/* * Intel CPU Microcode Update Driver for Linux * * Copyright (C) 2000-2006 Tigran Aivazian * 2006 Shaohua Li * * Intel CPU microcode early update for Linux * * Copyright (C) 2012 Fenghua Yu * H Peter Anvin" * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * This needs to be before all headers so that pr_debug in printk.h doesn't turn * printk calls into no_printk(). * *#define DEBUG */ #define pr_fmt(fmt) "microcode: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const char ucode_path[] = "kernel/x86/microcode/GenuineIntel.bin"; /* Current microcode patch used in early patching on the APs. */ static struct microcode_intel *intel_ucode_patch; /* last level cache size per core */ static int llc_size_per_core; static inline bool cpu_signatures_match(unsigned int s1, unsigned int p1, unsigned int s2, unsigned int p2) { if (s1 != s2) return false; /* Processor flags are either both 0 ... */ if (!p1 && !p2) return true; /* ... or they intersect. */ return p1 & p2; } /* * Returns 1 if update has been found, 0 otherwise. */ static int find_matching_signature(void *mc, unsigned int csig, int cpf) { struct microcode_header_intel *mc_hdr = mc; struct extended_sigtable *ext_hdr; struct extended_signature *ext_sig; int i; if (cpu_signatures_match(csig, cpf, mc_hdr->sig, mc_hdr->pf)) return 1; /* Look for ext. headers: */ if (get_totalsize(mc_hdr) <= get_datasize(mc_hdr) + MC_HEADER_SIZE) return 0; ext_hdr = mc + get_datasize(mc_hdr) + MC_HEADER_SIZE; ext_sig = (void *)ext_hdr + EXT_HEADER_SIZE; for (i = 0; i < ext_hdr->count; i++) { if (cpu_signatures_match(csig, cpf, ext_sig->sig, ext_sig->pf)) return 1; ext_sig++; } return 0; } /* * Returns 1 if update has been found, 0 otherwise. */ static int has_newer_microcode(void *mc, unsigned int csig, int cpf, int new_rev) { struct microcode_header_intel *mc_hdr = mc; if (mc_hdr->rev <= new_rev) return 0; return find_matching_signature(mc, csig, cpf); } static struct ucode_patch *memdup_patch(void *data, unsigned int size) { struct ucode_patch *p; p = kzalloc(sizeof(struct ucode_patch), GFP_KERNEL); if (!p) return NULL; p->data = kmemdup(data, size, GFP_KERNEL); if (!p->data) { kfree(p); return NULL; } return p; } static void save_microcode_patch(struct ucode_cpu_info *uci, void *data, unsigned int size) { struct microcode_header_intel *mc_hdr, *mc_saved_hdr; struct ucode_patch *iter, *tmp, *p = NULL; bool prev_found = false; unsigned int sig, pf; mc_hdr = (struct microcode_header_intel *)data; list_for_each_entry_safe(iter, tmp, µcode_cache, plist) { mc_saved_hdr = (struct microcode_header_intel *)iter->data; sig = mc_saved_hdr->sig; pf = mc_saved_hdr->pf; if (find_matching_signature(data, sig, pf)) { prev_found = true; if (mc_hdr->rev <= mc_saved_hdr->rev) continue; p = memdup_patch(data, size); if (!p) pr_err("Error allocating buffer %p\n", data); else { list_replace(&iter->plist, &p->plist); kfree(iter->data); kfree(iter); } } } /* * There weren't any previous patches found in the list cache; save the * newly found. */ if (!prev_found) { p = memdup_patch(data, size); if (!p) pr_err("Error allocating buffer for %p\n", data); else list_add_tail(&p->plist, µcode_cache); } if (!p) return; if (!find_matching_signature(p->data, uci->cpu_sig.sig, uci->cpu_sig.pf)) return; /* * Save for early loading. On 32-bit, that needs to be a physical * address as the APs are running from physical addresses, before * paging has been enabled. */ if (IS_ENABLED(CONFIG_X86_32)) intel_ucode_patch = (struct microcode_intel *)__pa_nodebug(p->data); else intel_ucode_patch = p->data; } static int microcode_sanity_check(void *mc, int print_err) { unsigned long total_size, data_size, ext_table_size; struct microcode_header_intel *mc_header = mc; struct extended_sigtable *ext_header = NULL; u32 sum, orig_sum, ext_sigcount = 0, i; struct extended_signature *ext_sig; total_size = get_totalsize(mc_header); data_size = get_datasize(mc_header); if (data_size + MC_HEADER_SIZE > total_size) { if (print_err) pr_err("Error: bad microcode data file size.\n"); return -EINVAL; } if (mc_header->ldrver != 1 || mc_header->hdrver != 1) { if (print_err) pr_err("Error: invalid/unknown microcode update format.\n"); return -EINVAL; } ext_table_size = total_size - (MC_HEADER_SIZE + data_size); if (ext_table_size) { u32 ext_table_sum = 0; u32 *ext_tablep; if ((ext_table_size < EXT_HEADER_SIZE) || ((ext_table_size - EXT_HEADER_SIZE) % EXT_SIGNATURE_SIZE)) { if (print_err) pr_err("Error: truncated extended signature table.\n"); return -EINVAL; } ext_header = mc + MC_HEADER_SIZE + data_size; if (ext_table_size != exttable_size(ext_header)) { if (print_err) pr_err("Error: extended signature table size mismatch.\n"); return -EFAULT; } ext_sigcount = ext_header->count; /* * Check extended table checksum: the sum of all dwords that * comprise a valid table must be 0. */ ext_tablep = (u32 *)ext_header; i = ext_table_size / sizeof(u32); while (i--) ext_table_sum += ext_tablep[i]; if (ext_table_sum) { if (print_err) pr_warn("Bad extended signature table checksum, aborting.\n"); return -EINVAL; } } /* * Calculate the checksum of update data and header. The checksum of * valid update data and header including the extended signature table * must be 0. */ orig_sum = 0; i = (MC_HEADER_SIZE + data_size) / sizeof(u32); while (i--) orig_sum += ((u32 *)mc)[i]; if (orig_sum) { if (print_err) pr_err("Bad microcode data checksum, aborting.\n"); return -EINVAL; } if (!ext_table_size) return 0; /* * Check extended signature checksum: 0 => valid. */ for (i = 0; i < ext_sigcount; i++) { ext_sig = (void *)ext_header + EXT_HEADER_SIZE + EXT_SIGNATURE_SIZE * i; sum = (mc_header->sig + mc_header->pf + mc_header->cksum) - (ext_sig->sig + ext_sig->pf + ext_sig->cksum); if (sum) { if (print_err) pr_err("Bad extended signature checksum, aborting.\n"); return -EINVAL; } } return 0; } /* * Get microcode matching with BSP's model. Only CPUs with the same model as * BSP can stay in the platform. */ static struct microcode_intel * scan_microcode(void *data, size_t size, struct ucode_cpu_info *uci, bool save) { struct microcode_header_intel *mc_header; struct microcode_intel *patch = NULL; unsigned int mc_size; while (size) { if (size < sizeof(struct microcode_header_intel)) break; mc_header = (struct microcode_header_intel *)data; mc_size = get_totalsize(mc_header); if (!mc_size || mc_size > size || microcode_sanity_check(data, 0) < 0) break; size -= mc_size; if (!find_matching_signature(data, uci->cpu_sig.sig, uci->cpu_sig.pf)) { data += mc_size; continue; } if (save) { save_microcode_patch(uci, data, mc_size); goto next; } if (!patch) { if (!has_newer_microcode(data, uci->cpu_sig.sig, uci->cpu_sig.pf, uci->cpu_sig.rev)) goto next; } else { struct microcode_header_intel *phdr = &patch->hdr; if (!has_newer_microcode(data, phdr->sig, phdr->pf, phdr->rev)) goto next; } /* We have a newer patch, save it. */ patch = data; next: data += mc_size; } if (size) return NULL; return patch; } static int collect_cpu_info_early(struct ucode_cpu_info *uci) { unsigned int val[2]; unsigned int family, model; struct cpu_signature csig = { 0 }; unsigned int eax, ebx, ecx, edx; memset(uci, 0, sizeof(*uci)); eax = 0x00000001; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); csig.sig = eax; family = x86_family(eax); model = x86_model(eax); if ((model >= 5) || (family > 6)) { /* get processor flags from MSR 0x17 */ native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]); csig.pf = 1 << ((val[1] >> 18) & 7); } csig.rev = intel_get_microcode_revision(); uci->cpu_sig = csig; uci->valid = 1; return 0; } static void show_saved_mc(void) { #ifdef DEBUG int i = 0, j; unsigned int sig, pf, rev, total_size, data_size, date; struct ucode_cpu_info uci; struct ucode_patch *p; if (list_empty(µcode_cache)) { pr_debug("no microcode data saved.\n"); return; } collect_cpu_info_early(&uci); sig = uci.cpu_sig.sig; pf = uci.cpu_sig.pf; rev = uci.cpu_sig.rev; pr_debug("CPU: sig=0x%x, pf=0x%x, rev=0x%x\n", sig, pf, rev); list_for_each_entry(p, µcode_cache, plist) { struct microcode_header_intel *mc_saved_header; struct extended_sigtable *ext_header; struct extended_signature *ext_sig; int ext_sigcount; mc_saved_header = (struct microcode_header_intel *)p->data; sig = mc_saved_header->sig; pf = mc_saved_header->pf; rev = mc_saved_header->rev; date = mc_saved_header->date; total_size = get_totalsize(mc_saved_header); data_size = get_datasize(mc_saved_header); pr_debug("mc_saved[%d]: sig=0x%x, pf=0x%x, rev=0x%x, total size=0x%x, date = %04x-%02x-%02x\n", i++, sig, pf, rev, total_size, date & 0xffff, date >> 24, (date >> 16) & 0xff); /* Look for ext. headers: */ if (total_size <= data_size + MC_HEADER_SIZE) continue; ext_header = (void *)mc_saved_header + data_size + MC_HEADER_SIZE; ext_sigcount = ext_header->count; ext_sig = (void *)ext_header + EXT_HEADER_SIZE; for (j = 0; j < ext_sigcount; j++) { sig = ext_sig->sig; pf = ext_sig->pf; pr_debug("\tExtended[%d]: sig=0x%x, pf=0x%x\n", j, sig, pf); ext_sig++; } } #endif } /* * Save this microcode patch. It will be loaded early when a CPU is * hot-added or resumes. */ static void save_mc_for_early(struct ucode_cpu_info *uci, u8 *mc, unsigned int size) { /* Synchronization during CPU hotplug. */ static DEFINE_MUTEX(x86_cpu_microcode_mutex); mutex_lock(&x86_cpu_microcode_mutex); save_microcode_patch(uci, mc, size); show_saved_mc(); mutex_unlock(&x86_cpu_microcode_mutex); } static bool load_builtin_intel_microcode(struct cpio_data *cp) { unsigned int eax = 1, ebx, ecx = 0, edx; char name[30]; if (IS_ENABLED(CONFIG_X86_32)) return false; native_cpuid(&eax, &ebx, &ecx, &edx); sprintf(name, "intel-ucode/%02x-%02x-%02x", x86_family(eax), x86_model(eax), x86_stepping(eax)); return get_builtin_firmware(cp, name); } /* * Print ucode update info. */ static void print_ucode_info(struct ucode_cpu_info *uci, unsigned int date) { pr_info_once("microcode updated early to revision 0x%x, date = %04x-%02x-%02x\n", uci->cpu_sig.rev, date & 0xffff, date >> 24, (date >> 16) & 0xff); } #ifdef CONFIG_X86_32 static int delay_ucode_info; static int current_mc_date; /* * Print early updated ucode info after printk works. This is delayed info dump. */ void show_ucode_info_early(void) { struct ucode_cpu_info uci; if (delay_ucode_info) { collect_cpu_info_early(&uci); print_ucode_info(&uci, current_mc_date); delay_ucode_info = 0; } } /* * At this point, we can not call printk() yet. Delay printing microcode info in * show_ucode_info_early() until printk() works. */ static void print_ucode(struct ucode_cpu_info *uci) { struct microcode_intel *mc; int *delay_ucode_info_p; int *current_mc_date_p; mc = uci->mc; if (!mc) return; delay_ucode_info_p = (int *)__pa_nodebug(&delay_ucode_info); current_mc_date_p = (int *)__pa_nodebug(¤t_mc_date); *delay_ucode_info_p = 1; *current_mc_date_p = mc->hdr.date; } #else static inline void print_ucode(struct ucode_cpu_info *uci) { struct microcode_intel *mc; mc = uci->mc; if (!mc) return; print_ucode_info(uci, mc->hdr.date); } #endif static int apply_microcode_early(struct ucode_cpu_info *uci, bool early) { struct microcode_intel *mc; u32 rev; mc = uci->mc; if (!mc) return 0; /* * Save us the MSR write below - which is a particular expensive * operation - when the other hyperthread has updated the microcode * already. */ rev = intel_get_microcode_revision(); if (rev >= mc->hdr.rev) { uci->cpu_sig.rev = rev; return UCODE_OK; } /* * Writeback and invalidate caches before updating microcode to avoid * internal issues depending on what the microcode is updating. */ native_wbinvd(); /* write microcode via MSR 0x79 */ native_wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits); rev = intel_get_microcode_revision(); if (rev != mc->hdr.rev) return -1; uci->cpu_sig.rev = rev; if (early) print_ucode(uci); else print_ucode_info(uci, mc->hdr.date); return 0; } int __init save_microcode_in_initrd_intel(void) { struct ucode_cpu_info uci; struct cpio_data cp; /* * initrd is going away, clear patch ptr. We will scan the microcode one * last time before jettisoning and save a patch, if found. Then we will * update that pointer too, with a stable patch address to use when * resuming the cores. */ intel_ucode_patch = NULL; if (!load_builtin_intel_microcode(&cp)) cp = find_microcode_in_initrd(ucode_path, false); if (!(cp.data && cp.size)) return 0; collect_cpu_info_early(&uci); scan_microcode(cp.data, cp.size, &uci, true); show_saved_mc(); return 0; } /* * @res_patch, output: a pointer to the patch we found. */ static struct microcode_intel *__load_ucode_intel(struct ucode_cpu_info *uci) { static const char *path; struct cpio_data cp; bool use_pa; if (IS_ENABLED(CONFIG_X86_32)) { path = (const char *)__pa_nodebug(ucode_path); use_pa = true; } else { path = ucode_path; use_pa = false; } /* try built-in microcode first */ if (!load_builtin_intel_microcode(&cp)) cp = find_microcode_in_initrd(path, use_pa); if (!(cp.data && cp.size)) return NULL; collect_cpu_info_early(uci); return scan_microcode(cp.data, cp.size, uci, false); } void __init load_ucode_intel_bsp(void) { struct microcode_intel *patch; struct ucode_cpu_info uci; patch = __load_ucode_intel(&uci); if (!patch) return; uci.mc = patch; apply_microcode_early(&uci, true); } void load_ucode_intel_ap(void) { struct microcode_intel *patch, **iup; struct ucode_cpu_info uci; if (IS_ENABLED(CONFIG_X86_32)) iup = (struct microcode_intel **) __pa_nodebug(&intel_ucode_patch); else iup = &intel_ucode_patch; reget: if (!*iup) { patch = __load_ucode_intel(&uci); if (!patch) return; *iup = patch; } uci.mc = *iup; if (apply_microcode_early(&uci, true)) { /* Mixed-silicon system? Try to refetch the proper patch: */ *iup = NULL; goto reget; } } static struct microcode_intel *find_patch(struct ucode_cpu_info *uci) { struct microcode_header_intel *phdr; struct ucode_patch *iter, *tmp; list_for_each_entry_safe(iter, tmp, µcode_cache, plist) { phdr = (struct microcode_header_intel *)iter->data; if (phdr->rev <= uci->cpu_sig.rev) continue; if (!find_matching_signature(phdr, uci->cpu_sig.sig, uci->cpu_sig.pf)) continue; return iter->data; } return NULL; } void reload_ucode_intel(void) { struct microcode_intel *p; struct ucode_cpu_info uci; collect_cpu_info_early(&uci); p = find_patch(&uci); if (!p) return; uci.mc = p; apply_microcode_early(&uci, false); } static int collect_cpu_info(int cpu_num, struct cpu_signature *csig) { static struct cpu_signature prev; struct cpuinfo_x86 *c = &cpu_data(cpu_num); unsigned int val[2]; memset(csig, 0, sizeof(*csig)); csig->sig = cpuid_eax(0x00000001); if ((c->x86_model >= 5) || (c->x86 > 6)) { /* get processor flags from MSR 0x17 */ rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]); csig->pf = 1 << ((val[1] >> 18) & 7); } csig->rev = c->microcode; /* No extra locking on prev, races are harmless. */ if (csig->sig != prev.sig || csig->pf != prev.pf || csig->rev != prev.rev) { pr_info("sig=0x%x, pf=0x%x, revision=0x%x\n", csig->sig, csig->pf, csig->rev); prev = *csig; } return 0; } static enum ucode_state apply_microcode_intel(int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; struct cpuinfo_x86 *c = &cpu_data(cpu); struct microcode_intel *mc; enum ucode_state ret; static int prev_rev; u32 rev; /* We should bind the task to the CPU */ if (WARN_ON(raw_smp_processor_id() != cpu)) return UCODE_ERROR; /* Look for a newer patch in our cache: */ mc = find_patch(uci); if (!mc) { mc = uci->mc; if (!mc) return UCODE_NFOUND; } /* * Save us the MSR write below - which is a particular expensive * operation - when the other hyperthread has updated the microcode * already. */ rev = intel_get_microcode_revision(); if (rev >= mc->hdr.rev) { ret = UCODE_OK; goto out; } /* * Writeback and invalidate caches before updating microcode to avoid * internal issues depending on what the microcode is updating. */ native_wbinvd(); /* write microcode via MSR 0x79 */ wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits); rev = intel_get_microcode_revision(); if (rev != mc->hdr.rev) { pr_err("CPU%d update to revision 0x%x failed\n", cpu, mc->hdr.rev); return UCODE_ERROR; } if (rev != prev_rev) { pr_info("updated to revision 0x%x, date = %04x-%02x-%02x\n", rev, mc->hdr.date & 0xffff, mc->hdr.date >> 24, (mc->hdr.date >> 16) & 0xff); prev_rev = rev; } ret = UCODE_UPDATED; out: uci->cpu_sig.rev = rev; c->microcode = rev; /* Update boot_cpu_data's revision too, if we're on the BSP: */ if (c->cpu_index == boot_cpu_data.cpu_index) boot_cpu_data.microcode = rev; return ret; } static enum ucode_state generic_load_microcode(int cpu, void *data, size_t size, int (*get_ucode_data)(void *, const void *, size_t)) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; u8 *ucode_ptr = data, *new_mc = NULL, *mc = NULL; int new_rev = uci->cpu_sig.rev; unsigned int leftover = size; unsigned int curr_mc_size = 0, new_mc_size = 0; unsigned int csig, cpf; enum ucode_state ret = UCODE_OK; while (leftover) { struct microcode_header_intel mc_header; unsigned int mc_size; if (leftover < sizeof(mc_header)) { pr_err("error! Truncated header in microcode data file\n"); break; } if (get_ucode_data(&mc_header, ucode_ptr, sizeof(mc_header))) break; mc_size = get_totalsize(&mc_header); if (!mc_size || mc_size > leftover) { pr_err("error! Bad data in microcode data file\n"); break; } /* For performance reasons, reuse mc area when possible */ if (!mc || mc_size > curr_mc_size) { vfree(mc); mc = vmalloc(mc_size); if (!mc) break; curr_mc_size = mc_size; } if (get_ucode_data(mc, ucode_ptr, mc_size) || microcode_sanity_check(mc, 1) < 0) { break; } csig = uci->cpu_sig.sig; cpf = uci->cpu_sig.pf; if (has_newer_microcode(mc, csig, cpf, new_rev)) { vfree(new_mc); new_rev = mc_header.rev; new_mc = mc; new_mc_size = mc_size; mc = NULL; /* trigger new vmalloc */ ret = UCODE_NEW; } ucode_ptr += mc_size; leftover -= mc_size; } vfree(mc); if (leftover) { vfree(new_mc); return UCODE_ERROR; } if (!new_mc) return UCODE_NFOUND; vfree(uci->mc); uci->mc = (struct microcode_intel *)new_mc; /* * If early loading microcode is supported, save this mc into * permanent memory. So it will be loaded early when a CPU is hot added * or resumes. */ save_mc_for_early(uci, new_mc, new_mc_size); pr_debug("CPU%d found a matching microcode update with version 0x%x (current=0x%x)\n", cpu, new_rev, uci->cpu_sig.rev); return ret; } static int get_ucode_fw(void *to, const void *from, size_t n) { memcpy(to, from, n); return 0; } static bool is_blacklisted(unsigned int cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); /* * Late loading on model 79 with microcode revision less than 0x0b000021 * and LLC size per core bigger than 2.5MB may result in a system hang. * This behavior is documented in item BDF90, #334165 (Intel Xeon * Processor E7-8800/4800 v4 Product Family). */ if (c->x86 == 6 && c->x86_model == INTEL_FAM6_BROADWELL_X && c->x86_stepping == 0x01 && llc_size_per_core > 2621440 && c->microcode < 0x0b000021) { pr_err_once("Erratum BDF90: late loading with revision < 0x0b000021 (0x%x) disabled.\n", c->microcode); pr_err_once("Please consider either early loading through initrd/built-in or a potential BIOS update.\n"); return true; } return false; } static enum ucode_state request_microcode_fw(int cpu, struct device *device, bool refresh_fw) { char name[30]; struct cpuinfo_x86 *c = &cpu_data(cpu); const struct firmware *firmware; enum ucode_state ret; if (is_blacklisted(cpu)) return UCODE_NFOUND; sprintf(name, "intel-ucode/%02x-%02x-%02x", c->x86, c->x86_model, c->x86_stepping); if (request_firmware_direct(&firmware, name, device)) { pr_debug("data file %s load failed\n", name); return UCODE_NFOUND; } ret = generic_load_microcode(cpu, (void *)firmware->data, firmware->size, &get_ucode_fw); release_firmware(firmware); return ret; } static int get_ucode_user(void *to, const void *from, size_t n) { return copy_from_user(to, from, n); } static enum ucode_state request_microcode_user(int cpu, const void __user *buf, size_t size) { if (is_blacklisted(cpu)) return UCODE_NFOUND; return generic_load_microcode(cpu, (void *)buf, size, &get_ucode_user); } static struct microcode_ops microcode_intel_ops = { .request_microcode_user = request_microcode_user, .request_microcode_fw = request_microcode_fw, .collect_cpu_info = collect_cpu_info, .apply_microcode = apply_microcode_intel, }; static int __init calc_llc_size_per_core(struct cpuinfo_x86 *c) { u64 llc_size = c->x86_cache_size * 1024ULL; do_div(llc_size, c->x86_max_cores); return (int)llc_size; } struct microcode_ops * __init init_intel_microcode(void) { struct cpuinfo_x86 *c = &boot_cpu_data; if (c->x86_vendor != X86_VENDOR_INTEL || c->x86 < 6 || cpu_has(c, X86_FEATURE_IA64)) { pr_err("Intel CPU family 0x%x not supported\n", c->x86); return NULL; } llc_size_per_core = calc_llc_size_per_core(c); return µcode_intel_ops; }