/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_DISK_H #define _SCSI_DISK_H /* * More than enough for everybody ;) The huge number of majors * is a leftover from 16bit dev_t days, we don't really need that * much numberspace. */ #define SD_MAJORS 16 /* * Time out in seconds for disks and Magneto-opticals (which are slower). */ #define SD_TIMEOUT (30 * HZ) #define SD_MOD_TIMEOUT (75 * HZ) /* * Flush timeout is a multiplier over the standard device timeout which is * user modifiable via sysfs but initially set to SD_TIMEOUT */ #define SD_FLUSH_TIMEOUT_MULTIPLIER 2 #define SD_WRITE_SAME_TIMEOUT (120 * HZ) /* * Number of allowed retries */ #define SD_MAX_RETRIES 5 #define SD_PASSTHROUGH_RETRIES 1 #define SD_MAX_MEDIUM_TIMEOUTS 2 /* * Size of the initial data buffer for mode and read capacity data */ #define SD_BUF_SIZE 512 /* * Number of sectors at the end of the device to avoid multi-sector * accesses to in the case of last_sector_bug */ #define SD_LAST_BUGGY_SECTORS 8 enum { SD_EXT_CDB_SIZE = 32, /* Extended CDB size */ SD_MEMPOOL_SIZE = 2, /* CDB pool size */ }; enum { SD_DEF_XFER_BLOCKS = 0xffff, SD_MAX_XFER_BLOCKS = 0xffffffff, SD_MAX_WS10_BLOCKS = 0xffff, SD_MAX_WS16_BLOCKS = 0x7fffff, }; enum { SD_LBP_FULL = 0, /* Full logical block provisioning */ SD_LBP_UNMAP, /* Use UNMAP command */ SD_LBP_WS16, /* Use WRITE SAME(16) with UNMAP bit */ SD_LBP_WS10, /* Use WRITE SAME(10) with UNMAP bit */ SD_LBP_ZERO, /* Use WRITE SAME(10) with zero payload */ SD_LBP_DISABLE, /* Discard disabled due to failed cmd */ }; enum { SD_ZERO_WRITE = 0, /* Use WRITE(10/16) command */ SD_ZERO_WS, /* Use WRITE SAME(10/16) command */ SD_ZERO_WS16_UNMAP, /* Use WRITE SAME(16) with UNMAP */ SD_ZERO_WS10_UNMAP, /* Use WRITE SAME(10) with UNMAP */ }; struct scsi_disk { struct scsi_driver *driver; /* always &sd_template */ struct scsi_device *device; struct device dev; struct gendisk *disk; struct opal_dev *opal_dev; #ifdef CONFIG_BLK_DEV_ZONED u32 nr_zones; u32 zone_blocks; u32 zone_shift; u32 zones_optimal_open; u32 zones_optimal_nonseq; u32 zones_max_open; #endif atomic_t openers; sector_t capacity; /* size in logical blocks */ u32 max_xfer_blocks; u32 opt_xfer_blocks; u32 max_ws_blocks; u32 max_unmap_blocks; u32 unmap_granularity; u32 unmap_alignment; u32 index; unsigned int physical_block_size; unsigned int max_medium_access_timeouts; unsigned int medium_access_timed_out; u8 media_present; u8 write_prot; u8 protection_type;/* Data Integrity Field */ u8 provisioning_mode; u8 zeroing_mode; unsigned ATO : 1; /* state of disk ATO bit */ unsigned cache_override : 1; /* temp override of WCE,RCD */ unsigned WCE : 1; /* state of disk WCE bit */ unsigned RCD : 1; /* state of disk RCD bit, unused */ unsigned DPOFUA : 1; /* state of disk DPOFUA bit */ unsigned first_scan : 1; unsigned lbpme : 1; unsigned lbprz : 1; unsigned lbpu : 1; unsigned lbpws : 1; unsigned lbpws10 : 1; unsigned lbpvpd : 1; unsigned ws10 : 1; unsigned ws16 : 1; unsigned rc_basis: 2; unsigned zoned: 2; unsigned urswrz : 1; unsigned security : 1; unsigned ignore_medium_access_errors : 1; ANDROID_KABI_RESERVE(1); ANDROID_KABI_RESERVE(2); }; #define to_scsi_disk(obj) container_of(obj,struct scsi_disk,dev) static inline struct scsi_disk *scsi_disk(struct gendisk *disk) { return container_of(disk->private_data, struct scsi_disk, driver); } #define sd_printk(prefix, sdsk, fmt, a...) \ (sdsk)->disk ? \ sdev_prefix_printk(prefix, (sdsk)->device, \ (sdsk)->disk->disk_name, fmt, ##a) : \ sdev_printk(prefix, (sdsk)->device, fmt, ##a) #define sd_first_printk(prefix, sdsk, fmt, a...) \ do { \ if ((sdkp)->first_scan) \ sd_printk(prefix, sdsk, fmt, ##a); \ } while (0) static inline int scsi_medium_access_command(struct scsi_cmnd *scmd) { switch (scmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case READ_16: case SYNCHRONIZE_CACHE: case VERIFY: case VERIFY_12: case VERIFY_16: case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: case WRITE_SAME: case WRITE_SAME_16: case UNMAP: return 1; case VARIABLE_LENGTH_CMD: switch (scmd->cmnd[9]) { case READ_32: case VERIFY_32: case WRITE_32: case WRITE_SAME_32: return 1; } } return 0; } static inline sector_t logical_to_sectors(struct scsi_device *sdev, sector_t blocks) { return blocks << (ilog2(sdev->sector_size) - 9); } static inline unsigned int logical_to_bytes(struct scsi_device *sdev, sector_t blocks) { return blocks * sdev->sector_size; } static inline sector_t bytes_to_logical(struct scsi_device *sdev, unsigned int bytes) { return bytes >> ilog2(sdev->sector_size); } static inline sector_t sectors_to_logical(struct scsi_device *sdev, sector_t sector) { return sector >> (ilog2(sdev->sector_size) - 9); } /* * Look up the DIX operation based on whether the command is read or * write and whether dix and dif are enabled. */ static inline unsigned int sd_prot_op(bool write, bool dix, bool dif) { /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ const unsigned int ops[] = { /* wrt dix dif */ SCSI_PROT_NORMAL, /* 0 0 0 */ SCSI_PROT_READ_STRIP, /* 0 0 1 */ SCSI_PROT_READ_INSERT, /* 0 1 0 */ SCSI_PROT_READ_PASS, /* 0 1 1 */ SCSI_PROT_NORMAL, /* 1 0 0 */ SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ SCSI_PROT_WRITE_PASS, /* 1 1 1 */ }; return ops[write << 2 | dix << 1 | dif]; } /* * Returns a mask of the protection flags that are valid for a given DIX * operation. */ static inline unsigned int sd_prot_flag_mask(unsigned int prot_op) { const unsigned int flag_mask[] = { [SCSI_PROT_NORMAL] = 0, [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | SCSI_PROT_GUARD_CHECK | SCSI_PROT_REF_CHECK | SCSI_PROT_REF_INCREMENT, [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | SCSI_PROT_IP_CHECKSUM, [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | SCSI_PROT_GUARD_CHECK | SCSI_PROT_REF_CHECK | SCSI_PROT_REF_INCREMENT | SCSI_PROT_IP_CHECKSUM, [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | SCSI_PROT_REF_INCREMENT, [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | SCSI_PROT_REF_CHECK | SCSI_PROT_REF_INCREMENT | SCSI_PROT_IP_CHECKSUM, [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | SCSI_PROT_GUARD_CHECK | SCSI_PROT_REF_CHECK | SCSI_PROT_REF_INCREMENT | SCSI_PROT_IP_CHECKSUM, }; return flag_mask[prot_op]; } #ifdef CONFIG_BLK_DEV_INTEGRITY extern void sd_dif_config_host(struct scsi_disk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void sd_dif_config_host(struct scsi_disk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static inline int sd_is_zoned(struct scsi_disk *sdkp) { return sdkp->zoned == 1 || sdkp->device->type == TYPE_ZBC; } #ifdef CONFIG_BLK_DEV_ZONED extern int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buffer); extern void sd_zbc_remove(struct scsi_disk *sdkp); extern void sd_zbc_print_zones(struct scsi_disk *sdkp); extern int sd_zbc_setup_report_cmnd(struct scsi_cmnd *cmd); extern int sd_zbc_setup_reset_cmnd(struct scsi_cmnd *cmd); extern void sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr); #else /* CONFIG_BLK_DEV_ZONED */ static inline int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buf) { return 0; } static inline void sd_zbc_remove(struct scsi_disk *sdkp) {} static inline void sd_zbc_print_zones(struct scsi_disk *sdkp) {} static inline int sd_zbc_setup_report_cmnd(struct scsi_cmnd *cmd) { return BLKPREP_INVALID; } static inline int sd_zbc_setup_reset_cmnd(struct scsi_cmnd *cmd) { return BLKPREP_INVALID; } static inline void sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr) {} #endif /* CONFIG_BLK_DEV_ZONED */ #endif /* _SCSI_DISK_H */