/* * Based on arch/arm/kernel/traps.c * * Copyright (C) 1995-2009 Russell King * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SEC_DEBUG #include #endif static const char *handler[]= { "Synchronous Abort", "IRQ", "FIQ", "Error" }; int show_unhandled_signals = 0; static void dump_backtrace_entry(unsigned long where) { /* * Note that 'where' can have a physical address, but it's not handled. */ print_ip_sym(where); } #ifdef CONFIG_SEC_DEBUG_AUTO_COMMENT static void dump_backtrace_entry_auto_comment(unsigned long where) { /* * Note that 'where' can have a physical address, but it's not handled. */ pr_auto(ASL2, "[<%px>] %pS\n", (void *) where, (void *) where); } #endif static void __dump_instr(const char *lvl, struct pt_regs *regs) { unsigned long addr = instruction_pointer(regs); char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str; int i; for (i = -4; i < 1; i++) { unsigned int val, bad; bad = get_user(val, &((u32 *)addr)[i]); if (!bad) p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val); else { p += sprintf(p, "bad PC value"); break; } } printk("%sCode: %s\n", lvl, str); } static void dump_instr(const char *lvl, struct pt_regs *regs) { if (!user_mode(regs)) { mm_segment_t fs = get_fs(); set_fs(KERNEL_DS); __dump_instr(lvl, regs); set_fs(fs); } else { __dump_instr(lvl, regs); } } #ifdef CONFIG_SEC_DEBUG_LIMIT_BACKTRACE #define MAX_UNWINDING_LOOP 256 /* maximum number of unwind frame */ #endif void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk) { struct stackframe frame; int skip = 0; int cnt = 0; pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk); if (regs) { if (user_mode(regs)) return; skip = 1; } if (!tsk) tsk = current; if (!try_get_task_stack(tsk)) return; if (tsk == current) { frame.fp = (unsigned long)__builtin_frame_address(0); frame.pc = (unsigned long)dump_backtrace; } else { /* * task blocked in __switch_to */ frame.fp = thread_saved_fp(tsk); frame.pc = thread_saved_pc(tsk); } #ifdef CONFIG_FUNCTION_GRAPH_TRACER frame.graph = tsk->curr_ret_stack; #endif printk("Call trace:\n"); do { #ifdef CONFIG_SEC_DEBUG_LIMIT_BACKTRACE if (MAX_UNWINDING_LOOP < cnt) { pr_info("%s: Forcely break dump_backtrace to avoid infinity backtrace\n", __func__); break; } #endif /* skip until specified stack frame */ if (!skip) { dump_backtrace_entry(frame.pc); } else if (frame.fp == regs->regs[29]) { skip = 0; /* * Mostly, this is the case where this function is * called in panic/abort. As exception handler's * stack frame does not contain the corresponding pc * at which an exception has taken place, use regs->pc * instead. */ dump_backtrace_entry(regs->pc); } cnt++; } while (!unwind_frame(tsk, &frame)); put_task_stack(tsk); } #ifdef CONFIG_SEC_DEBUG_AUTO_COMMENT void dump_backtrace_auto_comment(struct pt_regs *regs, struct task_struct *tsk) { struct stackframe frame; int skip = 0; int cnt = 0; pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk); if (regs) { if (user_mode(regs)) return; skip = 1; } if (!tsk) tsk = current; if (!try_get_task_stack(tsk)) return; if (tsk == current) { frame.fp = (unsigned long)__builtin_frame_address(0); frame.pc = (unsigned long)dump_backtrace_auto_comment; } else { /* * task blocked in __switch_to */ frame.fp = thread_saved_fp(tsk); frame.pc = thread_saved_pc(tsk); } #ifdef CONFIG_FUNCTION_GRAPH_TRACER frame.graph = tsk->curr_ret_stack; #endif pr_auto_once(2); pr_auto(ASL2, "Call trace:\n"); do { #ifdef CONFIG_SEC_DEBUG_LIMIT_BACKTRACE if (MAX_UNWINDING_LOOP < cnt) { pr_info("%s: Forcely break dump_backtrace to avoid infinity backtrace\n", __func__); break; } #endif /* skip until specified stack frame */ if (!skip) { dump_backtrace_entry_auto_comment(frame.pc); } else if (frame.fp == regs->regs[29]) { skip = 0; /* * Mostly, this is the case where this function is * called in panic/abort. As exception handler's * stack frame does not contain the corresponding pc * at which an exception has taken place, use regs->pc * instead. */ dump_backtrace_entry_auto_comment(regs->pc); } cnt++; } while (!unwind_frame(tsk, &frame)); put_task_stack(tsk); } #endif void show_stack(struct task_struct *tsk, unsigned long *sp) { dump_backtrace(NULL, tsk); barrier(); } #ifdef CONFIG_PREEMPT #define S_PREEMPT " PREEMPT" #else #define S_PREEMPT "" #endif #define S_SMP " SMP" static int __die(const char *str, int err, struct pt_regs *regs) { struct task_struct *tsk = current; static int die_counter; int ret; pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n", str, err, ++die_counter); /* trap and error numbers are mostly meaningless on ARM */ ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV); if (ret == NOTIFY_STOP) return ret; print_modules(); pr_emerg("Process %.*s (pid: %d, stack limit = 0x%p)\n", TASK_COMM_LEN, tsk->comm, task_pid_nr(tsk), end_of_stack(tsk)); show_regs(regs); if (!user_mode(regs)) dump_instr(KERN_EMERG, regs); return ret; } static DEFINE_RAW_SPINLOCK(die_lock); /* * This function is protected against re-entrancy. */ void die(const char *str, struct pt_regs *regs, int err) { int ret; unsigned long flags; raw_spin_lock_irqsave(&die_lock, flags); oops_enter(); #ifdef CONFIG_SEC_DEBUG_EXTRA_INFO if (regs && (!user_mode(regs))) sec_debug_set_extra_info_backtrace(regs); #endif console_verbose(); bust_spinlocks(1); ret = __die(str, err, regs); if (regs && kexec_should_crash(current)) crash_kexec(regs); bust_spinlocks(0); add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); oops_exit(); #ifdef CONFIG_SEC_DEBUG if (in_interrupt()) { if (regs) panic("%s\nPC is at %pS\nLR is at %pS", "Fatal exception in interrupt", (void *)(regs)->pc, (compat_user_mode(regs)) ? (void *)regs->compat_lr : (void *)regs->regs[30]); else panic("Fatal exception in interrupt"); } if (panic_on_oops) { if (regs) panic("%s\nPC is at %pS\nLR is at %pS", "Fatal exception", (void *)(regs)->pc, (compat_user_mode(regs)) ? (void *)regs->compat_lr : (void *)regs->regs[30]); else panic("Fatal exception"); } #else if (in_interrupt()) panic("Fatal exception in interrupt"); if (panic_on_oops) panic("Fatal exception"); #endif raw_spin_unlock_irqrestore(&die_lock, flags); if (ret != NOTIFY_STOP) do_exit(SIGSEGV); } static bool show_unhandled_signals_ratelimited(void) { static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); return show_unhandled_signals && __ratelimit(&rs); } void arm64_force_sig_info(struct siginfo *info, const char *str, struct task_struct *tsk) { unsigned int esr = tsk->thread.fault_code; struct pt_regs *regs = task_pt_regs(tsk); if (!unhandled_signal(tsk, info->si_signo)) goto send_sig; if (!show_unhandled_signals_ratelimited()) goto send_sig; pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk)); if (esr) pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr); pr_cont("%s", str); print_vma_addr(KERN_CONT " in ", regs->pc); pr_cont("\n"); __show_regs(regs); send_sig: force_sig_info(info->si_signo, info, tsk); } void arm64_notify_die(const char *str, struct pt_regs *regs, struct siginfo *info, int err) { if (user_mode(regs)) { WARN_ON(regs != current_pt_regs()); current->thread.fault_address = 0; current->thread.fault_code = err; arm64_force_sig_info(info, str, current); } else { die(str, regs, err); } } void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size) { regs->pc += size; /* * If we were single stepping, we want to get the step exception after * we return from the trap. */ if (user_mode(regs)) user_fastforward_single_step(current); } static LIST_HEAD(undef_hook); static DEFINE_RAW_SPINLOCK(undef_lock); void register_undef_hook(struct undef_hook *hook) { unsigned long flags; raw_spin_lock_irqsave(&undef_lock, flags); list_add(&hook->node, &undef_hook); raw_spin_unlock_irqrestore(&undef_lock, flags); } void unregister_undef_hook(struct undef_hook *hook) { unsigned long flags; raw_spin_lock_irqsave(&undef_lock, flags); list_del(&hook->node); raw_spin_unlock_irqrestore(&undef_lock, flags); } static int call_undef_hook(struct pt_regs *regs) { struct undef_hook *hook; unsigned long flags; u32 instr; int (*fn)(struct pt_regs *regs, u32 instr) = NULL; void __user *pc = (void __user *)instruction_pointer(regs); if (!user_mode(regs)) { __le32 instr_le; if (probe_kernel_address((__force __le32 *)pc, instr_le)) goto exit; instr = le32_to_cpu(instr_le); } else if (compat_thumb_mode(regs)) { /* 16-bit Thumb instruction */ __le16 instr_le; if (get_user(instr_le, (__le16 __user *)pc)) goto exit; instr = le16_to_cpu(instr_le); if (aarch32_insn_is_wide(instr)) { u32 instr2; if (get_user(instr_le, (__le16 __user *)(pc + 2))) goto exit; instr2 = le16_to_cpu(instr_le); instr = (instr << 16) | instr2; } } else { /* 32-bit ARM instruction */ __le32 instr_le; if (get_user(instr_le, (__le32 __user *)pc)) goto exit; instr = le32_to_cpu(instr_le); } raw_spin_lock_irqsave(&undef_lock, flags); list_for_each_entry(hook, &undef_hook, node) if ((instr & hook->instr_mask) == hook->instr_val && (regs->pstate & hook->pstate_mask) == hook->pstate_val) fn = hook->fn; raw_spin_unlock_irqrestore(&undef_lock, flags); exit: return fn ? fn(regs, instr) : 1; } void force_signal_inject(int signal, int code, unsigned long address) { siginfo_t info; const char *desc; struct pt_regs *regs = current_pt_regs(); clear_siginfo(&info); switch (signal) { case SIGILL: desc = "undefined instruction"; break; case SIGSEGV: desc = "illegal memory access"; break; default: desc = "unknown or unrecoverable error"; break; } /* Force signals we don't understand to SIGKILL */ if (WARN_ON(signal != SIGKILL && siginfo_layout(signal, code) != SIL_FAULT)) { signal = SIGKILL; } info.si_signo = signal; info.si_errno = 0; info.si_code = code; info.si_addr = (void __user *)address; arm64_notify_die(desc, regs, &info, 0); } /* * Set up process info to signal segmentation fault - called on access error. */ void arm64_notify_segfault(unsigned long addr) { int code; down_read(¤t->mm->mmap_sem); if (find_vma(current->mm, addr) == NULL) code = SEGV_MAPERR; else code = SEGV_ACCERR; up_read(¤t->mm->mmap_sem); force_signal_inject(SIGSEGV, code, addr); } asmlinkage void __exception do_undefinstr(struct pt_regs *regs) { #ifdef CONFIG_SEC_DEBUG_EXTRA_INFO if (!user_mode(regs)) { sec_debug_set_extra_info_fault((unsigned long)regs->pc, regs); } #endif /* check for AArch32 breakpoint instructions */ if (!aarch32_break_handler(regs)) return; if (call_undef_hook(regs) == 0) return; force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); BUG_ON(!user_mode(regs)); } void cpu_enable_cache_maint_trap(const struct arm64_cpu_capabilities *__unused) { sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCI, 0); } #define __user_cache_maint(insn, address, res) \ if (address >= user_addr_max()) { \ res = -EFAULT; \ } else { \ uaccess_ttbr0_enable(); \ asm volatile ( \ "1: " insn ", %1\n" \ " mov %w0, #0\n" \ "2:\n" \ " .pushsection .fixup,\"ax\"\n" \ " .align 2\n" \ "3: mov %w0, %w2\n" \ " b 2b\n" \ " .popsection\n" \ _ASM_EXTABLE(1b, 3b) \ : "=r" (res) \ : "r" (address), "i" (-EFAULT)); \ uaccess_ttbr0_disable(); \ } static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs) { unsigned long address; int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT; int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT; int ret = 0; address = untagged_addr(pt_regs_read_reg(regs, rt)); switch (crm) { case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */ __user_cache_maint("dc civac", address, ret); break; case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */ __user_cache_maint("dc civac", address, ret); break; case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */ __user_cache_maint("sys 3, c7, c12, 1", address, ret); break; case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */ __user_cache_maint("dc civac", address, ret); break; case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */ __user_cache_maint("ic ivau", address, ret); break; default: force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); return; } if (ret) arm64_notify_segfault(address); else arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); } static void ctr_read_handler(unsigned int esr, struct pt_regs *regs) { int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT; unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0); if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) { /* Hide DIC so that we can trap the unnecessary maintenance...*/ val &= ~BIT(CTR_DIC_SHIFT); /* ... and fake IminLine to reduce the number of traps. */ val &= ~CTR_IMINLINE_MASK; val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK; } pt_regs_write_reg(regs, rt, val); arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); } static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs) { int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT; pt_regs_write_reg(regs, rt, arch_counter_get_cntvct()); arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); } static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs) { int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT; pt_regs_write_reg(regs, rt, arch_timer_get_rate()); arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); } struct sys64_hook { unsigned int esr_mask; unsigned int esr_val; void (*handler)(unsigned int esr, struct pt_regs *regs); }; static struct sys64_hook sys64_hooks[] = { { .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK, .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL, .handler = user_cache_maint_handler, }, { /* Trap read access to CTR_EL0 */ .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ, .handler = ctr_read_handler, }, { /* Trap read access to CNTVCT_EL0 */ .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT, .handler = cntvct_read_handler, }, { /* Trap read access to CNTFRQ_EL0 */ .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ, .handler = cntfrq_read_handler, }, {}, }; asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs) { struct sys64_hook *hook; for (hook = sys64_hooks; hook->handler; hook++) if ((hook->esr_mask & esr) == hook->esr_val) { hook->handler(esr, regs); return; } /* * New SYS instructions may previously have been undefined at EL0. Fall * back to our usual undefined instruction handler so that we handle * these consistently. */ do_undefinstr(regs); } static const char *esr_class_str[] = { [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC", [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized", [ESR_ELx_EC_WFx] = "WFI/WFE", [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC", [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC", [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC", [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC", [ESR_ELx_EC_FP_ASIMD] = "ASIMD", [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS", [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC", [ESR_ELx_EC_ILL] = "PSTATE.IL", [ESR_ELx_EC_SVC32] = "SVC (AArch32)", [ESR_ELx_EC_HVC32] = "HVC (AArch32)", [ESR_ELx_EC_SMC32] = "SMC (AArch32)", [ESR_ELx_EC_SVC64] = "SVC (AArch64)", [ESR_ELx_EC_HVC64] = "HVC (AArch64)", [ESR_ELx_EC_SMC64] = "SMC (AArch64)", [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)", [ESR_ELx_EC_SVE] = "SVE", [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF", [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)", [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)", [ESR_ELx_EC_PC_ALIGN] = "PC Alignment", [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)", [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)", [ESR_ELx_EC_SP_ALIGN] = "SP Alignment", [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)", [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)", [ESR_ELx_EC_SERROR] = "SError", [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)", [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)", [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)", [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)", [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)", [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)", [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)", [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)", [ESR_ELx_EC_BRK64] = "BRK (AArch64)", }; const char *esr_get_class_string(u32 esr) { return esr_class_str[ESR_ELx_EC(esr)]; } /* * bad_mode handles the impossible case in the exception vector. This is always * fatal. */ asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr) { console_verbose(); #ifdef CONFIG_SEC_DEBUG_AUTO_COMMENT pr_auto(ASL1,"Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n", handler[reason], smp_processor_id(), esr, esr_get_class_string(esr)); #else pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n", handler[reason], smp_processor_id(), esr, esr_get_class_string(esr)); #endif #ifdef CONFIG_SEC_DEBUG_EXTRA_INFO if (!user_mode(regs)) { sec_debug_set_extra_info_fault((unsigned long)regs->pc, regs); sec_debug_set_extra_info_esr(esr); } #endif local_daif_mask(); panic("bad mode"); } /* * bad_el0_sync handles unexpected, but potentially recoverable synchronous * exceptions taken from EL0. Unlike bad_mode, this returns. */ asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr) { siginfo_t info; void __user *pc = (void __user *)instruction_pointer(regs); #ifdef CONFIG_SEC_DEBUG_EXTRA_INFO if (!user_mode(regs)) { sec_debug_set_extra_info_fault(SEC_DEBUG_BADMODE_MAGIC, regs); sec_debug_set_extra_info_esr(esr); } #endif clear_siginfo(&info); info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_ILLOPC; info.si_addr = pc; current->thread.fault_address = 0; current->thread.fault_code = esr; arm64_force_sig_info(&info, "Bad EL0 synchronous exception", current); } #ifdef CONFIG_VMAP_STACK DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack) __aligned(16); asmlinkage void handle_bad_stack(struct pt_regs *regs) { unsigned long tsk_stk = (unsigned long)current->stack; unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr); unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack); unsigned int esr = read_sysreg(esr_el1); unsigned long far = read_sysreg(far_el1); console_verbose(); pr_emerg("Insufficient stack space to handle exception!"); pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr)); pr_emerg("FAR: 0x%016lx\n", far); pr_emerg("Task stack: [0x%016lx..0x%016lx]\n", tsk_stk, tsk_stk + THREAD_SIZE); pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n", irq_stk, irq_stk + THREAD_SIZE); pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n", ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE); __show_regs(regs); /* * We use nmi_panic to limit the potential for recusive overflows, and * to get a better stack trace. */ nmi_panic(NULL, "kernel stack overflow"); cpu_park_loop(); } #endif void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr) { console_verbose(); pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n", smp_processor_id(), esr, esr_get_class_string(esr)); if (regs) __show_regs(regs); nmi_panic(regs, "Asynchronous SError Interrupt"); cpu_park_loop(); unreachable(); } bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr) { u32 aet = arm64_ras_serror_get_severity(esr); switch (aet) { case ESR_ELx_AET_CE: /* corrected error */ case ESR_ELx_AET_UEO: /* restartable, not yet consumed */ /* * The CPU can make progress. We may take UEO again as * a more severe error. */ return false; case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */ case ESR_ELx_AET_UER: /* Uncorrected Recoverable */ /* * The CPU can't make progress. The exception may have * been imprecise. */ return true; case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */ default: /* Error has been silently propagated */ arm64_serror_panic(regs, esr); } } asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr) { nmi_enter(); /* non-RAS errors are not containable */ if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr)) arm64_serror_panic(regs, esr); nmi_exit(); } void __pte_error(const char *file, int line, unsigned long val) { pr_err("%s:%d: bad pte %016lx.\n", file, line, val); } void __pmd_error(const char *file, int line, unsigned long val) { pr_err("%s:%d: bad pmd %016lx.\n", file, line, val); } void __pud_error(const char *file, int line, unsigned long val) { pr_err("%s:%d: bad pud %016lx.\n", file, line, val); } void __pgd_error(const char *file, int line, unsigned long val) { pr_err("%s:%d: bad pgd %016lx.\n", file, line, val); } /* GENERIC_BUG traps */ int is_valid_bugaddr(unsigned long addr) { /* * bug_handler() only called for BRK #BUG_BRK_IMM. * So the answer is trivial -- any spurious instances with no * bug table entry will be rejected by report_bug() and passed * back to the debug-monitors code and handled as a fatal * unexpected debug exception. */ return 1; } static int bug_handler(struct pt_regs *regs, unsigned int esr) { if (user_mode(regs)) return DBG_HOOK_ERROR; switch (report_bug(regs->pc, regs)) { case BUG_TRAP_TYPE_BUG: #ifdef CONFIG_SEC_DEBUG_EXTRA_INFO sec_debug_set_extra_info_fault((unsigned long)regs->pc, regs); sec_debug_set_extra_info_esr(esr); #endif die("Oops - BUG", regs, 0); break; case BUG_TRAP_TYPE_WARN: break; default: /* unknown/unrecognised bug trap type */ return DBG_HOOK_ERROR; } /* If thread survives, skip over the BUG instruction and continue: */ arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); return DBG_HOOK_HANDLED; } static struct break_hook bug_break_hook = { .esr_val = 0xf2000000 | BUG_BRK_IMM, .esr_mask = 0xffffffff, .fn = bug_handler, }; #ifdef CONFIG_KASAN_SW_TAGS #define KASAN_ESR_RECOVER 0x20 #define KASAN_ESR_WRITE 0x10 #define KASAN_ESR_SIZE_MASK 0x0f #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK)) static int kasan_handler(struct pt_regs *regs, unsigned int esr) { bool recover = esr & KASAN_ESR_RECOVER; bool write = esr & KASAN_ESR_WRITE; size_t size = KASAN_ESR_SIZE(esr); u64 addr = regs->regs[0]; u64 pc = regs->pc; if (user_mode(regs)) return DBG_HOOK_ERROR; kasan_report(addr, size, write, pc); /* * The instrumentation allows to control whether we can proceed after * a crash was detected. This is done by passing the -recover flag to * the compiler. Disabling recovery allows to generate more compact * code. * * Unfortunately disabling recovery doesn't work for the kernel right * now. KASAN reporting is disabled in some contexts (for example when * the allocator accesses slab object metadata; this is controlled by * current->kasan_depth). All these accesses are detected by the tool, * even though the reports for them are not printed. * * This is something that might be fixed at some point in the future. */ if (!recover) die("Oops - KASAN", regs, 0); /* If thread survives, skip over the brk instruction and continue: */ arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); return DBG_HOOK_HANDLED; } #define KASAN_ESR_VAL (0xf2000000 | KASAN_BRK_IMM) #define KASAN_ESR_MASK 0xffffff00 static struct break_hook kasan_break_hook = { .esr_val = KASAN_ESR_VAL, .esr_mask = KASAN_ESR_MASK, .fn = kasan_handler, }; #endif /* * Initial handler for AArch64 BRK exceptions * This handler only used until debug_traps_init(). */ int __init early_brk64(unsigned long addr, unsigned int esr, struct pt_regs *regs) { #ifdef CONFIG_KASAN_SW_TAGS if ((esr & KASAN_ESR_MASK) == KASAN_ESR_VAL) return kasan_handler(regs, esr) != DBG_HOOK_HANDLED; #endif return bug_handler(regs, esr) != DBG_HOOK_HANDLED; } /* This registration must happen early, before debug_traps_init(). */ void __init trap_init(void) { register_break_hook(&bug_break_hook); #ifdef CONFIG_KASAN_SW_TAGS register_break_hook(&kasan_break_hook); #endif }