// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015 MediaTek Inc. * Author: * Zhigang.Wei * Chunfeng.Yun */ #include #include #include #include "xhci.h" #include "xhci-mtk.h" #define SS_BW_BOUNDARY 51000 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ #define HS_BW_BOUNDARY 6144 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ #define FS_PAYLOAD_MAX 188 /* mtk scheduler bitmasks */ #define EP_BPKTS(p) ((p) & 0x3f) #define EP_BCSCOUNT(p) (((p) & 0x7) << 8) #define EP_BBM(p) ((p) << 11) #define EP_BOFFSET(p) ((p) & 0x3fff) #define EP_BREPEAT(p) (((p) & 0x7fff) << 16) static int is_fs_or_ls(enum usb_device_speed speed) { return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; } /* * get the index of bandwidth domains array which @ep belongs to. * * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, * each HS root port is treated as a single bandwidth domain, * but each SS root port is treated as two bandwidth domains, one for IN eps, * one for OUT eps. * @real_port value is defined as follow according to xHCI spec: * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc * so the bandwidth domain array is organized as follow for simplification: * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY */ static int get_bw_index(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_virt_device *virt_dev; int bw_index; virt_dev = xhci->devs[udev->slot_id]; if (udev->speed == USB_SPEED_SUPER) { if (usb_endpoint_dir_out(&ep->desc)) bw_index = (virt_dev->real_port - 1) * 2; else bw_index = (virt_dev->real_port - 1) * 2 + 1; } else { /* add one more for each SS port */ bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1; } return bw_index; } static void setup_sch_info(struct usb_device *udev, struct xhci_ep_ctx *ep_ctx, struct mu3h_sch_ep_info *sch_ep) { u32 ep_type; u32 ep_interval; u32 max_packet_size; u32 max_burst; u32 mult; u32 esit_pkts; ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); ep_interval = CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); sch_ep->esit = 1 << ep_interval; sch_ep->offset = 0; sch_ep->burst_mode = 0; if (udev->speed == USB_SPEED_HIGH) { sch_ep->cs_count = 0; /* * usb_20 spec section5.9 * a single microframe is enough for HS synchromous endpoints * in a interval */ sch_ep->num_budget_microframes = 1; sch_ep->repeat = 0; /* * xHCI spec section6.2.3.4 * @max_burst is the number of additional transactions * opportunities per microframe */ sch_ep->pkts = max_burst + 1; sch_ep->bw_cost_per_microframe = max_packet_size * sch_ep->pkts; } else if (udev->speed == USB_SPEED_SUPER) { /* usb3_r1 spec section4.4.7 & 4.4.8 */ sch_ep->cs_count = 0; esit_pkts = (mult + 1) * (max_burst + 1); if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { sch_ep->pkts = esit_pkts; sch_ep->num_budget_microframes = 1; sch_ep->repeat = 0; } if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { if (sch_ep->esit == 1) sch_ep->pkts = esit_pkts; else if (esit_pkts <= sch_ep->esit) sch_ep->pkts = 1; else sch_ep->pkts = roundup_pow_of_two(esit_pkts) / sch_ep->esit; sch_ep->num_budget_microframes = DIV_ROUND_UP(esit_pkts, sch_ep->pkts); if (sch_ep->num_budget_microframes > 1) sch_ep->repeat = 1; else sch_ep->repeat = 0; } sch_ep->bw_cost_per_microframe = max_packet_size * sch_ep->pkts; } else if (is_fs_or_ls(udev->speed)) { /* * usb_20 spec section11.18.4 * assume worst cases */ sch_ep->repeat = 0; sch_ep->pkts = 1; /* at most one packet for each microframe */ if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { sch_ep->cs_count = 3; /* at most need 3 CS*/ /* one for SS and one for budgeted transaction */ sch_ep->num_budget_microframes = sch_ep->cs_count + 2; sch_ep->bw_cost_per_microframe = max_packet_size; } if (ep_type == ISOC_OUT_EP) { /* * the best case FS budget assumes that 188 FS bytes * occur in each microframe */ sch_ep->num_budget_microframes = DIV_ROUND_UP( max_packet_size, FS_PAYLOAD_MAX); sch_ep->bw_cost_per_microframe = FS_PAYLOAD_MAX; sch_ep->cs_count = sch_ep->num_budget_microframes; } if (ep_type == ISOC_IN_EP) { /* at most need additional two CS. */ sch_ep->cs_count = DIV_ROUND_UP( max_packet_size, FS_PAYLOAD_MAX) + 2; sch_ep->num_budget_microframes = sch_ep->cs_count + 2; sch_ep->bw_cost_per_microframe = FS_PAYLOAD_MAX; } } } /* Get maximum bandwidth when we schedule at offset slot. */ static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep, u32 offset) { u32 num_esit; u32 max_bw = 0; int i; int j; num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; for (i = 0; i < num_esit; i++) { u32 base = offset + i * sch_ep->esit; for (j = 0; j < sch_ep->num_budget_microframes; j++) { if (sch_bw->bus_bw[base + j] > max_bw) max_bw = sch_bw->bus_bw[base + j]; } } return max_bw; } static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep, int bw_cost) { u32 num_esit; u32 base; int i; int j; num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; for (i = 0; i < num_esit; i++) { base = sch_ep->offset + i * sch_ep->esit; for (j = 0; j < sch_ep->num_budget_microframes; j++) sch_bw->bus_bw[base + j] += bw_cost; } } static int check_sch_bw(struct usb_device *udev, struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep) { u32 offset; u32 esit; u32 num_budget_microframes; u32 min_bw; u32 min_index; u32 worst_bw; u32 bw_boundary; if (sch_ep->esit > XHCI_MTK_MAX_ESIT) sch_ep->esit = XHCI_MTK_MAX_ESIT; esit = sch_ep->esit; num_budget_microframes = sch_ep->num_budget_microframes; /* * Search through all possible schedule microframes. * and find a microframe where its worst bandwidth is minimum. */ min_bw = ~0; min_index = 0; for (offset = 0; offset < esit; offset++) { if ((offset + num_budget_microframes) > sch_ep->esit) break; /* * usb_20 spec section11.18: * must never schedule Start-Split in Y6 */ if (is_fs_or_ls(udev->speed) && (offset % 8 == 6)) continue; worst_bw = get_max_bw(sch_bw, sch_ep, offset); if (min_bw > worst_bw) { min_bw = worst_bw; min_index = offset; } if (min_bw == 0) break; } sch_ep->offset = min_index; bw_boundary = (udev->speed == USB_SPEED_SUPER) ? SS_BW_BOUNDARY : HS_BW_BOUNDARY; /* check bandwidth */ if (min_bw + sch_ep->bw_cost_per_microframe > bw_boundary) return -ERANGE; /* update bus bandwidth info */ update_bus_bw(sch_bw, sch_ep, sch_ep->bw_cost_per_microframe); return 0; } static bool need_bw_sch(struct usb_host_endpoint *ep, enum usb_device_speed speed, int has_tt) { /* only for periodic endpoints */ if (usb_endpoint_xfer_control(&ep->desc) || usb_endpoint_xfer_bulk(&ep->desc)) return false; /* * for LS & FS periodic endpoints which its device is not behind * a TT are also ignored, root-hub will schedule them directly, * but need set @bpkts field of endpoint context to 1. */ if (is_fs_or_ls(speed) && !has_tt) return false; /* skip endpoint with zero maxpkt */ if (usb_endpoint_maxp(&ep->desc) == 0) return false; return true; } int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) { struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); struct mu3h_sch_bw_info *sch_array; int num_usb_bus; int i; /* ss IN and OUT are separated */ num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); if (sch_array == NULL) return -ENOMEM; for (i = 0; i < num_usb_bus; i++) INIT_LIST_HEAD(&sch_array[i].bw_ep_list); mtk->sch_array = sch_array; return 0; } EXPORT_SYMBOL_GPL(xhci_mtk_sch_init); void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) { kfree(mtk->sch_array); } EXPORT_SYMBOL_GPL(xhci_mtk_sch_exit); int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); struct xhci_hcd *xhci; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; struct xhci_virt_device *virt_dev; struct mu3h_sch_bw_info *sch_bw; struct mu3h_sch_ep_info *sch_ep; struct mu3h_sch_bw_info *sch_array; unsigned int ep_index; int bw_index; int ret = 0; xhci = hcd_to_xhci(hcd); virt_dev = xhci->devs[udev->slot_id]; ep_index = xhci_get_endpoint_index(&ep->desc); slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); sch_array = mtk->sch_array; xhci_dbg(xhci, "%s() type:%d, speed:%d, mpkt:%d, dir:%d, ep:%p\n", __func__, usb_endpoint_type(&ep->desc), udev->speed, usb_endpoint_maxp(&ep->desc), usb_endpoint_dir_in(&ep->desc), ep); if (!need_bw_sch(ep, udev->speed, slot_ctx->tt_info & TT_SLOT)) { /* * set @bpkts to 1 if it is LS or FS periodic endpoint, and its * device does not connected through an external HS hub */ if (usb_endpoint_xfer_int(&ep->desc) || usb_endpoint_xfer_isoc(&ep->desc)) ep_ctx->reserved[0] |= cpu_to_le32(EP_BPKTS(1)); return 0; } bw_index = get_bw_index(xhci, udev, ep); sch_bw = &sch_array[bw_index]; sch_ep = kzalloc(sizeof(struct mu3h_sch_ep_info), GFP_NOIO); if (!sch_ep) return -ENOMEM; setup_sch_info(udev, ep_ctx, sch_ep); ret = check_sch_bw(udev, sch_bw, sch_ep); if (ret) { xhci_err(xhci, "Not enough bandwidth!\n"); kfree(sch_ep); return -ENOSPC; } list_add_tail(&sch_ep->endpoint, &sch_bw->bw_ep_list); sch_ep->ep = ep; ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts) | EP_BCSCOUNT(sch_ep->cs_count) | EP_BBM(sch_ep->burst_mode)); ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset) | EP_BREPEAT(sch_ep->repeat)); xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, sch_ep->offset, sch_ep->repeat); return 0; } EXPORT_SYMBOL_GPL(xhci_mtk_add_ep_quirk); void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); struct xhci_hcd *xhci; struct xhci_slot_ctx *slot_ctx; struct xhci_virt_device *virt_dev; struct mu3h_sch_bw_info *sch_array; struct mu3h_sch_bw_info *sch_bw; struct mu3h_sch_ep_info *sch_ep; int bw_index; xhci = hcd_to_xhci(hcd); virt_dev = xhci->devs[udev->slot_id]; slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); sch_array = mtk->sch_array; xhci_dbg(xhci, "%s() type:%d, speed:%d, mpks:%d, dir:%d, ep:%p\n", __func__, usb_endpoint_type(&ep->desc), udev->speed, usb_endpoint_maxp(&ep->desc), usb_endpoint_dir_in(&ep->desc), ep); if (!need_bw_sch(ep, udev->speed, slot_ctx->tt_info & TT_SLOT)) return; bw_index = get_bw_index(xhci, udev, ep); sch_bw = &sch_array[bw_index]; list_for_each_entry(sch_ep, &sch_bw->bw_ep_list, endpoint) { if (sch_ep->ep == ep) { update_bus_bw(sch_bw, sch_ep, -sch_ep->bw_cost_per_microframe); list_del(&sch_ep->endpoint); kfree(sch_ep); break; } } } EXPORT_SYMBOL_GPL(xhci_mtk_drop_ep_quirk);