/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_MM_H #define _LINUX_SCHED_MM_H #include #include #include #include #include #include /* * Routines for handling mm_structs */ extern struct mm_struct *mm_alloc(void); /** * mmgrab() - Pin a &struct mm_struct. * @mm: The &struct mm_struct to pin. * * Make sure that @mm will not get freed even after the owning task * exits. This doesn't guarantee that the associated address space * will still exist later on and mmget_not_zero() has to be used before * accessing it. * * This is a preferred way to to pin @mm for a longer/unbounded amount * of time. * * Use mmdrop() to release the reference acquired by mmgrab(). * * See also for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmgrab(struct mm_struct *mm) { atomic_inc(&mm->mm_count); } extern void __mmdrop(struct mm_struct *mm); static inline void mmdrop(struct mm_struct *mm) { /* * The implicit full barrier implied by atomic_dec_and_test() is * required by the membarrier system call before returning to * user-space, after storing to rq->curr. */ if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } void mmdrop(struct mm_struct *mm); /* * This has to be called after a get_task_mm()/mmget_not_zero() * followed by taking the mmap_sem for writing before modifying the * vmas or anything the coredump pretends not to change from under it. * * It also has to be called when mmgrab() is used in the context of * the process, but then the mm_count refcount is transferred outside * the context of the process to run down_write() on that pinned mm. * * NOTE: find_extend_vma() called from GUP context is the only place * that can modify the "mm" (notably the vm_start/end) under mmap_sem * for reading and outside the context of the process, so it is also * the only case that holds the mmap_sem for reading that must call * this function. Generally if the mmap_sem is hold for reading * there's no need of this check after get_task_mm()/mmget_not_zero(). * * This function can be obsoleted and the check can be removed, after * the coredump code will hold the mmap_sem for writing before * invoking the ->core_dump methods. */ static inline bool mmget_still_valid(struct mm_struct *mm) { return likely(!mm->core_state); } /** * mmget() - Pin the address space associated with a &struct mm_struct. * @mm: The address space to pin. * * Make sure that the address space of the given &struct mm_struct doesn't * go away. This does not protect against parts of the address space being * modified or freed, however. * * Never use this function to pin this address space for an * unbounded/indefinite amount of time. * * Use mmput() to release the reference acquired by mmget(). * * See also for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmget(struct mm_struct *mm) { atomic_inc(&mm->mm_users); } static inline bool mmget_not_zero(struct mm_struct *mm) { return atomic_inc_not_zero(&mm->mm_users); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); #ifdef CONFIG_MMU /* same as above but performs the slow path from the async context. Can * be called from the atomic context as well */ void mmput_async(struct mm_struct *); #endif /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* * Grab a reference to a task's mm, if it is not already going away * and ptrace_may_access with the mode parameter passed to it * succeeds. */ extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); /* Remove the current tasks stale references to the old mm_struct on exit() */ extern void exit_mm_release(struct task_struct *, struct mm_struct *); /* Remove the current tasks stale references to the old mm_struct on exec() */ extern void exec_mm_release(struct task_struct *, struct mm_struct *); #ifdef CONFIG_MEMCG extern void mm_update_next_owner(struct mm_struct *mm); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } #endif /* CONFIG_MEMCG */ #ifdef CONFIG_MMU extern void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) {} #endif static inline bool in_vfork(struct task_struct *tsk) { bool ret; /* * need RCU to access ->real_parent if CLONE_VM was used along with * CLONE_PARENT. * * We check real_parent->mm == tsk->mm because CLONE_VFORK does not * imply CLONE_VM * * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus * ->real_parent is not necessarily the task doing vfork(), so in * theory we can't rely on task_lock() if we want to dereference it. * * And in this case we can't trust the real_parent->mm == tsk->mm * check, it can be false negative. But we do not care, if init or * another oom-unkillable task does this it should blame itself. */ rcu_read_lock(); ret = tsk->vfork_done && rcu_dereference(tsk->real_parent)->mm == tsk->mm; rcu_read_unlock(); return ret; } /* * Applies per-task gfp context to the given allocation flags. * PF_MEMALLOC_NOIO implies GFP_NOIO * PF_MEMALLOC_NOFS implies GFP_NOFS * PF_MEMALLOC_NOCMA implies no allocation from CMA region. */ static inline gfp_t current_gfp_context(gfp_t flags) { if (unlikely(current->flags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) { /* * NOIO implies both NOIO and NOFS and it is a weaker context * so always make sure it makes precedence */ if (current->flags & PF_MEMALLOC_NOIO) flags &= ~(__GFP_IO | __GFP_FS); else if (current->flags & PF_MEMALLOC_NOFS) flags &= ~__GFP_FS; #ifdef CONFIG_CMA if (current->flags & PF_MEMALLOC_NOCMA) flags &= ~__GFP_MOVABLE; #endif } return flags; } #ifdef CONFIG_LOCKDEP extern void __fs_reclaim_acquire(void); extern void __fs_reclaim_release(void); extern void fs_reclaim_acquire(gfp_t gfp_mask); extern void fs_reclaim_release(gfp_t gfp_mask); #else static inline void __fs_reclaim_acquire(void) { } static inline void __fs_reclaim_release(void) { } static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } static inline void fs_reclaim_release(gfp_t gfp_mask) { } #endif /** * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. * * This functions marks the beginning of the GFP_NOIO allocation scope. * All further allocations will implicitly drop __GFP_IO flag and so * they are safe for the IO critical section from the allocation recursion * point of view. Use memalloc_noio_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; current->flags |= PF_MEMALLOC_NOIO; return flags; } /** * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. * Always make sure that that the given flags is the return value from the * pairing memalloc_noio_save call. */ static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } /** * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. * * This functions marks the beginning of the GFP_NOFS allocation scope. * All further allocations will implicitly drop __GFP_FS flag and so * they are safe for the FS critical section from the allocation recursion * point of view. Use memalloc_nofs_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_nofs_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOFS; current->flags |= PF_MEMALLOC_NOFS; return flags; } /** * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. * Always make sure that that the given flags is the return value from the * pairing memalloc_nofs_save call. */ static inline void memalloc_nofs_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; } static inline unsigned int memalloc_noreclaim_save(void) { unsigned int flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; return flags; } static inline void memalloc_noreclaim_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC) | flags; } #ifdef CONFIG_CMA static inline unsigned int memalloc_nocma_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOCMA; current->flags |= PF_MEMALLOC_NOCMA; return flags; } static inline void memalloc_nocma_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags; } #else static inline unsigned int memalloc_nocma_save(void) { return 0; } static inline void memalloc_nocma_restore(unsigned int flags) { } #endif #ifdef CONFIG_MEMCG /** * memalloc_use_memcg - Starts the remote memcg charging scope. * @memcg: memcg to charge. * * This function marks the beginning of the remote memcg charging scope. All the * __GFP_ACCOUNT allocations till the end of the scope will be charged to the * given memcg. * * NOTE: This function is not nesting safe. */ static inline void memalloc_use_memcg(struct mem_cgroup *memcg) { WARN_ON_ONCE(current->active_memcg); current->active_memcg = memcg; } /** * memalloc_unuse_memcg - Ends the remote memcg charging scope. * * This function marks the end of the remote memcg charging scope started by * memalloc_use_memcg(). */ static inline void memalloc_unuse_memcg(void) { current->active_memcg = NULL; } #else static inline void memalloc_use_memcg(struct mem_cgroup *memcg) { } static inline void memalloc_unuse_memcg(void) { } #endif #ifdef CONFIG_MEMBARRIER enum { MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), }; enum { MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), }; #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS #include #endif static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { if (current->mm != mm) return; if (likely(!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) return; sync_core_before_usermode(); } static inline void membarrier_execve(struct task_struct *t) { atomic_set(&t->mm->membarrier_state, 0); } #else #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS static inline void membarrier_arch_switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { } #endif static inline void membarrier_execve(struct task_struct *t) { } static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { } #endif #endif /* _LINUX_SCHED_MM_H */