower && pe4->r_cable_1 < pe4->data.pe40_r_cable_2a_lower) pe4->pe4_input_current_limit = 3000000; else if (pe4->r_cable_1 >= pe4->data.pe40_r_cable_2a_lower && pe4->r_cable_1 < pe4->data.pe40_r_cable_1a_lower) pe4->pe4_input_current_limit = 2000000; else if (pe4->r_cable_1 >= pe4->data.pe40_r_cable_1a_lower) pe4->pe4_input_current_limit = 1000000; chr_err("[pe40_i2]r_sw:%d r_cable:%d r_cable_1:%d r_cable_2:%d pe4_icl:%d\n", pe4->r_sw, pe4->r_cable, pe4->r_cable_1, pe4->r_cable_2, pe4->pe4_input_current_limit); } else chr_err("TA does not support query\n"); watt = pe40_get_init_watt(); voltage = 0; pe40_get_setting_by_watt(&voltage, &adapter_ibus, &actual_current, watt, &input_current); if (voltage <= 0) chr_err("abnormal voltage: %d\n", voltage); pe4->avbus = voltage / 10 * 10; ret = pe40_pd_request(&pe4->avbus, &adapter_ibus, input_current); if (ret != 0 && ret != ADAPTER_REJECT && ret != ADAPTER_ADJUST) { chr_err("[pe40_i0] err:6 %d\n", ret); goto err; } pe4->avbus = voltage; if (voltage > 0) pe4->ibus = watt / voltage; else pe4->ibus = 0; pe4->watt = watt; pe4->state = PE40_CC; return 0; retry: pe40_stop(); return 1; err: pe40_stop(); return 2; } int pe40_safety_check(void) { int vbus; struct pps_status cap; struct ta_status TAstatus; int ret; int tmp; int i; int high_tmp_cnt = 0; TAstatus.ocp = 0; TAstatus.otp = 0; TAstatus.ovp = 0; TAstatus.temperature = 0; /* vbus ov */ vbus = battery_get_vbus(); if (vbus - pe4->avbus >= 2000) { chr_err("[pe40_err]vbus ov :vbus:%d avbus:%d\n", vbus, pe4->avbus); goto err; } /* cable voltage drop check */ if (pe4->can_query == true) { ret = adapter_get_output(&cap.output_mv, &cap.output_ma); if (ret != 0) { chr_err("[pe40_err] err:1 %d\n", ret); goto err; } if (cap.output_mv != -1 && (cap.output_mv - vbus) > PE40_VBUS_IR_DROP_THRESHOLD) { chr_err("[pe40_err]vbus ov2 vbus:%d TAvbus:%d %d %d\n", vbus, cap.output_mv, PE40_VBUS_IR_DROP_THRESHOLD, (cap.output_mv - vbus) > PE40_VBUS_IR_DROP_THRESHOLD); goto err; } /* TA V_BUS OVP */ if (cap.output_mv >= pe4->avbus * 12 / 10) { chr_err("[pe40_err]TA vbus ovp :vbus:%d avbus:%d\n", cap.output_mv, pe4->avbus); goto err; } } /* TA Thermal */ for (i = 0; i < 3; i++) { ret = adapter_get_status(&TAstatus); if (TAstatus.temperature >= 100 && TAstatus.temperature != 0 && ret != ADAPTER_NOT_SUPPORT && ret != ADAPTER_TIMEOUT) { high_tmp_cnt++; chr_err("[pe40]TA Thermal:%d cnt:%d\n", TAstatus.temperature, high_tmp_cnt); } else if (ret == ADAPTER_TIMEOUT) { chr_err("[pe40]TA adapter_dev_get_status timeout\n"); goto err; } else break; if (high_tmp_cnt >= 3) { chr_err("[pe40_err]TA Thermal: %d thd:%d cnt:%d\n", TAstatus.temperature, 100, high_tmp_cnt); goto err; } } if (ret == ADAPTER_NOT_SUPPORT) chr_err("[pe40]TA adapter_dev_get_status not support\n"); else { if (TAstatus.ocp || TAstatus.otp || TAstatus.ovp) { chr_err("[pe40_err]TA protect: ocp:%d otp:%d ovp:%d\n", TAstatus.ocp, TAstatus.otp, TAstatus.ovp); goto err; } chr_err("PD_TA:TA protect: ocp:%d otp:%d ovp:%d tmp:%d\n", TAstatus.ocp, TAstatus.otp, TAstatus.ovp, TAstatus.temperature); } tmp = battery_get_bat_temperature(); if (tmp > pe4->data.high_temp_to_leave_pe40 || tmp < pe4->data.low_temp_to_leave_pe40) { chr_err("[pe40_err]tmp:%d threshold:%d %d\n", tmp, pe4->data.high_temp_to_leave_pe40, pe4->data.low_temp_to_leave_pe40); return 1; } return 0; err: return -1; } int pe40_cc_state(void) { int ibus = 0, vbat, ibat, vbus; int icl, ccl, cv, max_icl; int ret; int oldavbus = 0; int watt; int max_watt; int actual_current; int new_watt = 0; int adapter_ibus = 0; int input_current = 0; int icl_threshold; bool mivr_loop = false; vbat = battery_get_bat_voltage(); ibat = battery_get_bat_current_mA(); charger_get_mivr_state(&mivr_loop); charger_get_ibus(&ibus); vbus = battery_get_vbus(); ibus = ibus / 1000; icl = pe4->data.input_current_limit / 1000 * (100 - pe4->data.ibus_err) / 100; ccl = pe4->data.charging_current_limit / 1000; cv = pe4->data.battery_cv / 1000; watt = pe4->avbus * ibus; if (icl > pe4->max_charger_ibus) max_icl = pe4->max_charger_ibus; else max_icl = icl; icl_threshold = 100; max_watt = pe4->avbus * max_icl; chr_err("[pe40_cc]vbus:%d:%d,ibus:%d,ibat:%d icl:%d:%d,ccl:%d,vbat:%d,maxIbus:%d\n", pe4->avbus, vbus, ibus, ibat, icl, max_icl, ccl, vbat, pe4->max_charger_ibus); if ((mivr_loop && vbus <= 5000) || (ibus >= (max_icl - icl_threshold)) || (ibus <= (max_icl - icl_threshold * 2))) { oldavbus = pe4->avbus; if (mivr_loop && vbus <= 5000) { pe4->avbus = pe4->avbus + 50; new_watt = (pe4->avbus + 50) * icl; } else if (ibus >= (max_icl - icl_threshold)) { pe4->avbus = pe4->avbus + 50; new_watt = (pe4->avbus + 50) * ibus; } else if (ibus <= (max_icl - icl_threshold * 2)) { new_watt = pe4->avbus * pe4->ibus - 500000; pe4->avbus = pe4->avbus - 50; } ret = pe40_get_setting_by_watt(&pe4->avbus, &adapter_ibus, &actual_current, new_watt, &input_current); if (pe4->avbus <= 5000) pe4->avbus = 5000; if (abs(pe4->avbus - oldavbus) >= 50) { ret = pe40_pd_request(&pe4->avbus, &adapter_ibus, input_current); if (ret != 0 && ret != ADAPTER_REJECT && ret != ADAPTER_ADJUST) goto err; } msleep(100); vbat = battery_get_bat_voltage(); ibat = battery_get_bat_current_mA(); charger_get_ibus(&ibus); vbus = battery_get_vbus(); ibus = ibus / 1000; icl = pe4->data.input_current_limit / 1000; ccl = pe4->data.charging_current_limit / 1000; pe4->watt = pe4->avbus * ibus; pe4->vbus = vbus; pe4->ibus = ibus; } ret = pe40_safety_check(); if (ret == 1) goto retry; if (ret == -1) goto err; if (pe4->avbus * ibus <= PE40_MIN_WATT) goto leave; return 0; retry: pe40_stop(); return 1; leave: err: pe40_stop(); return 2; } int pe40_init(void) { struct pe40 *pe40 = NULL; if (pe4 == NULL) { pe40 = kzalloc(sizeof(struct pe40), GFP_KERNEL); if (pe40 == NULL) return -ENOMEM; pe4 = pe40; pe4->state = PE40_INIT; pe4->is_connect = false; pe4->data.input_current_limit = 3000000; pe4->data.charging_current_limit = 3000000; pe4->data.battery_cv = 4350000; pe4->data.min_charger_voltage = 4600000; pe4->data.pe40_max_vbus = 11000; pe4->data.pe40_max_ibus = 3000; pe4->data.ibus_err = 14; pe4->data.high_temp_to_leave_pe40 = 46; pe4->data.high_temp_to_enter_pe40 = 39; pe4->data.low_temp_to_leave_pe40 = 10; pe4->data.low_temp_to_enter_pe40 = 16; pe4->data.pe40_r_cable_1a_lower = 576; pe4->data.pe40_r_cable_2a_lower = 435; pe4->data.pe40_r_cable_3a_lower = 293; pe4->pe4_input_current_limit = -1; pe4->pe4_input_current_limit_setting = -1; pe4->max_vbus = pe4->data.pe40_max_vbus; pe4->max_ibus = pe4->data.pe40_max_ibus; pe4->max_charger_ibus = pe4->data.pe40_max_ibus * (100 - pe4->data.ibus_err) / 100; chr_err("%s: done\n", __func__); return 0; } return 1; } struct pe40_data *pe40_get_data(void) { return &pe4->data; } int pe40_set_data(struct pe40_data data) { pe4->data.input_current_limit = data.input_current_limit; pe4->data.charging_current_limit = data.charging_current_limit; pe4->data.battery_cv = data.battery_cv; pe4->data.min_charger_voltage = data.min_charger_voltage; pe4->data.pe40_max_vbus = data.pe40_max_vbus; pe4->data.pe40_max_ibus = data.pe40_max_ibus; pe4->data.ibus_err = data.ibus_err; pe4->data.high_temp_to_enter_pe40 = data.high_temp_to_enter_pe40; pe4->data.low_temp_to_enter_pe40 = data.low_temp_to_enter_pe40; pe4->data.high_temp_to_leave_pe40 = data.high_temp_to_leave_pe40; pe4->data.low_temp_to_leave_pe40 = data.low_temp_to_leave_pe40; pe4->data.pe40_r_cable_3a_lower = data.pe40_r_cable_3a_lower; pe4->data.pe40_r_cable_2a_lower = data.pe40_r_cable_2a_lower; pe4->data.pe40_r_cable_1a_lower = data.pe40_r_cable_1a_lower; chr_err("[pe4_set_data]%d %d %d %d %d %d %d %d %d %d %d %d %d %d\n", pe4->data.input_current_limit, pe4->data.charging_current_limit, pe4->data.battery_cv, pe4->data.min_charger_voltage, pe4->data.pe40_max_vbus, pe4->data.pe40_max_ibus, pe4->data.ibus_err, pe4->data.high_temp_to_enter_pe40, pe4->data.low_temp_to_enter_pe40, pe4->data.high_temp_to_leave_pe40, pe4->data.low_temp_to_leave_pe40, pe4->data.pe40_r_cable_3a_lower, pe4->data.pe40_r_cable_2a_lower, pe4->data.pe40_r_cable_1a_lower); return 0; } int pe40_set_current(void) { if (pe4->pe4_input_current_limit != -1 && pe4->pe4_input_current_limit < pe4->data.input_current_limit) pe4->data.input_current_limit = pe4->pe4_input_current_limit; if (pe4->pe4_input_current_limit_setting != -1 && pe4->pe4_input_current_limit_setting < pe4->data.input_current_limit) pe4->data.input_current_limit = pe4->pe4_input_current_limit_setting; charger_set_input_current(pe4->data.input_current_limit); charger_set_charging_current(pe4->data.charging_current_limit); return 0; } int pe40_set_cv(void) { charger_set_constant_voltage(pe4->data.battery_cv); return 0; } int pe40_run(void) { int ret = 0; pe40_set_current(); pe40_set_cv(); switch (pe4->state) { case PE40_INIT: ret = pe40_init_state(); break; case PE40_CC: ret = pe40_cc_state(); break; } return ret; }